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Summary
Background Kidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic 
artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating 
continuously refined predictions of survival using updates of clinical data.

Methods In this observational study, we used data from adult recipients of kidney transplants from 18 academic 
transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled 
trials. The development cohort comprised patients from four centres in France, with all other patients included in 
external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were 
collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of 
estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). 
To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a 
Bayesian joint models—an artificial intelligence approach. The prediction performances of the model were assessed 
via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study 
is registered with ClinicalTrials.gov, NCT04258891. 

Findings 13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and 
contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed 
that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and 
repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model 
showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 
[95% CI 0·847–0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 
0·780 [0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001). The predictive performance was confirmed in the external 
validation cohorts from Europe (overall AUC 0·845 [0·837–0·854]), the USA (overall AUC 0·820 [0·808–0·831]), South 
America (overall AUC 0·868 [0·856–0·880]), and the cohort of patients from randomised controlled trials (overall 
AUC 0·857 [0·840–0·875]).

Interpretation Because of its dynamic design, this model can be continuously updated and holds value as a bedside 
tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision 
medicine in the transplant setting.

Funding MSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller 
Foundation.

Copyright © 2021 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND 
4.0 license.

Introduction
Kidney allograft failure is an important burden in kidney 
disease and contributes to the increasing number of 
people with end-stage renal disease, now exceeding 
7 million worldwide as of 2020.1 Health agencies and 
medical societies have emphasised the need for a 

prediction model for kidney allograft survival adapted to 
routine clinical practice that would enhance decision 
making and patient management.2

Multiple factors—from clinical to histological and 
immunological—drive the deterioration of a kidney 
allograft, leading to allograft failure.3 Additionally, several 
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studies have found that repeated measurements of 
allograft function can add value when predicting clinical 
outcomes.4,5 Hence, capturing a comprehensive set of 
risk factors for allograft failure requires not only large, 
well annotated, deeply phenotyped cohorts6 of kidney 
transplant recipients but also a dynamic and integrative 
method that uses repeated and diverse measures 
recorded throughout patient follow-up.

Although some kidney allograft survival prediction 
models hold promise as surrogate endpoints for clinical 
trials—such as the iBox score, a prediction system we 
previously developed focusing on an early timepoint 
after transplantation,3 which was derived using standard 
Cox analysis—none has been designed to constantly 
refine individual patient predictions.7 For this reason, 
the current models have not translated into an 
implementable strategy for routine patient monitoring 
and care.

Therefore, we aimed to develop and validate a 
dynamic, integrative allograft survival prediction system 
using information gathered by protocol-driven, repeated 
estimated glomerular filtration rate (eGFR) and 
proteinuria assessments done alongside clinical, 
biological, histological, and immunological testing in 
large prospective cohorts of kidney transplant recipients 
from Europe, North America, and South America, and 
six randomised controlled trials. We used a Bayesian 
joint modelling contemporary approach,8 which is 
optimal for integrating longitudinal parameters 
recorded at any time intervals, and prognostic factors 
that do not vary over time. This approach has already 
been found to have clinical relevance in several health 
domains, such as oncology,9 cardiovascular disease,10 
and hypertension.11

Methods
Study design and participating cohorts
In this multinational observational study, we used data 
from 18 cohorts of adult kidney recipients (aged 
≥18 years) from seven countries. For the development 
cohort, we collected data from patients ourselves, and for 
the external validation cohorts, we sourced data from 
these studies using existing data collection systems.

For the development cohort, consecutive patients were 
prospectively included on the day of transplantation 
(living or deceased donation) at the Necker and  
Saint-Louis hospitals in Paris, France, the CHU Rangueil 
and Purpan hospital in Toulouse, France, and the Foch 
hospital in Suresnes, France, between Jan 1, 2005, and 
Jan 1, 2014. These cohorts were part of the Paris 
Transplant Group study. We anonymised and contin
uously entered the clinical data into the Paris Transplant 
Group unified dataset using a standardised, shared 
protocol to ensure harmonisation. More information on 
this process is available in the appendix (p 2). 

For external validation of our system, we used data from 
six registered and published phase 2 and 3 clinical 
trials12–17 in addition to 14 cohorts that contained adult  
patients (aged ≥18 years) who received transplants (living 
or deceased donation) between Jan 1, 2000, and Jan 1, 2016: 
five cohorts from Europe (Montpellier Hospital, 
Montpellier, France; Bretonneau Hospital, Tours, France; 
University Hospital Centre Zagreb, Zagreb, Croatia; 
Nancy Hospital, Nancy, France;  and Hospital del Mar, 
Barcelona, Spain), five from the USA (Johns Hopkins 
University School of Medicine, Baltimore, MD, USA; 
Northwestern University Feinberg School of Medicine, 
Chicago, IL, USA; William J von Liebig Center for 
Transplantation and Clinical Regeneration, Mayo Clinic, 

Research in context

Evidence before this study
Predicting the failure of kidney allograft requires the integration 
of multidimensional data and is a complex yet crucial task in 
clinical practice. In the past 20 years, many kidney allograft 
survival prediction models have been developed. We searched 
PubMed for publications in English between Jan 1, 2000, and 
Jan 1, 2021, using the terms  (“prognosis” OR “prediction”) AND 
(“kidney transplantation”) AND (“graft failure” OR “graft loss” 
OR “graft survival”). The search yielded 1690 articles, of which 
35 reported the development of a kidney allograft survival 
prediction system. Among these, five systems were externally 
validated and none dynamically integrated clinical, histological, 
and immunological data and repeated measurements of kidney 
function at the same time. 

