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Thermal fluctuation and conformational effects on NMR 

parameters in -O-4 lignin dimer from QM/MM and  

machine-learning approaches 

aSonia Milena Aguilera-Segura, bDominik Dragún, aRobin Gaumard, aFrancesco Di 

Renzo, cIrina Malkin Ondík ,aTzonka Mineva* 

Advanced solid-state and liquid-state nuclear magnetic resonance (NMR) approaches have enabled high throughput 

information about functional groups and types of bonding in a variety of lignin fragments from degradation processes and 

laboratory synthesis. The use of quantum chemical (QM) methods may provide detailed insight into the relations between 

NMR parameters and specific lignin conformations and their dynamics, whereas a rapid prediction of NMR properties 

could be achieved by combining QM with machine-learning (ML) approaches. In this study, we present the effect of 

conformations of -O-4 linked lignin guaiacyl dimer on 13C and 1H chemical shifts while considering the thermal 

fluctuations of guaiacyl dimer in water, ethanol and acetonitrile, as well as their binary 75wt% aqueous solutions. 

Molecular dynamics and QM/MM simulations were used to describe the dynamics of guaiacyl dimer. The isotropic 

shielding of the majority of the carbon nuclei was found less sensitive toward a specific conformation than that of the 

hydrogen nuclei. The largest 1H downfield shifts of 4-6 ppm were established in the hydroxy groups and the rings in the 

presence of organic solvent components. The Gradient Boosting Regressor model has been learned on 60% of the 

chemical environments in the dynamics trajectories with the NMR isotropic shielding iso), computed with the density-

functional theory, for lignin atoms. It is established a high efficiency of this machine-learning model in predicting the 

remaining 40% iso (13C) and iso (1H) values.

Introduction 

Characterization of molecular structures in lignin fractions 
takes an important part in the valorisation of lignin compounds 
- the promising environmentally sustainable feedstock of 
organic carbon

1
. Lignin is a three-dimensional, highly branched 

polyphenolic complex polymer and represents around 25-35% 
of the total dry weight of the wall substances in biomass

2
. 

Lignin monomeric units and their linkages vary with the source 
of lignin and the type of fractionation process. This makes their 
characterisation at the molecular level challenging. Despite 
this challenge, high throughput information about functional 
groups and types of bonding has been obtained with several 
spectroscopic techniques, such as infrared, ultraviolet-visible, 

Raman spectroscopy, and nuclear magnetic resonance 
(NMR)

1,3–5
. In particular, the higher resolution of NMR 

techniques has yielded a significant amount of information on 
lignin structural units and side-chain linkages

1,6
. In addition to 

the regular usage of 
1
H and 

13
C NMR chemical shifts, solid-

state 
13

C NMR and 2D heteronuclear single-quantum 
coherence (HSQC) NMR approaches have been applied with 
success to resolve structural properties in various lignin 
fractions

6–12
. 

To further decrease the ambiguities in NMR spectral 
assignments, artificial lignin models of dimers and small 
oligomers have been synthesized and analysed with NMR 
techniques

5,13,14
. Typically, the assignment of NMR signals in 

complex lignin polymers or smaller lignin fractions, arising 
from the degradation processes

5
, is performed based on NMR 

chemical shifts in artificial lignin dimer models. The NMR 
signals in these synthetic models can however be broadened 
or even displace the chemical shift positions upon their 
interactions with solvent molecules used during the liquid 
NMR experiments 

10,14
. The complexity of the lignin-solvent 

systems has been further increased by recent development in 
the use of mixed solvents in NMR analysis of whole swollen 
cell walls. The direct 2D NMR spectroscopy of solutions of 
dimethyl sulfoxide (DMSO) with swelling agents as different as 
tributylammonium, pyridinium, alkylimidazolium or 
hexamethylphosphoramide is becoming an established 
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analytical method 
15–18

. The recently introduced techniques of 
characterization of the interaction of lignin with the cell wall 
environment by multidimensional 

13
C solid-state NMR 

spectroscopy have opened a new field of investigation
19–21

. 
Despite the different methods of drying applied in these 
measurements, this technique opens untrodden ways to 
characterize the in-situ conformation of cell components in the 
presence of the organic-bearing vessel solutions

22,23
  

Theoretical NMR chemical shifts in lignin monomers or small 
dimer models could constitute a basis for experimental NMR 
assignments. However, the complexity of lignin and its 
residues limited the theoretical works to only a few reports 
hitherto devoted to computations of NMR parameters. Very 
recently, a wide range of approximations of exchange-
correlation functionals in density-functional theory (DFT) was 
examined for its ability to reproduce experimental 

1
H and 

13
C 

chemical shifts () in optimized 5–5' lignin model dimers
24

 and 
in sulphated monolignols

25
. Theoretical atomic charges and 

electron charge-density based parameters have been used as 
descriptors in an efficient neural-network-potential model 

developed to predict the experimental 
 
(
13

C) in substituted 
phenol monomers 

26
. We, therefore, find it of interest to study 

the effect of different conformations arising at room 
temperature and the thermal fluctuations of the lignin nuclei 
on the computed 

1
H and 

13
C chemical shifts. The inclusion of 

thermal fluctuations in the calculated NMR parameters, 
averaged over an ensemble of geometrical structures, can 
improve significantly the evaluation of NMR chemical shifts

27,28
 

and quadrupole coupling constant
29

. 

