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Abstract: Multiple myeloma (MM) is the second most frequent hematological cancer and is character-
ized by the clonal proliferation of malignant plasma cells. Genome-wide expression profiling (GEP)
analysis with DNA microarrays has emerged as a powerful tool for biomedical research, generating
a huge amount of data. Microarray analyses have improved our understanding of MM disease and
have led to important clinical applications. In MM, GEP has been used to stratify patients, define
risk, identify therapeutic targets, predict treatment response, and understand drug resistance. In this
study, we built a gene risk score for 267 genes using RNA-seq data that demonstrated a prognostic
value in two independent cohorts (n = 674 and n = 76) of newly diagnosed MM patients treated with
high-dose Melphalan and autologous stem cell transplantation. High-risk patients were associated
with the expression of genes involved in several major pathways implicated in MM pathophysiology,
including interferon response, cell proliferation, hypoxia, IL-6 signaling pathway, stem cell genes,
MYC, and epigenetic deregulation. The RNA-seq-based risk score was correlated with specific MM
somatic mutation profiles and responses to targeted treatment including EZH2, MELK, TOPK/PBK,
and Aurora kinase inhibitors, outlining potential utility for precision medicine strategies in MM.

Keywords: multiple myeloma; risk stratification; gene expression profiling; precision medicine

1. Introduction

Multiple myeloma (MM) is an incurable malignant plasma cell disorder characterized
by strong genetic heterogeneity impacting treatment response and clinical outcomes [1–3].
Pre-clinical studies have identified a compendium of mechanisms associated with MM cell
treatment resistance. Given this heterogeneity, one of the current challenges is to precisely
predict survival and treatment response according to patient molecular characteristics
in order to develop personalized medicine. Gene expression profiling (GEP) has created
major insights in both the understanding and clinical management of this disease. Indeed,
analysis of patient transcriptomic data at diagnosis has highlighted substantial molecu-
lar heterogeneity between patients that is characterized by distinct gene signatures and
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that is associated with clinical outcomes [4]. Several GEP-based signatures predicting
prognosis have been reported, including UAMS (70 genes) [5], HOVON-65/GMMG-HD4
(92 genes) [6], and IFM (15 genes) [7]. These signatures identify newly diagnosed MM
patients characterized by a poor outcome after treatment with high-dose melphalan and au-
tologous stem cell transplantation. We previously built a three-group risk prediction model
for overall survival (OS), which was called RS to represent the risk score [8]. Other signa-
tures with prognostic value have been connected to the biological mechanisms involved
in MM progression [9–12]. GEP-derived signatures that predict response or resistance to
proteasome inhibitors (PIs) [13–16], melphalan [17], IMiDs [18], HDACi [19], DNMTi [20],
EZH2 inhibitors [21], or kinase inhibitors [22] have also been reported. Thus, in MM,
GEP is useful for predicting prognosis and screening for drug resistance biomarkers with
potential benefits for clinical management. However, most previous studies have been
conducted using microarray technology, which entails the analysis of a limited number of
genes and potential artefacts due to incorrect probe design, genetic variation, and ineffi-
cient hybridization. Microarrays are being phased out and replaced by RNA sequencing
(RNAseq), which overcomes many of the limitations associated with microarrays. It is
expected that RNAseq will enable the discovery of new prognostic markers, associations
with drug response, and the mechanisms underlying MM pathophysiology. To that aim,
we used RNAseq and clinical data for 674 newly diagnosed patients treated with standard
therapy from the Multiple Myeloma Research Foundation CoMMpass study to build a
267-gene risk score. Validation was performed using a cohort of 76 newly diagnosed MM
patients from our center. The RNA-seq-based risk score demonstrated prognostic value
in the two independent cohorts of newly diagnosed MM patients. High-risk patients
were characterized by the expression of genes involved in several major pathways impli-
cated in MM pathophysiology, including cell proliferation, MYC pathways, and epigenetic
regulation. Additionally, our RNAseq-based risk score was associated with specific MM
mutational profiles and responses to targeted treatment, underlining the potential utility of
precision medicine strategies in MM.