Added value of this study
Based on a joint modelling approach, we developed a 
dynamic, multidimensional kidney allograft survival 
prediction system (called dynamic, integrative system for 

predicting outcome [DISPO]), using four French cohorts of 
kidney transplant recipients for development and 
14 international cohorts for external validation and six 
randomised controlled trials. Our system showed good 
prediction performance across countries, and in a series of 
clinical scenarios and subpopulations (eg, patients with a graft 
from a living donor, or patients with anti-IL2 receptor 
induction). It also captured response to therapeutic 
interventions and outperformed existing prediction models 
for kidney allograft survival.

Implications of all the available evidence
We adapted the model into an online interface devoted to 
patient risk stratification, enabling real‐time prognostication. 
Therefore, our model could help to refine the prognostic 
evaluation of kidney transplant recipients in routine clinical 
practice, enhancing precision medicine and individualised 
patient management. To assess the effect of DISPO in clinical 
practice, we plan to conduct a randomised controlled trial.
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Rochester, MN, USA; Comprehensive Transplant Center, 
Cedars Sinai Medical Center, Los Angeles, CA, USA; and 
Renal Division Montefiore Medical Center, Bronx, NY, 
USA), and four from South America (Hospital do Rim 
and Hospital das Clinicas da Universidade de São Paulo, 
São Paulo, Brazil; Centro de Educacion Medica e 
Investigaciones Clinicas Buenos Aires, Argentina; Kidney 
Transplantation Department, Clinica Alemana de 
Santiago, Santiago, Chile; appendix p 2). Details about the 
kidney allograft allocation system and data collection for 
each cohort are provided in the appendix (pp 14–15).

We used the Transparent Reporting of a Multivariable 
Prediction Model for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines (appendix pp 16–17)18 for reporting 
the development and validation of the prediction model.

All data from the Necker, Saint Louis, Foch, and 
Toulouse hospitals were extracted from the prospective 
Paris Transplant Group Cohort (Commission nationale 
de l’informatique et des libertés, known as CNIL, 
registration number 363505; protocol was validated on 
June 8, 2004). The database networks were approved by 
the CNIL and codes were used to ensure strict donor and 
recipient anonymity and blinded access. Written 
informed consent was obtained from participants at the 
time of transplantation. The validation cohorts followed 
the legal and ethical rules applied in each country (for 
more information see appendix p 2). As part of research 
collaborations, the institutional review boards with 
oversight for patients at each centre and in each trial 
agreed to send the anonymised data to the Paris 
Transplant Group. In each cohort, patients gave written 
informed consent on the day of transplantation.

Data collection and procedures
The following data collection methods were only applied 
to the development cohort. The selection and acquisition 
of data was based on the expertise of the transplant 
nephrologists, pathologists, and methodologists in the 
Paris Transplant Group (MR, OA, GD, PPR, DY, J-PE, XJ, 
CLeg, CLef, AL), and on the evidence and findings in the 
scientific literature. Initial risk assessment of each patient 
was performed at the time of allograft biopsy after 
transplantation for a clinical indication or per protocol 
(which was usually performed around 1 year after 
transplantation) to build deeply phenotyped cohorts of 
transplant recipients. The following information was 
collected: recipient and donor age, sex, and comorbidities; 
transplant characteristics (ie, previous kidney transplant, 
cold ischaemia time, and HLA mismatch number); 
functional parameters (ie, eGFR and proteinuria); 
immunological profile (ie, circulating anti-HLA donor-
specific antibody specificities and mean fluorescence 
intensity specificities and levels); and allograft 
histopathology data, including lesion scores and 
diagnoses.

The following assessments were done for the develop
ment cohort, even though similar strategies were used for 

all external validation cohorts. Circulating anti-HLA 
donor-specific antibodies were assessed using single-
antigen flow-bead using the One Lambda strategy 
(appendix pp 2–3).19 Histopathological data were assessed 
according to the Banff international classification (the list 
of all prognostic parameters assessed from the 
development cohort is in the appendix [pp 3–5]).20 

In the development cohort, all study centres performed 
the protocol biopsies and all patients had at least one 
biopsy. For patients with several biopsy samples from 
the development or external validation cohorts, initial 
assessment was done using the date of and data from the 
first biopsy. For patients without a biopsy sample from the 
external validation cohorts, one of the timepoints of eGFR 
and proteinuria measurement in the first year after 
transplantation was randomly chosen as the time of initial 
assessment was.