Considering the complexity of the lignin network, we have 
chosen here to focus on a guaiacyl dimer model of lignin with a 
β-O-4 linkage (G-b-G) shown in Figure 1A. This is the most 
common inter-unit linkage in lignin 

30
. The basic structures of 

lignin are phenylpropanoid monolignols that consist of an 
aromatic ring and a 3-C side chain (Figure 1B). Differently 
substituted monolignol subunits are derived from coniferyl, p-
coumaryl, and sinapyl alcohols

1,31
. The β-O-4 structures are 

flexible molecules that can adopt a large number of 
conformations, as established from both experimental and 
theoretical studies 

32–34
. The β-O-4 linkage is relatively weak 

compared to other less common linkages, such as β-5, β-1, β-
β′, 5–5′, and 4-O-5, more stable and consequently difficult to 
degrade. The first target of lignin degradation is indeed the β-
O-4 linkage 

4
. 

 

 

Figure 1. Chemical structures of (A) lignin dimer formed by two guaiacyl (G, 
G’) monomers linked with a β-O-4 ether bond. (B) phenylpropanoid unit, 
from which are formed the three monolignols before polymerisation: p-

coumaryl (R1=R2=H), coniferyl (R1=H, R2=OMe), and sinapyl (R1=R2=OMe) 
alcohols.  

To capture the effect of those flexible β-O-4 structures on NMR 
parameters we considered five different solvents: pure water, 
ethanol (EtOH), acetonitrile (ACN), and 75wt% water-ethanol and 
water-acetonitrile mixtures. These solvents have been chosen 
because they were recently proposed for lignin fractionation with 
original properties in organosolv processes 

35–37
. In particular, 

aqueous ethanol is among the most used alcoholic organic solvent 
in comparison to the other alcohols employed in the organosolv 
pulping of lignocellulosic biomass in biorefinery 

37–41
. The 

organosolv lignin is recuperated by either removal of the organic 
solvent or dilution of organic solvent with water 

39
. The isolated 

lignin structures vary significantly with pretreatment conditions in 
the organosolv pulping, notably with the type of solvent. Although, 
specific NMR fingerprints of each lignin unit are effectively used to 
analyze the resulting structures of the lignin fragments, knowledge 
about the impact of lignin unit conformational changes 

14
 are still 

scarce. In this study, we present detailed atomistic insight on the 
influence of guaiacyl conformations on the 

13
C and 

1
H NMR 

chemical shifts and propose a methodology for theoretical 
investigations using a combination of molecular dynamics, QM/MM 
and DFT calculations as well as predictions of NMR parameters 
based on Gradient Boosting Regressor (GBR) machine learning 
model (ML).  

Methodology and computational details 

The approach we employed combines molecular dynamics (MD) 
simulations for equilibration of the lignin dimers in the five solvents, 
followed by Born-Oppenheimer Molecular Dynamics (BOMD)/MD 
simulations within the QM/MM additive scheme to refine the 
descriptions of lignin dimer-solvent interactions. The BOMD/MD 
trajectories were further subjected to calculations of NMR shielding 
tensors at the DFT level, following the approach already applied 
successfully to study NMR parameters of flexible amphiphilic 
molecules in solvents and at air-solvent interfaces 

42,43
. Trajectories 

and computed NMR isotropic shielding values were subsequently 
used to construct the descriptors and training sets for the machine-
learning gradient-boosting regression (ML-GBR) model 

44
. 

Molecular Dynamics simulations 

All-atom Molecular Dynamics (MD) simulations of each system 
described in Table 1 were carried out using the GROMACS package 
45

 version 2016.3, along with the 4-sites Transferable Intermolecular 
Potential (TIP4P) for liquid water 

46
, the CHARMM36 (Chemistry at 

HARvard Macromolecular Mechanics) additive force field 
47

 for the 
organic solvent components, and the CHARMM-compatible force 
field for lignin 

48
. Solvent structure for the organic solvents was 

available at the GROMACS molecule and liquid database
49

. For each 
simulation box, energy minimization was performed using the 
steepest descent algorithm until convergence to a tolerance of 100 
kJ mol

-1
 nm

-1
. After minimization, restrained simulations were 

performed for 200 ps at 298.15 K to allow solvent equilibration 
around the lignin dimer.  Afterwards, 10-ns MD simulations were 
carried out with a frame-saving rate (for analysis) of 1 ps, to sample 
various conformations of lignin G-b-G dimer. Temperature and 
pressure coupling was handled using the leap-frog stochastic 
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dynamics integrator and the Parrinello-Rahman method, 
respectively. Initial velocities were generated from a Maxwell 
distribution at 298.15 K and the isothermal-isobaric (NPT) ensemble 
was considered for data collection. Neighbour searching and short-
range nonbonded interactions were handled with the Verlet cut-off 

scheme. Electrostatics were treated with the Fast Smooth Particle-
Mesh Ewald (SPME) method, with a Coulomb cut-off of 1.2 nm, a 
fourth-order interpolation and Fourier spacing of 0.12 nm. Van der 
Waals (vdW) interactions were treated using the Lennard - Jones 
potential with a cut-off distance of 1.2 nm. 