2. Materials and Methods
2.1. Gene Expression Profiling

We used the publicly available gene expression profiling RNA-seq data of newly
diagnosed MM patients from the Multiple Myeloma Research Foundation’s (MMRF)
CoMMpass study (https://research.themmrf.org/ (28 September 2021), release IA12).
Concerning the validation cohort, bone marrow samples were collected after obtaining
written informed consent from the patients in accordance with the Declaration of Helsinki
and after receiving institutional research board approval from Montpellier University
Hospital. Bone marrow samples were collected from 76 newly diagnosed patients treated
with high-dose melphalan (HDM) and autologous stem cell transplantation (ASCT), and
this cohort was termed the Montpellier cohort. The bone marrow of patients presenting
with previously untreated MM at the University Hospital of Montpellier was obtained after
obtaining written informed consent from the patients in accordance with the Declaration of
Helsinki and according to the IRB agreement and based on the approval of the Montpellier
University Hospital Centre for Biological Resources (DC-2008-417). Patient MM cells
(MMCs) were purified using anti-CD138 MACS microbeads (Miltenyi Biotec, Bergisch
Gladbach, Germany), and their gene expression profiles (GEP) were obtained using RNA-
sequencing. The RNA sequencing (RNA-seq) library preparation was completed with
150 ng of input RNA using the Illumina TrueSeq Stranded mRNA Library Prep Kit. Paired-
end RNA-seq was performed with an Illumina NextSeq sequencing instrument (Helixio,
Clermont-Ferrand, France). RNA-seq read pairs were mapped to the reference human
GRCh37 genome using the STAR aligner [23].

https://research.themmrf.org/
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2.2. Statistical Analyses

All of the statistical analyses were performed with the R statistics software (version
3.2.3; available from https://www.r-project.org) (28 September 2021) and with R packages
developed by the BioConductor project (available from https://www.bioconductor.org/)
(28 September 2021) [24]. The expression level of each gene was summarized and normal-
ized using the DESeq2 R/Bioconductor package [25]. Differential expression analysis was
performed using the DESeq2 pipeline [25]. p-values were adjusted to control the global
FDR across all comparisons with the default option of the DESeq2 package. Genes were
considered differentially expressed with an adjusted p-value < 0.05 and a fold change
>1.5. For the Montpellier cohort, Affymetrix U133P chips were also used, as previously de-
scribed [22,26], to analyze GEP and to calculate previously published risk scores, including
the RS score [8], UAMS HRS score [5], and IFM score [7].

2.3. Multiple Myeloma Cell Lines

XGs human myeloma cell lines (HMCLs) were obtained as previously described [27,28].
AMO-1, LP1, L363, OPM2, MOLP2, MOLP8, Lopra, and SKMM2 were purchased from DSMZ
(Braunsweig, Germany), and RPMI8226 was purchased from ATCC (American Tissue Culture
Collection, Rockville, MD, USA). JJN3 was kindly provided by Dr. Van Riet (Bruxelles, Belgium),
and was provided MM1S by Dr. S. Rosen (Chicago, USA). HMCLs were authenticated according
to their short tandem repeat profiling and their gene expression profiling using Affymetrix U133
plus 2.0 microarrays deposited in the ArrayExpress public database under accession numbers
E-TABM-937 and E-TABM-1088.

2.4. Drug Response Analyses

HMCLs were cultured in RPMI-1640 medium (Gibco, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with fetal bovine serum (FBS, Eurobio, Les Ulis, France) (10%) and
interleukin 6 (IL6, Peprotech, Rocky Hill, New Jersey, USA) for XG cell lines. We evaluated
the sensitivity of the cell lines to twenty-two drugs, including EZH2 inhibitor (EPZ-6438),
Aurora kinase inhibitor (MLN8237), MELK inhibitor (OTSSP167), and PBK inhibitor (Hi-
TOPK-032). For a given drug, the HMCLs were treated with different concentrations. The
IC50 was determined at day 4 using the CellTiter-Glo assay (Promega, Madison, Wisconsin,
USA), as previously described [28], with the exception of EPZ-6438. HMCLs were cultured for
8 days with (treatment) and without (control) EPZ-6438. Cell concentration and viability were
assessed using the trypan blue dye exclusion test.