In the development cohort, repeated eGFR and 
proteinuria measurements were done at the time of 
initial evaluation after transplantation and every 
6 months thereafter according to a predefined protocol, 
and at the time of any clinically indicated allograft 
biopsies. eGFR was calculated using the Modification of 
Diet in Renal Disease Study equation, which has been 
shown to have good accuracy compared with other 
estimating equations in kidney transplant recipients.21,22 
Proteinuria was assessed using the proteinuria to 
creatininuria ratio.23,24 For the external validation cohorts 
and randomised controlled trial data, eGFR and 
proteinuria measurements were recorded per centre 
protocol for all patients after transplantation.

Statistical analysis
We aimed to predict the outcome of death-censored 
allograft survival using a dynamic prediction system. The 
failure of the allograft was defined as a patient’s definitive 
return to dialysis or pre-emptive kidney re-transplan
tation. 

We describe continuous variables using mean (SD) or 
median (IQR), as appropriate. We compared means and 
proportions between groups using Student’s t test, 
ANOVA (Mann-Whitney U test for donor-specific 
antibodies mean fluorescence intensity), or χ² test (or 
Fisher’s exact test if appropriate). Follow-up started from 
the patient’s initial risk assessment up to the date of 
allograft failure or the end of follow-up (Dec 31, 2019), 
and the outcome was assessed at the end of follow-up. 
For patients who died with a functioning allograft, 
allograft survival was censored at the time of death as a 
functional allograft.

To derive a dynamic, integrative, prediction system 
including patients’ longitudinal assessments, we used 
Bayesian, shared-parameter, multivariable joint models, 
which is an artificial intelligence approach and optimal 
to assess the associations between longitudinal markers 
and survival data. The principle of this approach is to join 
a Cox model that correlates features measured at 
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one timepoint with survival data to mixed models that 
estimate the trajectories of eGFR and proteinuria based 
on the repeated measurements.25,26 With this method, we 
included clinical, immunological, functional, and 
histopathological data measured at the initial risk 
assessment in a Cox model, while the continuously 
recorded eGFR and proteinuria measurements were 
included in two mixed models. To assess the effect of 
repeated eGFR and proteinuria measurements up to a 
specific timepoint, we considered in turn the updated 
measurement only, the slope with all measurements 
observed, and the cumulative effect with the area under 
all measurements observed (appendix pp 6–8). According 
to these different parameterisations, we selected the 
model presenting the best prediction performance.

The performance of the dynamic prediction model was 
based on its discrimination and calibration. We assessed 
the discrimination of the final model using dynamic area 
under the receiver operator curves (AUCs).8,27 For each 
cohort, the prediction horizon for the calculation of 
AUCs was set at the median follow-up time after initial 
risk evaluation (appendix pp 8–9). We assessed the 
calibration (ie, the similarity between the predicted risk 
and the actual outcome) using calibration plots and the 
calibration intercept and slope from the linear regression 
of the observed outcomes versus the predicted risk.28

We assessed the internal validity of the final multivariable 
model by bootstrapping 50 samples from the development 
cohort, which allowed us to repeat the calculation of 
hazard ratios, allowing us to generate bias-corrected 
hazard ratios, and repeat the discrimination and the 
calibration. Thereafter, we assessed the external validity of 
the model in the 14 independent observational cohorts 
and one cohort comprising the six randomised controlled 
trial datasets, and included dynamic AUC calculation and 
calibration.

We built a dynamic, integrative system for predicting 
outcome (hereafter called DISPO) from the final 
multivariable joint model and created an interface for 
online use (appendix pp 6–8). This dynamic system 
provides a personalised prediction of long-term 
allograft survival on the basis of observed repeated 
measures of eGFR and proteinuria and parameters 
assessed at the time of initial risk assessment. A table 
summarising the population, data, outcome, and model 
development and validation is presented in the 
appendix (pp 6–8). Details regarding the calculation of 
prediction performance and data imputation are 
provided in the appendix (pp 6–8).

We investigated whether the system could capture 
treatment response in three distinct clinical scenarios: 
antibody-mediated rejection, T-cell mediated rejection, 
and calcineurin inhibitor minimisation. We calculated 
the change in predicted allograft survival based on 
patient evaluation after and before therapeutic 
interventions and defined patients with a favourable 
response as those with a change greater than 0. 

To confirm the prediction performance of our system, 
we applied the system to subpopulations of the 
development cohort were: recipients who had a biopsy 
per protocol; recipients who had a biopsy by clinical 
indication; recipients who had an initial risk evaluation 
before 1 year after transplant; recipients who had an 
initial risk evaluation more than 1 year after transplant; 
recipients of living donor kidneys; recipients of 
deceased donor kidneys; recipients who received 
induction with an anti-IL-2 receptor; and recipients 
who received induction with anti-thymocyte globulin. 
Additionally, we adapted the system to centres that do 
not grade the biopsy sample using the Banff 
classification, by using histological diagnoses instead. 
We also added to the system the transplant baseline 
characteristics to assess whether it added predictive 
value. Finally, we adapted the system to centres that do 
not perform biopsy or immunological assessment by 
removing these data from the system, and assessing 
the prediction performances.