Table 1. Configuration of simulated systems and equilibrium size of simulation boxes for the lignin dimer. Solvents studied include water, 
ethanol (EtOH), acetonitrile (ACN), and their 75 wt% aqueous mixtures.  

Solvent system 
Number of cosolvent 

molecules 

Number of water 

molecules 

Cubic box side 

length (nm) 
Volume (nm

3
) 

Water 0 1448 3.54 44.55 

EtOH -water 250 641 3.51 43.41 

ACN-water 272 619 3.51 43.46 

EtOH 399 0 3.4 39.48 

ACN 456 0 3.45 41.01 

 

Molecular dynamics simulations at QM/MM level 
 

Born Oppenheimer Molecular Dynamics (BOMD) coupled to 

classical MD simulations (BOMD/MD) were carried out for 12 ps 

simulation time for each solvent composition. MD snapshots were 

extracted containing the lignin dimers, along with a 15 Å radius 

solvent drop. The lignin dimer was included in the QM (DFT) layer, 

whereas the solvent atoms were treated classically with the OPLS-

AA force field 
51

. In addition, the Onsager reaction field model is 

applied to represent the solvent as a continuum medium outside 

the explicitly treated solvent droplet at MM level using a 

BOMD/MD/PCM(Onsager) approach, implemented in deMon2k 

6.0.2 developers version 
52,53

. The dielectric constants for water, 

EtOH, ACN, EtOH-water and ACN-water were set up to 78.0, 38.0, 

25.0, 35.0 and 45.0, 
54,55

 respectively. BOMD/MD/PCM(Onsager) 

simulations were carried out at 300 K in the canonical ensemble 

using a Nosé-Hoover chain of 5 thermostats with frequencies of 400 

cm
-1

. The integration time-step was set to 1 fs. The linear and the 

angular momenta of the whole lignin-explicit solvent system were 

conserved with a threshold of 10
−8

, and therefore the rotational 

and translational degrees of freedom of the whole QM/MM system 

were kept frozen to avoid spurious translation or rotation in the 

space. These simulations were carried out with deMon2k.6.0.2 

developer’s version. PBE 
56

 exchange-correlation functional with 

double- quality wave functions (DZVP)
57

 were used. Automatically 

generated auxiliary functions up to l = 2 (labelled as GEN-A2*) were 

used for fitting the density with the GGA functionals, thus 

decreasing the computational time with comparable accuracy to 

density calculations from the molecular orbitals 
58

. An empirical 

dispersion-like term (D2 approximation
59

) was added to the DFT 

energy and energy gradients. This level of approximation in 

combination with PBE functional has already been found to be a 

good compromise between accuracy and computational time of 

NMR properties in organic and bio-organic compounds, 
29,42,43,52

 and 

solids 
60

.
 

DFT calculations of NMR parameters 

The last 7.4 ps out of the 12 ps BOMD/QM/PCM trajectories was 

subjected to statistical analysis with frames extracted at intervals of 

8 fs for the DFT calculations of the shielding tensor of lignin atoms. 

The shielding tensors were computed with the gauge-independent 

atomic orbitals (GIAO) scheme, as implemented
 61

 in the deMon2k 

program, using triple- bases 
57

, GEN-A2* auxiliary functions and 

PBE functional for the lignin dimer, treated at DFT level. The 
13

C and 
1
H isotropic shielding (iso) values were averaged over the 925 

frames. Larger sets of geometrical frames (see below) were 

considered in the training and validation data sets in the ML-GBR 

model. These data sets were also augmented by the computed with 

the same approach iso (
17

O) values. Note that in the ML-GBR model 

only the isotropic shielding values were treated.  The chemical shift 

is obtained as the difference between the DFT isotropic shielding 

and the reference isotropic shielding      
   

  in tetramethylsilane 

(TMS) that was computed at the same level of theory. We obtained 

    
   

 (
13

C) = 162.72 ppm and     
   

 (
1
H) = 31.10 ppm.  

 

 

Machine-learning Gradient Boosting Regressor (ML-GBR) model  

We have used the gradient-boosting regressor method, which 

enables us to create strong learning trees from poorly learning trees 
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44
. This approach utilizes boosting so that the trees are created 

sequentially as opposed to random forests where the trees are 

generated in parallel. Each new tree is created with an effort to 

reduce the prediction error learning from the errors of the previous 

tree. The goal of the method is to achieve the lowest possible error 

while keeping the predicted values as accurate as possible.  

Two data sets in CSV format were prepared using the Cartesian 

coordinates of the selected trajectories, subjected to NMR 

calculations. The first dataset contains the Cartesian coordinates (x, 

y and z) of the G-b-G, the calculated iso, the name of the chemical 

element and the name of the solvent (provided in the Electronic 

Supplementary Information (ESI) 2-6 files).  The second CSV file 

contained 3x3 tensors and the name of the corresponding solvent-

lignin dimer model. We have used the Dscribe package 
62

 to convert 

our data to Smooth Overlap of Atomic Positions (SOAP) descriptor 

vectors. Individual structures were represented as Atoms class 

objects from the ASE package 
63

 with the use of 3x3 tensors. We 

have begun by creating a DScribe.SOAP object, for which the 

parameters such as the number of basis functions, range, level l and 

a list of all elements in our data were set. Subsequently, the 

DScribe.SOAP.create
62

  function was used to create a SOAP vector 

for each atom. The complete dataset was split into a training and 

test set in a ratio of 6:4. The sizes of the whole data sets (training + 

testing) are provided for every individual combination as the 

number of chemical environments in the “Results and discussion” 

section. Individual training times and predictions are reported in the 

same section for each combination. 