2.5. EZH2 Inhibition in Primary MM Cells from Patients

Mononuclear cells from tumor samples of seven patients with previously untreated
MM from the Montpellier cohort were cultured for 8 days in the presence of IL-6 (2 ng/mL)
with and without 1 µM EPZ-6438. At day 8 of the culture period, the count of viable MMC
was determined using CD138 staining by flow cytometry.

3. Results
3.1. RNA-Seq-Based Gene Risk Score in Multiple Myeloma

We used the gene expression profiling (GEP) data of 674 newly diagnosed MM patients
from the Multiple Myeloma Research Foundation’s (MMRF) CoMMpass study. We also
performed the RNA sequencing of purified MMC from 76 newly diagnosed MM patients
treated by high dose therapy (HDT) and autologous stem cell transplantation. Using the
Maxstat R function and the Benjamini–Hochberg multiple testing correction, 267 genes
were found to have a prognostic value for overall survival (OS) (adjusted p value < 0.05) in
the CoMMpass cohort of patients with previously untreated MM. These 267 prognostic
genes comprised 142 genes associated with a poor outcome in MM and 97 genes associated
with high expression related to a good prognostic value. The 267 genes were used to build
an RNA-seq-based risk score. The RNA-seq-based risk score is defined by the sum of the
beta coefficient derived from the Cox model for each prognostic gene weighted by −1 or +1

https://www.r-project.org
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according to the MMC gene expression above or below the Maxstat defined cutpoint [29].
Patients from the CoMMpass cohort were ranked according to increased RNA-seq-based
risk scores, and the Maxstat algorithm was used to find the cutoff associated with the
maximum difference in the OS (Figure 1A). The RNA-seq-based risk score split patients
into a high-risk group (22.8%) and a low-risk group (77.2%) in the CoMMpass cohort
(p-value = 1.7 × 10−46) (Figure 1B). The prognostic value of the RNA-seq-based risk score
was validated in the Montpellier cohort (p-value = 2.8 × 10−11) (Figure 1C). When applied
to a non-disease dataset, i.e., the GEP profiles from a normal B to plasma cell differentiation
model, significantly higher score values were identified in pre-plasmablast, plasmablast,
and plasma cell stages compared to in the memory B cell stage (Figure 1D). These data
demonstrate that the RNA-seq-based risk score is not a hallmark of proliferation since no
significant difference was found between the proliferating pre-plasmablasts and the non-
proliferating plasma cells (Figure 1D). Furthermore, the RNA-seq-based risk score was not
correlated with plasma cell labeling index (PCLI—percentage of MM cells in S phase [30])
at diagnosis in the Montpellier cohort (Supplementary Figure S1). Significantly higher
score values were also observed in the HMCLs compared to in the MM cells of patients,
indicating that a high score is associated with MM progression (Figure 1D). Altogether,
these data highlight that the RNA-seq-based risk score can identify newly diagnosed
high-risk MM patients in independent cohorts.

3.2. High-Risk MM Patients Identified with the RNA-Seq-Based Risk Score Are Characterized by
Enrichment of Genes Related to Cell Proliferation, Growth Factor Signaling, MYC Pathway and
Epigenetic Deregulation