To compare our system with the prediction models 
previously developed in kidney transplantation, we did a 
literature review. The details of this literature review are 
presented in the appendix (p 13). We compared the 
prediction performances of our system with the iBox 
system using eGFR slopes—a standard measure to 
assess the risk of allograft loss.

To assess the robustness of the model, we did several 
sensitivity analyses in the development cohort. We 
assessed the effect of the study site in the model, to 
ensure that the model was not centre dependent. We 
added parameters assessed at the time of transplantation 
to investigate whether this could enhance prediction 
performance. We implemented different timing of the 
risk assessment (ie, timing of biopsy) to ensure that the 
model can be applied at different times. We also stratified 
donor-specific antibody data by different loci becasue 
they can be differently associated with allograft survival.

We used R (version 3.2.1) and STATA (version 14) for 
the descriptive and survival analyses. We considered 
p values of less than 0·05 to be significant, and all tests 
were two-tailed. This study is registered with 
ClinicalTrials.gov, NCT04258891.

Role of the funding source
The funders of the study had no role in study design, 
data collection, data analysis, data interpretation, or 
writing of the report.

Results
The development cohort (n=3774), European validation 
cohort (n=5506), US validation cohort (n=2944), 
South American validation cohort (n=858), and six ran
domised controlled trials (n=526) contained a total of 
13 608 kidney recipients from 18 centres in seven countries, 
corresponding to 89 328 patient-years (table 1). The median 
time from kidney transplantation to initial risk assessment 
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was 1·0 years (IQR 0·3–1·1) in the development cohort 
and 0·3 years (0·2–1·0) in the validation cohorts overall. 
The median follow-up after transplantation was 8·1 years 
(5·6–10·9) in the development cohort and 6·0 years 
(3·9–8·9) in the validation cohorts overall. Overall, 
416 510 eGFR and proteinuria measurements were 
assessed (mean of 27·4 [SD 10·3] measurements per 
patient in the development cohort, 39·1 [12·1] in the 
European validation cohort, 22·8 [12·9] in the US 
validation cohort, and 35·5 [11·9] in the South American 
validation cohort), and 1893 patients lost their allograft 
during study follow-up. In the development cohort, 
287 (7·6%) of 3774 patients had de-novo donor-specific 

antibodies. This number should be put in the context of 
the early timepoint of the risk assessment in our study 
design: 94 (32·8%) 287 of donor-specific antibodies were 
class I, and 193 (67·2%) were class II. Baseline 
characteristics of the development and validation cohorts 
are shown in table 1. Baseline data for participants in the 
randomised controlled trials have been published 
elsewhere.12–17  Follow-up characteristics for each cohort, by 
centre, are shown in table 2 and the appendix (p 18). 
Additional characteristics, which include the distinct 
programmes of transplantation in the development 
cohorts, and the clinical scenarios and interventions in the 
clinical trials, are shown in the appendix (pp 14–15).

French development 
cohort (four centres; 
n=3774)

European validation 
cohort (five centres; 
n=5506)

US validation 
cohort (five centres; 
n=2944)

South America 
validation cohort 
(four centres; 
n=858)

p value* 

Recipient characteristics

Age, years 49·8 (13·7) 50·8 (14·0) 52·1 (14·1) 44·5 (14·1) <0·0001

Sex

Female 1455 (38·6%) 2090 (38·0%) 1335 (45·3%) 378 (44·1%) 0·0006

Male 2319 (61·4%) 3416 (62·0%) 1609 (54·7%) 480 (55·9%) ··

Causes of end-stage renal disease

Glomerulonephritis 1018 (27·0%) 1557 (28·3%) 574 (19·5%) 224 (26·1%) <0·0001

Any diabetes 411 (10·9%) 546 (9·9%) 400 (13·6%) 104 (12·1%) ··

Vascular 274 (7·3%) 447 (8·1%) 170 (5·8%) 123 (14·3%) ··

Other 2071 (54·9%) 2956 (53·7%) 1800 (61·1%) 407 (47·4%) ··

Preformed anti-HLA donor-specific antibodies 532 (14·1%) 215 (3·9%) 339 (11·5%) NA† <0·0001

Calculated PRA >85% 520 (13·8%) 496 (9·0%) 218 (7·4%) NA† <0·0001

Donor characteristics

Age, years 51·6 (16·4) 50·9 (15·8) 41·3 (14·3) 44·9 (13·6) 0·0009

Sex 

Female 1749 (46·3%) 2344/5498 (42·6%) 1458/2943 (50·0%) 424/854 (49·6%) <0·0001

Male 2025 (53·7%) 3154/5498 (57·4%) 1485/2943 (50·5%) 430/854 (50·4%) ··

Hypertension 944/3688 (25·6%) 1564/5024 (31·1%) 379/2166 (17·5%) 22/97 (22·7%) <0·0001