We have used the Anaconda distribution for Python 3.8.5, utilizing 

the scikit-learn program package 
44,64

 with the GBR model, where 

the random_state hyperparameter was set to 0 and the rest of the 

hyperparameters were set to the default values.  

Results and discussion 

Dynamic (time-averaged) 
13

C chemical shift and conformational 

effects  

Our previous studies
37,65

 on the evolution of lignin dimer 

conformations along the equilibrium dynamics in several solvents 

revealed that the O-4 linked guaiacyl dimer has the smallest 

solvent accessible surface area and the most stacked conformation 

in water. This effect has been attributed to lignin-water 

hydrophobic interactions favouring the phenolic G ring-ring 

interactions, instead of lignin-water interactions. The increase of 

the organic co-solvent components decreased the hydrophobic 

effect of water and resulted in open T-shaped conformations. The 

averaged conformations in the five solvents, obtained from the 

averaged coordinates during the 12 ps trajectories, are presented in 

Figure 2. The general shape of these conformations, established 

along the 10 ns MD simulations, did not change during the 

significantly shorter 12 ps BOMD/MD/PCM trajectories.  

The DFT time-averaged 
13

C chemical shifts (<iso(
13

C)>)  can capture 

the vibrational degrees of freedom due to the thermal fluctuations 

of the lignin nuclei and the effect of solvent-induced 

conformational changes when averaged over a large number of 

structures along the BOMD/MD trajectories 
42,43,66,67

. An 

expectation of the convergence of the 
13

C isotropic shielding, 

examined from the rolling averaged with a step of 1, reported in 

ESI, Figures S1-S3, indicates that the iso values converged 

reasonably well for most of the carbons after averaging over 600-

700 geometrical frames in the five solvents with a standard 

deviation error (STDE) of the averaged iso  ≤ 3.2%. The averaged 

iso(
13

C) with STDEs for each of the twenty carbons in the G-b-G 

dimer models are plotted in Figures S4-S8.   

 

 

 Figure 2. Averaged structures from the 12 ps BOMD/MD/PCM simulations 

of -O-4 linked G-G lignin dimer (G-b-G) in (A) water, (B) ethanol, (C) 

acetonitrile, (D) water-ethanol and (E) water-acetonitrile solvents. In (B) the 

atomic labelling, as referred to throughout the “Results and discussion” 

section, is provided.  

Computed <(
13

C)> in Table 2 are the values additionally averaged 

over the chemically equivalent carbons in A and B rings (see Fig. 1), 

whereas <(
13

C)> in the ring A and the ring B, separately, are 

presented in Table S1. As follows from Table S1, there is a non-

negligible difference in the shielding of carbons in each ring. 

Moreover, the split of <
13

C)> in rings A and B varies with the type 

of the solvent component(s). Experimentally, a difference of (
13

C) 

of carbons belonging to different rings has been established as 

well
2
. For example, (

13
C)  in rings A and B in the -O-4 linked G-G 

dimer (compound number 248 in ref. 2) amounts to ~6 ppm in 

deuterated chloroform (CDCl3) solvent, decreases slightly in 

acetone and further reduces to 2.5-3 ppm in DMSO. This shows that 

the local structural arrangement varies in the rings, an effect well 

captured by our averaged NMR calculations, including the thermal 

fluctuations of the lignin nuclei in addition to the dimer 

conformations



  

 

ARTICLE 

  

Please do not adjust margins 

Please do not adjust margins 

Table 2. Dynamic (time-averaged) 
13

C chemical shifts in ppm in water, ethanol (EtOH), acetonitrile (ACN), ethanol-water (EtOH-water) and 

acetonitrile-water (ACN-water) solvents. Calculated values are compared with literature results (exp). 

Carbon 
atom 

Water EtOH ACN 
EtOH-
Water 

ACN-
Water 

exp 

C2 108.1 108.6 105.0 101.7 103.1 106 -114
a
 

C5 104.7 120.1 113.7 109.1 104.9 114–117
 a

 

C6 109.7 114.1 109.0 115.6 114.2 117–123
 a

 

       C3 155.6 151.1 150.8 150.0 154.6 140–155
 a

 

C4 155.2 129.2 146.3 151.6 154.3 140–155
 a

 

C1 146.9 133.5 133.5 130.0 141.2 127–140
 a

 

       

C 72.1 72.6 82.0 76.9 78.6 67–78
 a

 

C 75.3 86.2 77.5 81.3 77.6 78–90
 a

 

C 59.0 68.1 61.1 64.5 59.5 59.8
b
 ; 60.2

c
 

CMe 56.1 54.4 56.1 53.2 57.9 54–57.5
 a

 

a
from refs.

 1,2,5,13,68
; 

b
from ref. 