GSEA [31,32] analyses revealed that the genes associated with a poor prognostic value
were significantly enriched in the genes related to interferon response, cell proliferation,
hypoxia, IL-6 signaling pathway, interferon (IFN) response, stem cell genes, MYC, and
epigenetic deregulation (Figure 2A). Among the epigenetics-related genes enriched in
high-risk MM patients, EZH2 targets, HDAC targets, and DNA methylation target genes
were identified. We next investigated the RNA-seq-based risk score value distribution
according to the Affymetrix GEP-based risk scores described in MM. The RNA-seq-based
risk score values were significantly higher in patients who were defined as high-risk based
on their RS score [8], UAMS HRS score [5], and IFM score [7]. Furthermore, high-risk
RNA-seq-based score patients demonstrated a significant increase in the percentage of
proliferating MM cells (median = 0.7%; range: 0–7.3%) compared to the low-risk group
(median = 1.55%, range: 0–17.3%) (Figure 2B).
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CoMMpass and (C) Montpellier (n = 76 MM patients) (OS, Kaplan–Meier curves). (D) RNA-seq-
based risk score value calculated in normal human B to plasma cell differentiation and in malignant 
plasma cells from MM patients (n = 129) and HMCLs (n = 33). Wilcoxon test. NS: nonsignificant, * 
p-value < 0.05, ** p-value < 0.01, **** p-value < 0.0001. 

  

Figure 1. Prognostic value of the RNA-seq-based risk score. (A) Maxstat defined cut-point and prognostic value of RNA-
seq-based risk score in CoMMpass cohort (n = 674 MM patients). The RNA-seq risk score split MM patients into low- and
high-risk groups in two independent cohorts: (B) CoMMpass and (C) Montpellier (n = 76 MM patients) (OS, Kaplan–Meier
curves). (D) RNA-seq-based risk score value calculated in normal human B to plasma cell differentiation and in malignant
plasma cells from MM patients (n = 129) and HMCLs (n = 33). Wilcoxon test. NS: nonsignificant, * p-value < 0.05, ** p-value
< 0.01, **** p-value < 0.0001.
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seq-based risk score genes associated with poor prognosis. DN: downregulated; UP: upregulated. 
A complete description of all of the molecular signatures presented is available in the GSEA molec-
ular signatures database (https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) (28 September 
2021). (B) Comparison of RNA-seq-based risk score with Affymetrix GEP-based risk scores (RS, 
HRS, IFM) and proliferation. Wilcoxon test. ns: nonsignificant, * p-value < 0.05, ** p-value < 0.01. 
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Figure 2. Characterization of RNA-seq-based risk score. (A) Gene set enrichment analysis of RNA-seq-based risk score
genes associated with poor prognosis. DN: downregulated; UP: upregulated. A complete description of all of the molecular
signatures presented is available in the GSEA molecular signatures database (https://www.gsea-msigdb.org/gsea/msigdb/
index.jsp) (28 September 2021). (B) Comparison of RNA-seq-based risk score with Affymetrix GEP-based risk scores (RS,
HRS, IFM) and proliferation. Wilcoxon test. ns: nonsignificant, * p-value < 0.05, ** p-value < 0.01.

3.3. Association between RNA-Seq-Based Risk Score and Mutations in MM

We then analyzed the relationship between the RNA-seq-based risk score distribution,
cytogenetic abnormalities, and mutational status in the CoMMpass cohort. The RNA-seq-
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based risk score values were significantly higher in MM patients with del(13q), del(17p),
del(1p), 1qgain, t(4;14), t(12;14), and t(14,16) groups (Figure 3A). The RNA-seq-based risk
score values of the MM patients were also evaluated according to the status of the most
frequent mutations identified in HMCLs [28]. The RNA-seq-based risk scores were significantly
higher in the MM patients and were characterized by more ASXL1, ATM, BRAF, DIS3, EP300,
FGFR3, KMT2B, LRP1B, MAP3K1, MAX, NOTCH2, NUP214, PRDM1, PTPRD, RB1, ROS1,
SETD2, TP53, TRRAP, and ZFHX3 mutations compared to the unmutated MM patients
(Figure 3B). Interestingly, the RNA-seq-based risk scores were significantly higher in MM
patients harboring double-hit TP53mut/del(17p) or FGFR3mut/t(4;14) compared to MM patients
without double-hit (Figure 3C–D). The prognostic value of the RNA-seq-based risk score was
then compared with the molecular subgroups and mutations mentioned above using Cox
analyses. In univariate Cox analyses, the RNA-seq-based risk score, del(17p), 1qgain, and
t(12;14) subgroups as well as the ATR, CREBBP, MAP3K1, PMS1, and TP53 mutations showed
a prognostic value in the CoMMpass cohort (Table 1). When the RNA-seq-based risk score and
molecular subgroups were tested together (multivariate analysis), only the RNA-seq-based risk
score retained prognostic value (Table 2). When the RNA-seq-based risk score and mutation
were tested together, the score and PMS1 gene mutation remained independent prognostic
factors in the CoMMpass cohort (Table 3).