Any diabetes 220/3648 (6·0%) 294/4085 (7·2%) 53/2191 (2·4%) 4/113 (3·5%) <0·0001

Creatinine >1·5mg/dL 393/3741 (10·5%) 1129/5245 (21·5%) 197/1298 (15·2%) 102/152 (67·1%) <0·0001

Donor type

Deceased donor 3137 (83·1%) 4508/5089 (88·6%) 1348 (45·8%) 538/856 (62·9%) <0·0001

Death from cerebrovascular disease 1751/3137 (55·8%) 2777/4461 (62·3%) 215/498 (43·2%) NA† <0·0001

Expanded criteria donor 1317/3769 (34·9%) 1622/4175 (38·9%) 235/2345 (10·0%) 180/816 (22·1%) <0·0001

Transplant baseline characteristics 

Previous kidney transplant 564/3774 (14·9%) 530/5028 (10·5%) 411/2070 (19·9%) 55/848 (6·5%) <0·0001

Cold ischaemia time in deceased donors, h

n 3118 3319 1270 519 ··

Mean 19·0 (7·2) 17·4 (6·7) 18·6 (10·5) 22·1 (7·9) <0·0001

HLA-A, HLA-B, and HLA-DR mismatch

n 3770 5431 2014 850 ··

Mean (SD) 3·8 (1·4) 3·3 (1·4) 3·7 (1·7) 2·7 (1·4) 0·0005

Data are mean (SD), n (%), or n/N (%). Unless otherwise stated, the denominators for proportions and the populations for mean data are the totals at the top of the columns. 
DSA=donor-specific antibodies. HLA=human leucocyte antigen. NA=not available. PRA=panel reactive antibody. *p values were calculated for means and proportions 
between groups using Student’s t test, ANOVA (Mann-Whitney U test for donor-specific antibody mean fluorescent intensity) or the χ2 test (or Fisher’s exact test if 
appropriate). †These data were not available for the South American cohort.

Table 1: Baseline characteristics of the development and validation cohorts (n=13 082)
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In the development cohort, functional, immunological, 
and histopathological features assessed at the initial 
risk assessment were combined with repeated eGFR 
and proteinuria measurements to develop a dynamic, 
integrative prediction model. In the multivariable 
analysis, all these features were independent predictors 
of long-term (ie, >7 years) allograft survival (figure 1; 
appendix p 19, 29). The different parameterisations 
implemented, and their discriminative performances are 
shown in the appendix (p 20).

Based on these results, we constructed the DISPO. In 
internal validation, the overall dynamic AUC of the final 
multivariable model was 0·857 (95% bootstrap percentile 
CI 0·847–0·866) at the prediction horizon of 7 years after 
initial assessment, with a persistent improvement in 
AUCs for each new repeated measurement (0·780 
[0·768–0·794] to 0·926 [0·917–0·932]; p<0·0001; 
figure 2). How successful the calibration performance of 
the model was is shown using calibration plots (figure 2)  

and the robustness was ascertained through calculation 
of bias-corrected hazard ratios (appendix p 19).

We then tested the exportability of the system. Overall, 
we found very high discrimination performance with an 
overall dynamic AUC of 0·845 (95% bootstrap 
percentile CI 0·837–0·854) in the European cohort, 
0·820 (0·808–0·831) in the US cohort, and 
0·868 (0·856–0·880) in the South American cohort, and 
0·857 (0·840–0·875) in the cohort comprising patients 
from six previously published phase 2 and 3 randomised 
clinical trials (figure 3). Via the calibration plots, we found 
strong agreement between the predicted allograft survival 
and observed allograft survival (appendix pp 22–25).

In the development cohort, 425 (11·3%) of 3774 transplant 
recipients were receiving standard of care treatment for 
antibody-mediated rejection, 305 (8·1%) were receiving 
standard of care treatment for T-cell mediated rejection, 
and 261 (6·9%) were weaned off of immunosuppression 
with calcineurin inhibitors due to toxicity and switched to 

N Follow-up after 
transplantation, 
years

Time from 
transplantation to 
initial evaluation, 
years

eGFR at initial 
assessment, 
mL/min 
per 1·73m²

Proteinuria at 
initial 
assessment, g/g

Development cohort

Necker hospital, Paris, France 1416 8·39 (6·04–11·06) 0·98 (0·27–1·06) 50·82 (19·84) 0·17 (0·09–0·35)

Saint-Louis hospital, Paris, France 872 7·35 (4·82–10·10) 1·00 (0·29–1·13) 47·88 (19·66) 0·20 (0·10–0·42)

CHU Rangueil and Purpan hospital, Toulouse, France 835 8·46 (5·83–11·01) 0·99 (0·42–1·05) 48·47 (16·69) 0·18 (0·05–0·34)

Foch hospital, Suresnes, France 651 7·96 (5·49–11·08) 0·87 (0·25–1·03) 54·32 (19·43) 0·22 (0·15–0·40)

Development cohort overall 3774 8·06 (5·60–10·9) 0·98 (0·27–1·07) 50·22 (19·20) 0·19 (0·10–0·38)