13
; c from ref. 

2

The last column in Table 2 reports the intervals of known 

experimental (
13

C) values in -O-4 linkages between G-units 
1,2,5,13,68

 collected from solid-state or liquid NMR measurements. 

Our calculated chemical shifts fall in the same ranges, despite the 

different solvents considered here. The few outliers, observed in 

Table 2, are shifted by a maximum of 10 ppm from the known 

experimental intervals. This is the case of C5 and C6 atoms in all the 

solvents, and C4 in ethanol. In the other solvents, the chemical 

shifts of the carbons involved in the -O-4 linkage, e.g. C4 and C, 

fall in the experimental range of data with very good agreement 

between the experimental and computed <(
13

C)>, independently 

of the solvent. The variations of <(
13

C)> according to a particular 

solvent, allows therefore distinguishing carbon sites more sensitive 

to specific conformations.  

A more detailed analysis of the solvent effect on <(
13

C)> is 

provided below, using <(
13

C)> in G-b-G conformation in water 

solvent as a reference. As follows from the results in Table 2 and 

Table S1, a clear tendency of displacing chemical shifts, if organic 

co-solvent components are present, is obtained for C1, C, Cand 

C sites. The chemical shift of C1 decreases by ~5 to ~15 ppm in the 

pure organic and organic-water mixed solvents. This is most 

probably related to the conformational changes from the stacked 

(in water) to the T-shaped like conformers, whose population 

dominates in the solvents with organic components. On the 

contrary, a tendency to deshield the carbon nuclei (an increase of 

<
13

C)>) is found for C, C and Cin the pure organic solvents, 

which might be attributed to a concomitant effect of 

conformational changes and H-bonds arising between (co)solvent 

molecules and OH groups (see below) attached to these carbons. 

Indeed, our previous analysis of the MD trajectories revealed well-

organized and structured first solvation shells around O-C and O-

C sites in all the solvents 
65

. The previously studied radial 
distribution functions of N(ACN) – O-CMe in the G-b-G dimer 

revealed acetonitrile coordination to the oxygen atoms that are 

bound to methyl carbons
42,65

. The chemical shift of the methyl 

carbon appears, however, to be only little affected (by a maximum 

of 3 ppm) by the presence of EtOH co-solvent, and almost not 

affected by ACN co-solvent.  

Dynamic (time-averaged) 
1
H chemical shifts, internal H-bonds and 

conformation dynamics 

The time-averaged calculations of the 
1
H chemical shift, <(

1
H)>, 

are presented in Table 3. All the averaged 
1
H isotropic shieldings are 

in the range 22-28 ppm, with STD errors of 0.7-0.8 ppm of the 

averaged iso per H site, reported in Figures S4 - S8. The chemical 

shifts of methyl (Me) hydrogen atoms in Table 3 are the averaged 

value over the three H atoms in the Me group. In Figure 3, the 
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chemical shifts of all the individual hydrogens are reported, thus 

illustrating visually the effect of conformations arising in the 

considered solvents. The computed < (
1
H)> spread in the interval 

3.8 – 12.1 ppm, which generally fall in the range of the 

experimental values between 0 - 12 ppm
1, 49, 50, 54

, knowing that a 

precise spectral assignment of 
1
H suffers from the signal overlaps 

70
. 

 

 

Table 3. Dynamic (time-averaged) 
1
H chemical shifts in ppm in water, ethanol (EtOH), acetonitrile (ACN), ethanol-water (EtOH-water) and 

acetonitrile-water (ACN-water) solvents. For the atomic labels and numbers see Figure 2B. Calculated values are compared with literature 

results (Exp).  

Hydrogen 
atom 

water EtOH ACN EtOH-water ACN-water 
Exp.

a
 

Ring A 

HMe 3.8 4.7 4.5 4.3 5.7 3.8
 
 