Table 1. Cox univariate and multivariate analyses to model overall survival in the CoMMpass cohort
(n = 674 patients with MM) relative to the RNA-seq-based risk score, cytogenetic abnormalities.

Univariate COX Analyses

Prognostic Variable Proportional HR p-Value

RNA-seq-based risk score 8.787 <0.0001
del17p 1.609 NS
1qgain 0.958 NS
t(12;14) 1.890 NS
ATRmut 1.780 NS

CREBBPmut 1.419 NS
MAP3K1mut 0.991 NS

PMS1mut 5.013 0.006
TP53mut 1.162 NS

Table 2. Cox univariate and mutations.

Multivariate COX Analysis (Cytogenetic Abnormalities)

Prognostic Variable Proportional HR p-Value

RNA-seq-based risk score 8.082 <0.0001
del17p 1.576 NS
1qgain 0.954 NS
t(12;14) 1.600 NS

Table 3. Cox univariate HR: hazard ratio.

Multivariate COX Analysis (Mutations)

Prognostic Variable Proportional HR p-Value

RNA-seq-based risk score 8.741 <0.0001
ATRmut 1.805 NS

CREBBPmut 1.436 NS
MAP3K1mut 1.050 NS

PMS1mut 5.099 0.006
TP53mut 1.161 NS
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Figure 3. Association between RNA-seq-based risk scores and cytogenetic abnormalitie subgroups and mutations in MM
patients from the CoMMpass cohort. (A) RNA-seq-based risk score in cytogenetic abnormality subgroups. Cytogenetic
abnormality subgroups were composed of hyperdyploid (without: n = 240, with: n = 331), del(13p) (without: n = 307, with:
n = 266), del(17p) (without: n = 523, with: n = 50), del(1p) (without: n = 455, with: n = 118), 1q gain (without: n = 378, with:
n = 195), groups of patients and patients harboring t(4;14) (without: n = 515, with: n = 73), t(6;14) (without: n = 572, with: n
= 16), t(11;14) (without: n = 461, with: n = 127), t(12;14) (without: n = 564, with: n = 24), t(14;16) (without: n = 532, with: n =
56), and t(14;20) (without: n = 543, with: n = 45) translocations. (B) Comparison of RNA-seq-based risk scores according to
the status of recurrent mutated genes in MM: ASXL1 (−: n = 616, +: n = 15), ATM (−: n = 586, +: n = 45), BRAF (−: n = 576,
+: n = 55), DIS3 (−: n = 554, +: n = 77), EP300 (−: n = 614, +: n = 17), FGFR3 (−: n = 592, +: n = 39), KMT2B (−: n = 555, +: n
= 76), LRP1B (−: n = 532, +: n = 99), MAP3K1 (−: n = 620, +: n = 11), MAX (−: n = 599, +: n = 32), NOTCH2 (−: n = 596, +:
n = 35), NUP214 (−: n = 617, +: n = 14), PRDM1 (−: n = 604, +: n = 27), PTPRD (−: n = 572, +: n = 59), RB1 (−: n = 613, +: n
= 18), ROS1 (−: n = 605, +: n = 26), SETD2 (−: n = 597, +: n = 34), TP53 (−: n = 579, +: n = 52), TRRAP (−: n = 605, +: n =
26), and ZFHX3 (−: n = 592, +: n = 39). (C) Comparison of the RNA-seq-based risk score values in MM patients with (n =
23) and without (n = 546) double-hit TP53mut/del(17p). (D) Comparison of the RNA-seq-based risk score values in MM
patients with (n = 20) and without (n = 562) double-hit FGFR3mut/t(4;14). Wilcoxon test. ns: nonsignificant, * p-value < 0.05,
** p-value < 0.01, *** p-value < 0.001, **** p-value < 0.0001.
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3.4. RNA-Seq Risk Score Revealed New Genes Significantly Associated with MM Pathophysiology