Validation cohorts

Europe

Montpellier hospital, Montpellier, France 1586 6·16 (4·19–8·29) 0·25 (0·25–0·34) 50·12 (18·66) 0·21 (0·12–0·36)

Bretonneau Hospital, Tours, France 1399 7·30 (4·97–10·58) 0·45 (0·24–1·09) 50·83 (20·31) 0·29 (0·18–0·54)

University Hospital Centre Zagreb, Zagreb, Croatia 1206 5·65 (3·54–7·94) 0·25 (0·25–0·25) 55·61 (14·16) 0·25 (0·15–0·38)

Nancy hospital, Nancy, France 1136 10·28 (8·14–12·41) 0·25 (0·25–0·25) 51·29 (16·93) 0·23 (0·14–0·40)

Hospital del Mar, Barcelona, Spain 179 7·54 (5·66–10·29) 1·25 (0·97–3·67) 48·19 (23·45) 0·29 (0·14–0·72)

Europe overall 5506 7·15 (4·56–10·11) 0·25 (0·25–0·77) 51·68 (18·18) 0·24 (0·14–0·42)

USA

Johns Hopkins Univerisity School of Medicine, Balitmore, MD 1017 4·25 (2·39–6·72) 0·16 (0·16–0·16) 59·68 (19·96) 0·08 (0·05–0·22)

Northwestern University Feinberg School of Medicine, 
Chicago, IL

872 4·73 (3·35–6·61) 1·03 (1·00–1·10) 55·93 (25·55) 0·05 (0·05–0·43)

Mayo Clinic, Rochester, MN 552 11·04 (9·03–12·76) 1·01 (0·99–1·06) 56·36 (15·25) 0·11 (0·07–0·23)

Cedars Sinai Medical Center, Los Angeles CA 380 2·80 (1·54–4·25) 0·47 (0·23–1·02) 45·35 (23·23) 0·31 (0·21–0·51)

Montefiore hospital, Bronx, NY 123 6·85 (5·83–7·84) 0·29 (0·11–1·35) 38·65 (19·35) 0·31 (0·14–1·00)

USA overall 2944 5·07 (3·00–7·78) 0·96 (0·16–1·03) 55·22 (22·15) 0·11 (0·05–0·33)

South America

Hospital do Rim, São Paulo, Brazil 481 4·61 (3·91–5·70) 2·60 (1·25–3·67) 33·89 (13·51) 0·38 (0·11–0·90)

Centro de Educacion Medica e Investigaciones Clinicas, Buenos 
Aires, Argentina

140 5·01 (3·73–6·23) 0·86 (0·42–1·10) 56·41 (21·15) 0·10 (0·05–0·23)

Hospital das Clinicas da Universidade de São Paulo, São Paulo, 
Brazil

121 4·30 (3·05–5·14) 1·00 (1·00–1·00) 68·26 (17·45) 0·13 (0·09–0·23)

Clinica Alemana de Santiago, Santiago, Chile 116 6·33 (3·00–9·21) 1·44 (0·44–4·84) 36·44 (18·77) 0·11 (0·05–0·59)

South America overall 858 4·73 (3·78–5·85) 1·27 (1·00–3·21) 42·74 (20·89) 0·23 (0·06–0·63)

Data are number of transplant recipients, median (IQR), or mean (SD). eGFR=estimated glomerular filtration rate.

Table 2: Follow-up characteristics of transplant recipients in the development and validation cohorts (n=13 082)
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belatacept. In the antibody-mediated rejection group, the 
median change in predicted allograft survival was 1·5% 
(IQR 0·8 to 3·4) in patients with a favourable response 
and –3·4% (–8·0 to –1·5) in patients with an unfavourable 
response. In the T-cell mediated rejection group, the 
median change in predicted allograft survival was 
1·5% (0·7 to 2·7) in patients with a favourable response 
and –2·1% (–4·7 to –0·9) in patients with an unfavourable 
response. In the calcineurin inhibitor minimisation 
group, the median change in predicted allograft survival 
was 5·3% (2·4 to 11·9) in patients with a favourable 
response and –2·8% (–6·6 to –1·2) in patients with 
an unfavourable response. Patients with favourable 
treatment responses had better allograft survival than 
those with unfavourable treatment responses (log-rank 
p=0·0005 for the antibody-mediated rejection group; log-
rank p<0·0001 for the T-cell mediated rejection group; 
and log-rank p=0·011 for the calcineurin inhibitor 
minimisation group; appendix pp 26–27).

We confirmed the prediction performance of the 
system when applied in a series of distinct subpopulations  
in the development cohort (appendix p 22). Overall, we 
found very good prediction performances in all the 
subpopulations.

To adapt to distinct health system contexts in which 
there might be limited availability of kidney allograft 
biopsies or immunological data, we derived a series of 
variations of DISPO based on subsets of the full model 
parameters (appendix p 22). Additionally, we derived a 
dynamic integrative system on the basis of histological 
diagnoses (antibody-mediated rejection, T-cell mediated 
rejection, primary nephropathy recurrence, and BK virus 
nephropathy) instead of the Banff international 
classification. We found that the models performed well 
in all these scenarios in the development cohort (AUC 
range 0·848–0·857).