HO 6.3    3.1      5.3   6.2   6.3 - 

HO 4.4    2.7     5.4    2.3    2.6 - 

HC2 4.9 11.2 9.8 10.8 9.6 - 
HC5 8.5 8.1 8.2 8.4 8.1 - 

HC6 8.6 9.8 8.2 8.4 7.0 - 

Ring B 

HMe 5.2 6.0 5.4 6.0 6.4 3.9 

HO 4.0    11.2      4.5    4.1   7.8 - 

HO 4.5    5.4      5.9    4.1   3.0 - 

HO 4.1     3.0     1.3    4.5  2.6 - 

HC2 6.1 10.2 10.4 11.7 11.1 - 
HC5 5.8 12.1 10.3 9.5 9.4 6.9 
HC6 5.1 11.1 9.2 10.3 10.2 6.7 



HC

 HC 

5.1 
4.9 

9.6 
8.8 

7.0 
7.3 

7.3 
5.4 

6.4 
8.7 

4.9 
 

HC

HC 

5.4 
2.9 

10.8 
9.6 

8.9 
5.1  

7.8 
6.9 

5.9 
7.3 

4.1 

HC 

HC 

4.5; 4.6 
3.4; 2.6 

6.7; 7.4 
4.4; 4.3 

6.7; 5.6 
4.3; 4.0 

6.3; 6.2 
3.9; 4.6 

5.9; 5.9 
2.7; 2.0 

3.5; 3.7 
 

a from ref. 2 

Following the results in Table 3 and Figure 3, the < (
1
H)> values of 

hydrogens in the same chemical group, but in two different rings, 

may vary even by 5-6 ppm, according to a specific conformation 

and H-site. The largest splitting in < (
1
H)> is found in the 

conformers in the organic solvents, either pure or mixed with 

water. In particular, an important deshielding in the organic 

solvents is found for aromatic hydrogens in ring B. In pure ethanol, 

< (
1
H)> increases up to 11.2 (HC2-ringA), 10.2 (HC2-ringB) and 12.1 

ppm (HC5-ring A). The addition of water to ethanol even increases 

the chemical shift of HC2 by 1.5 ppm, but deshields HC5 by 1.6 ppm in 

ring B. In water, these values are closer to the experimental ones, 

recently reported to be 6.94 (HC2), 6.65 (HC5) and 6.75 (HC6) ppm in 

G units in milled wood lignin of Chinese quince fruit 
68

.  Similar 

(
1
H) values (between 6.7-7.1 ppm) were assigned to the ring 

hydrogens in guaiacyl from NMR measurements in DMSO 
69

 and 

acetone solvents 
2
. Another spike in the computed 

1
H NMR  is 

<(
1
H)> in the hydroxyl group in ring B (HO) in ethylene solvent. 

Focusing on this hydrogen, we noticed its involvement in an internal 

hydrogen bond (HB) with the neighbour hydroxy group oxygen, O, 

(see atomic labelling in Fig. 2B). We note that the geometrical H-

bond analysis was carried out by setting cut-offs of 3 Å for OH…O 

distances and 145° for the O    H…O angles. This analysis revealed 

the formation of an internal HB only in ethanol solvent, preserved 

along the 12 ps QM/MM dynamics. Other internal OH…O distances 

< 3 Å have been identified in the G-b-G dimer in the five solvents. 

However, their angles are < 130°.   
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Figure 3 Visualization of the averaged DFT 
1
H chemical shifts of all hydrogens in G-b-G model in water, ethanol (EtOH), aqueous 

75wt% ethanol (EtOH-Water), acetonitrile (ACN), and 75wt% acetonitrile-water (ACN-Water) solvents. 

The evolution of the HO…O distance in the five solvents, along 

the snapshots considered for the NMR shielding calculations, is 

presented in Figure 4. It demonstrates indeed that in EtOH, the 

HO…O distance predominantly oscillates around 2 Å. Its average 

value is 2.08 ± 0.36 Å. The addition of water to EtOH changes the G-

b-G conformer by breaking this internal H-bond leading to an 

averaged HO…O distance of 4.61 ± 0.58 Å. In water, ACN and 

ACN-water solvents, the averaged  HO…O separation amounts to 

2. 23 ± 0.50 Å, 4.16 ± 0.67 Å and 2.54 ± 0.45 Å, respectively. The 

two relatively short distances in water and ACN-water mixture are 

associated with averaged O    HO…O angles < 145°, equal, 

respectively, to 124.4 ± 24.2° and 108.1 ± 27.2°. The only internal 

HB is therefore established in ethanol. This internal HB decreases 

the electronic density around HO and limits its movements during 

dynamics, which indeed is expected to favour a downfield shift or 

deshielding (higher chemical shift) in HO
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Figure 4. Evolution of the O    HO…O distance in the G-b-G dimer model in water, ethanol (EtOH), aqueous 75wt% ethanol (EtOH-
Water), acetonitrile (ACN), and 75wt% acetonitrile–water (ACN-Water).    

In the theoretical models, the shielding/deshielding of H-atoms in 
hydroxy groups might be also affected by the thermal fluctuations 
of the G-b-G conformer in the different solvents, because of HBs 
formation with external solvent molecules. A closer examination of 
the G-b-G dynamics in the five solvents evidenced the formations of 

external HBs only between the hydroxy groups and the solvent 
molecules; however, their occurrence depends on the specific 
solvent composition. In Table 4, the averaged H-bond distances 
between hydroxy group H-sites and the solvent molecules are 
collected. 

 

Table 4. Averaged bond lengths and STD errors in Å of all the hydrogen bonds formed between HO site in the hydroxy groups of the lignin 
dimer and the solvent molecules. The bond lengths are averaged over the trajectory frames, used to compute the 

1
H chemical shifts.  

H atom Water EtOH ACN EtOH-Water ACN-Water 

HO 4.28 ±1 .43 1.87 ± 0.38 1.88 ±0.19 1.84
*
 ±  0.21 1.77

**
 ± 0.16 

HO 1.83 ± 0.26 - 1.98 ± 0.30 1.65
**

± 0.13 1.69
*
 ± 0.16 

HO - - 1.92 ± 0.30 1.77
* 

± 0.19 2.02
**

 ± 0.43 

HO - 1.80 ± 0.21 - 1.83
 *

± 0.31 - 

HO 1.68 ± 0.17 1.87 ± 0.38 - 1.94
**

 
 
± 0.45 1.67

**
 ± 0.15 

*
external HB with O in C2H5OH or with N in CNCH3; 

**
external HB with a water molecule 

 

Interestingly, HOfor which a strong deshielding is found (see 

above) in ethanol, is not involved in an external HBs with this 

solvent. This, therefore, confirms that the main factor contributing 

to the downfield shift of HOis indeed the internal O    HO…O 

HB. In the aqueous organic solvents, HBs with both solvent 

components exists, as follows from Table 4. This is in agreement 
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with our previous analysis from the classical MD simulations 
65

. 

Water forms HBs only with HOwhereas it is more attracted by 

the hydroxy groups if mixed with the organic solvents. The latter 

finding is fully in line with the hydrophobic character of lignin. 

Indeed, in pure water solvent, water molecules prefer to interact 

between them than with the lignin dimer. In the mixtures of organic 

solvents with water, the HB network of water is strongly disrupted 

(especially in ACN-water), which favours the water-hydroxy group 

interactions. The formation of various external HBs certainly 

influences the amount of the computed 
1
H isotropic shielding and 

respectively, the chemical shift, because of the constrained 

movements of lignin hydroxy groups involved in H-bonds with 

solvent components.  

This is not the case for the other H nuclei (HC, HC and HC2, HC5, 

HC6), undergoing notable downfield shifts by more than 4 ppm in 

the organic solvents, or their mixtures with water. An observation 

of the structures revealed that solvent molecules are not in 

proximity within 3 Å to these H atoms. Therefore, contributions of 

external HBs between solvent molecules and the ring hydrogens in 

the G-b-G model to their downfield shifts can be certainly ruled out. 

The downfield shift induced by the organic solvents appeared to be 

therefore related to a specific conformational geometry and its 

dynamics in a particular solvent. These structural analyses 

concerning the time-averaged 
1
H and 

13
C NMR shieldings 

demonstrate the higher sensitivity of the H nuclei than the C nuclei 

toward a specific G-b-G conformation and its dynamics.  

Machine learning Gradient boosted regressor model applied to 
13

C 

and 
1
H isotropic shielding. 

The BOMD/MD/PCM trajectory frames, subjected to NMR isotropic 

shielding calculations, were further used to examine the 

performance of the gradient boosted regressor ML model for 

prediction of NMR isotropic shielding. A successful ML model would 

therefore speed up the processes for time-averaged computations 

of NMR parameters, including the thermal nuclei fluctuations while 

training the ML model to predict iso on a reduced number of 

geometrical frames for various lignin isomers. These predicted iso 

values for each atomic site of interest can be consequently 

averaged to give the final result, thus capturing the effect of local 

structural changes due to different conformations, thermal 

fluctuations of the lignin nuclei and their interactions with the 

environment.  

 

ML models, based on Gaussian Processes Regression, Neural 

Network and Kernel Ridge Regression approaches have been 

already found successful for the prediction of isotropic shielding in 

molecular crystals 
71

, crystalline and amorphous silica and 

aluminosilicates 
72,73

, as well as in proteins
74

 and isolated lignin 

monomers 
26

. Several types of descriptors have been tested, among 

them SOAP, used by us in the present study. The SOAP descriptors 

have been established to provide a good relationship between the 

local atomic structural environment and the isotropic shieldings. To 

the best of our knowledge, ML applications to predict iso in flexible 

structures has been carried out on proteins and, more generally, in 

the domain of life science, using experimental datasets and 

attempting to achieve an automated assignment of the signals 
75

.  

The challenge in our study is to examine the applicability of an ML 

model for large-size and heterogeneous systems, composed of 

solvent molecules (studied at MM level) and the G-b-G lignin dimer, 

described at QM level. Because the NMR properties are computed 

at QM level only, the training dataset consisted of the G-b-G dimer 

atomic positions along the dynamics and the corresponding 

isotropic shielding for every nucleus (H, C, or O) in lignin model. 

These data-sets are available in the ESI files.    

The correlations between the iso values predicted with ML–GBR 

model and those, computed with DFT, are plotted in Figure 5 for 

iso (
13

C) and in Figure 6 for iso (
1
H). The first 60% of the trajectory 

frames were used to train the ML-GBR model, while the remaining 

40% were set as test cases, as described in the section 

“Computational details”. In the training and test sets, all carbon, 

hydrogen, and oxygen atoms, respectively, were considered 

without differentiating between a specific atomic site, but 

differentiating among the solvents. We, therefore, ensure a larger 

number of chemical environments, necessary for the good training 

of the GBR algorithm, because our aim here is to examine the 

capability of the ML – GBR model with SOAP descriptors in 

predicting correctly the computed DFT values for each atomic 

chemical environment.  
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Figure 5. Correlation between he predicted with ML – GBR model and the computed with DFT iso (
13

C) values of G-b-G lignin 

dimer in water (top); ethanol (middle left), aqueous 75wt% ethanol (middle right) -  acetonitrile (down left), and 75wt% 
acetonitrile –water (down right).   The number of chemical environments, training and prediction time, mean averaged error 
(MAE), and root mean square errors (RMSE) are reported for each solvent.  
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Figure 6. Correlation between the predicted with ML – GBR model and the DFT computed iso (
1
H) values of G-b-G lignin dimer in water 

(top); ethanol (middle left), aqueous 75wt% ethanol (middle right), acetonitrile (down left), and 75wt% acetonitrile –water (down right). 
The number of chemical environments, training and prediction time, mean averaged error (MAE), and root mean square errors (RMSE) are 
reported for each solvent.  