We found that our system had superior prediction 
performance compared with the other existing prediction 
systems (appendix p 11). We found that our system 
outperformed both the cross-sectional iBox system, 
which is actually designed for clinical trials,3 and the 
eGFR slope4 at any timepoint after initial risk assessment 
(mean difference in AUC of 0·053 [IQR  0·035–0·071] 
with the iBox, and of 0·126 [0·117–0·156] with the eGFR 
slope; appendix p 28).

Based on all these results, we developed a ready-to-use 
online application for clinicians that predicts the long-
term, personalised allograft survival of a patient. This 
application adapts to the parameters available, although 
eGFR and proteinuria measurements need to be 
provided as a minimum to obtain predictions. An 
example of clinical use is presented in the appendix 
(p 13).

In our sensitivity analysis adjusting for study site, we 
found that prognostic parameters identified in the 
primary analysis remained independently associated 
with allograft survival and that study site did not add 

predictive value (appendix p 21). When we added 
parameters assessed at the time of transplantation 
(donor and recipient baseline characteristics), the 
parameters of the system remained independently 
associated with allograft survival, and the performance 
remained the same (appendix p 22). The system had 
high prediction performances. When we assessed the 
performance of the system when initial risk assessment 
was done using clinically indicated allograft biopsies at 
any time after transplantation (1449 [38·4%] of 
3774 patients in the development cohort), and then 
when initial risk assessment used biopsies obtained 
per protocol (2324 [61·6%]; appendix p 22). The system 
had high prediction performances when initial risk 
assessment was done before 1 year after transplant 
(mean 0·51 years [SD 0·31]) and when done after 1 year 
after transplant (mean 1·42 years [0·77]; appendix p 22). 
Finally, when we accounted for the locus of anti-HLA 
donor-specific antibodies in our analyses, patients with 
HLA-DQ donor-specific antibodies had worse allograft 
survival than patients with other donor-specific 
antibodies, but this was not independently associated 
with allograft survival and was hence not included in 
our prediction system (data not shown).

Discussion
In this multicountry, observational multicohort study, we 
developed and validated the DISPO model to predict 
outcomes after kidney transplantation. The system 
had good prediction performance, which remained very 
high in 14 external validation cohorts from Europe, 
the USA, and South America with heterogeneous 

Figure 1: Construction of the DISPO model to predict kidney allograft survival
This figure presents the DISPO model we developed in kidney transplantation. Clinical parameters, histology, 
immunology, as well as changes in the patients’ condition that were captured through repeated measurements of 
graft function were combined to build deeply phenotyped cohorts of kidney recipients. We then applied joint 
models to these datasets and developed a dynamic prediction system. DISPO=dynamic, integrative system for 
predicting outcome. 
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allocation systems,29 patient characteristics, and clinical 
practices.30 The performance of the model was also con
firmed in a cohort comprising data from six randomised 
control trials and in various clinical scenarios and 

subpopulations. The system outperformed other allograft 
survival prediction systems that have been developed to 
date in kidney transplantation and is well suited for routine 
patient care and monitoring.

Figure 2: Performance of DISPO in the development cohort
(A) Discrimination—ie, ability to separate patients who lose their allografts from those who do not, according to patient follow-up ranging from 1 to 6 years after 
initial risk assessment, with a prediction horizon at 7 years after initial risk assessment. We calculated the overall dynamic AUC by averaging dynamic AUCs from 1 year 
of follow-up to 6 years of follow-up after assessment. (B) Calibration between the predicted risk and the observed number of allografts lost, according to patient 
follow-up. The diagonal line at the origin represents the perfectly calibrated model. Calibration plots are presented for each of the six assessments from 1 year to 
6 years of serial eGFR and proteinuria measurements after initial assessment, with a fixed prediction horizon at 7 years after initial assessment. The initial prediction 
performance was calculated at the initial risk assessment, at the time of allograft biopsy after transplantation. AUC=area under the receiver operating characteristic 
curve. DISPO=dynamic, integrative system for predicting outcome. eGFR=estimated glomerular filtration rate. 
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We designed our dynamic integrative system to be 
generalisable in most transplant centres worldwide. This 
aim relied on the following hypothesis: if a prediction 
system derived from a deeply phenotyped dataset 
performs well in independent, external validation cohorts, 
then it is likely to be generalisable.

Although the system was developed in a cohort of 
patients who were closely followed up after transplan
tation and who were deeply phenotyped, its components 
are commonly assessed in most transplant centres 
worldwide, making the model convenient and well 
adapted to routine clinical practice. Nevertheless, to 
adapt this tool to patient populations without histological 
or immunological data, or with diagnoses instead of the 
Banff classification, we also developed a series of adapted 
systems  for which performance remained high; these 
systems are available via our ready-to-use online tool. 
Additionally, some transplant centres use the Immucor 
strategy to assess donor-specific antibodies, rather than 
the One Lambda strategy, which was used in all cohorts 
of this study.31 Although these two strategies sometimes 
provide different results, there is some correlation 
between them, and the interpretation remains the same.31 

Our system provides a substantial advance in risk 
prediction for kidney transplantation. Typical kidney 
allograft survival prediction models rely on parameters 
assessed at a single timepoint;3 however, these models do 
not include the individual-patient trajectory of allograft 
function and cannot be integrated during patient follow-
up. Only a prediction model considering the trajectory of 
allograft function can capture the evolution of a patient’s 
condition and ameliorate its prediction performance at 
each patient evaluation.

Using our model, we found that combining histological, 
immunological, and clinical parameters with repeated 
measurements of allograft function provides high 
prediction performance, with increasingly precise 
predictions with each new eGFR and proteinuria 
measurement. These findings support the idea that the 
family of risk factors that predict allograft survival are not 
only cross-sectional parameters, but also dynamic 
parameters that are present within the longitudinal 
component of the  disease. Therefore, by incorporating all 
changes in allograft function, our dynamic prediction 
system improves upon traditional prediction models and 
holds potential value for patient monitoring and 
management.

We found that our prediction system outperforms the 
previous kidney allograft survival prediction systems.32–35 
In particular, the DISPO offers better prediction 
performance than the iBox,3 a prediction system we 
previously developed and that constituted the first step in 
the long construction of DISPO but that was designed 
for clinical trials.

Importantly, we found that our new system can capture 
the effects of therapeutic interventions on allograft survival 
changes, which would allow clinicians to quantify how 

well a treatment has worked, thus enhancing treatment 
management. 

Although we found that induction therapy was not an 
independent predictor of allograft failure and therefore 
did not include it in the final model, we did not assess 
the hypothesis that our prediction system might have 
captured the consequences of induction therapy. To 
investigate this hypothesis would require an additional 
study.

Taken together, these advantages make DISPO a 
promising new system for prediction of allograft 
survival. DISPO provides an accurate and detailed 
prediction of personalised risk of allograft failure, which 
can be continuously refined with additional patient 
assessments, and could allow improved and earlier 
detection of a treatable disease. Overall, it could improve 
or change clinicians’ prognostic judgement and enable 
more rapid and informed clinical decisions, potentially 
leading to better patient outcomes. However, a 
randomised study specifically designed to assess the 
effect of the DISPO on patient management is needed.

Our study has several limitations. First, emerging 
kidney disease risk factors,36,37 such as those based on 
donor genetics, are not included in our model. Nonetheless, 
the good performance of the existing model using 
convenient data suggests that the addition of new data 

Figure 3: Discrimination performance of DISPO in the external validation cohorts
DISPO was applied in external validation cohorts from Europe (A), the USA (B), South America (C), and in a cohort 
of patients from six randomised controlled trials (D). For each validation cohort, the prediction horizon was 
defined according to the median follow-up of the cohorts. The calibration plots are presented in the 
appendix (pp 23–25). DISPO=dynamic, integrative system for predicting outcome.
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elements will not substantially improve prediction. 
Second, medication non-adherence can be an important 
risk factor for allograft survival, although methods of 
measuring medication adherence are often flawed.38 
High-quality information on adherence was not available 
for the included cohorts; however, because DISPO can be 
updated several times during a patient’s follow-up, it 
might capture the consequences of non-adherence, such 
as the development of de-novo donor-specific antibodies, 
reduced eGFR, or allograft injury and inflammation on 
biopsy. Additionally, because French law does not permit 
use of parameters related to race or ethnicity, we could 
not use them in the development of the DISPO. Third, we 
could not conduct a competing risk of death analysis. We 
found that this method is not yet implemented in 
statistical software for joint models with two repeated 
parameters. When it is available, this would deserve an 
additional analysis. Fourth, a model that also integrates 
repeated biopsy and immunological data would probably 
be optimal. However, to our knowledge, due to variability 
in the timepoint that eGFR, proteinuria, histology, and 
immunology assessments are done, no model allows 
such integration so far. Additionally, our study was not 
specifically designed for assessment of the specificity and 
other effects of HLA and non-HLA antibodies, which 
deserve a study in themselves. Finally, although the 
prediction performance of the DISPO was high, its 
usefulness in clinical practice has yet to be determined 
and would require implementation in real-life settings. 
To assess the effect of DISPO in clinical practice, we plan 
to conduct a randomised controlled trial. 

In summary, we constructed and validated a dynamic 
and integrative system to predict kidney allograft survival 
in deeply phenotyped cohorts from Europe, the USA, 
South America, and randomised controlled trials. The 
high prediction performance, large-scale validation, and 
dynamic component of the system distinguish it from 
other kidney-survival prediction models, and make it 
promising for clinical use. By continuously integrating 
all kidney function measurements assessed during 
patient follow-up, as well as clinical, histopathological, 
and immunological parameters, the DISPO model could 
be a useful bedside tool to guide clinicians in the routine  
monitoring and management of kidney transplant 
recipients.
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