The correlations between the ML – GBR and the DFT results in 

Figures 5 and 6 revealed a R
2
 coefficient of 1 for both 

1
H and 

13
C 

NMR shieldings. There is not an outlier among the carbons. The 

mean averaged error (MAE), reported in Figures 5 and 6, are in the 

interval 0.23-0.29 ppm for carbons and 0.03 ppm for hydrogens. 

The only outlier is established among iso(
1
H) in water solvent, 

which is 
A
HC5 (in ring A) in the 686-th trajectory frame of G-b-G 

dimer in water. For this hydrogen site, DFT iso(
1
H) equals to 2.61 

ppm, whereas the predicted value is 7.39 ppm. This very strong 

deshielding in the 686
th

 frame is also an outlier among the DFT 

computed isotropic shielding values, as follows from the 

distribution of the 
1
H isotropic shieldings presented in Figure 7 (A). 

The iso(
13

C) distribution is provided in Figure 7(B) and we can 

clearly distinguish the three peaks corresponding to the three 

distinct intervals of carbons in Table 2.  In addition to the very good 

correlation between the predicted and computed (
1
H) and (

13
C) 

in Figures 5 and 6, we note the very short training and prediction 

time of a maximum of 40 s and 0.04 s, respectively. The 

combination of SOAP with the GBR model is therefore found to be a 

promising approach for isotropic chemical shift prediction in flexible 

organic molecules in solvents.  
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Figure 7. Distribution of the full set of 
1
H (A) and 

13
C (B) isotropic shieldings of G-b-G lignin model in water, ethanol (EtOH), ethanol-water 

(EtOH-water), acetonitrile (ACN), and acetonitrile-water (ACN-Water) solvent.  The histograms are obtained with an interval of 0.25 ppm 
for 

1
H and 2.5 ppm for 

13
C in the frequency count.   

 

Training the model over a sufficiently large set of chemical 

environments is however crucial.  In the case of iso (
17

O), the 

number of O-environments for the same trajectories, that we have 

considered for 
1
H and 

13
C calculations, is significantly smaller, 

ranging from 8928 in EtOH to 9432 in the mixture of acetonitrile 

and water (see Figure S9). The correlation between predicted and 

DFT iso(
17

O), reported in Figure S9 is somewhat less satisfactory, 

giving MAE of 0.5 – 0.6 ppm and several outliers. Interestingly, in 

the pure ethanol and acetonitrile solvents, there are no outliers 

among the predicted ML-GBR values. Details about the outliers are 

given in the ESI section, below the Figure S9. Taking into account all 

the lignin elements in the five solvents together allowed to increase 

the number of chemical environments to 274 340 (see Figure S10) 

and additionally increase the heterogeneity of data in the training 

set. Two iso values of 
17

O and one of 
13

C outliers have been found 

in this example, thus evidencing the necessity to take into 

consideration not only a large number of the chemical 

environments but also their degree of heterogeneities. In the latter 

case, the three O, C and H nuclei have too diverse shielding values 

and more outliers have been identified.  

Conclusion 

In this work we propose a multiscale methodology, combining 

classical and quantum/classical dynamic simulations and 

subsequent DFT calculations of dynamic (time-averaged) NMR 

parameters of -O-4 linked guaiacyl dimer, which enables us to take 

into consideration the conformational changes and thermal 

fluctuations of lignin nuclei in different solvents relevant for 

organosolv lignocellulose pulping. Moreover, this allows us to 

better analyze and understand the factors playing a predominant 

role in NMR shielding constants concerning lignin conformations 

and their dynamics. 

The majority of time-averaged 
13

C chemical shifts fit very well 

within the experimentally reported NMR data intervals, 

independently whether the NMR measurements were carried out in 

different solvents (typically DMSO and acetone solvents) or using 

solid-state NMR techniques. It, therefore, follows that those 

carbons are practically unaffected by the lignin interaction with 

solvents or by the specific lignin conformation. However, a clear 

tendency of displacing <
13

C)> in the presence of ethanol and 

acetonitrile co-solvent components compared to the experimental 

data is obtained for C1, C, Cand C sites. This result has been 

attributed to the effect of conformational changes from the stacked 

(in water) to the T-shaped G-b-G conformer that dominates in the 

solvents with organic components. 

Hydrogens experience significantly larger sensitivity toward 

conformational changes in the solvents. Only one stable internal H-

bond (O    HO…O) was identified in the G-b-G conformer in 

ethanol solvent, which explains the very strong downfield shift of 

<(
1
HO>. Interestingly, also H atoms linked to ring carbons and not 

BA
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directly interacting with solvent molecules have downfield shifts of 

~4-5 ppm in ethanol, acetonitrile and in their 75 wt% aqueous 

mixtures. 

The examination of SOAP descriptors with ML-GBR model 

demonstrated that NMR parameters can be effectively learned and 

predicted in only a few tenths of seconds. This opens the possibility 

to build NMR datasets of the rich manifold of lignin, among other 

flexible organic molecules in solvents, including different 

monomers, dimers or larger oligomers and their interlinkage.
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