We used public datasets of RNAi [33,34] and CRISPR-Cas9 [35] viability assay screen-
ing (Dependency Map data, Broad Institute, www.depmap.org) (28 September 2021) to
identify the essential genes in myeloma cell lines compared to other cancer cell lines.
Among the 142 genes associated with poor survival composing the RNA-seq-based risk
score, we found seven genes (ATP8B1, FGFR4, FOXD4, MX1, NPTXR, TMEM171, and
TNFRSF10B) with a significantly lower DEMETER2 score in the myeloma cell lines (n = 16)
compared to other cancer cell lines (n = 695) (Figure 4A and Table 4). The CERES score of
four genes (ISG20, NDC1, SF3B3, UMPS) was significantly lower in the myeloma cell lines
(n = 20) compared to in the other cancer cell lines (n = 769) (Figure 4B and Table 4). These
essentiality scores were calculated using the RNAi [36] and CRISPR–Cas9 [35] methods,
respectively. Thus, these analyses identified essential MM genes that had not previously
been considered.
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Table 4. DEMETER2 and CERES score comparison between MM cell lines and other cancer cell lines. DEMETER2 and
CERES scores were calculated from CRISPR-Cas9 and RNAi-based viability assays, respectively.

Gene Dataset T.Statistic p-Value

ATP8B1 RNAi (Broad) −4.4246306 1.18 × 10−5

FGFR4 Combined RNAi (Broad, Novartis, Marcotte) −4.6107503 4.74 × 10−6

FOXD4 Combined RNAi (Broad, Novartis, Marcotte) −4.8020113 1.91 × 10−6

ISG20 CRISPR (Avana) Public 20Q1 −3.949974 8.56 × 10−5

MX1 Combined RNAi (Broad, Novartis, Marcotte) −7.990899 5.30 × 10−15

NDC1 CRISPR (Avana) Public 20Q1 −5.029908 6.15 × 10−7

NPTXR Combined RNAi (Broad, Novartis, Marcotte) −5.638059 2.47 × 10−8

SF3B3 CRISPR (Avana) Public 20Q1 −4.0305542 6.13 × 10−5

TMEM171 RNAi (Novartis) −3.6151729 3.39 × 10−3

TNFRSF10B RNAi (Novartis) −3.996171 7.67 × 10−5

UMPS CRISPR (Avana) Public 20Q1 −4.6553134 3.83 × 10−6

3.5. Association between RNA-Seq-Based Risk Score and Response to Treatment

We analyzed the relationship between the RNA-seq-based risk score and HMCL
response to drugs. The Spearman correlation was assessed between the RNA-seq-based
risk score and IC50 for 22 different drugs [19–22,28,37]. Among them, the MM cell responses
to four drugs were found to be significantly associated with the RNA-seq-based risk score
(Figure 5). A significant negative correlation was observed between the risk score and the
response to EZH2 (r = −0.66; p-value = 0.037), Aurora kinase (r = −0.61; p-value = 0.028),
MELK (r = −0.6; p-value = 0.04), and TOPK/PBK (r = −0.83; p-value = 0.0015) inhibitors
in HMCLs (Figure 5A). Moreover, as identified in the HMCLs, a significant correlation
between the RNA risk score and the EZH2 inhibitor activity on the primary cells of MM
patients was observed (r = −0.91; p-value = 0.0041) (Figure 5B). A high RNA risk score
value is associated with a higher EZH2 inhibitor efficacy in patient myeloma cells. These
results highlight that MM patients associated with higher RNA-seq-based risk score mays
benefit from these drugs and from EZH2 inhibitor in particular.
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Linear regression analysis of the inhibition ratio (treatment/control) of EPZ-6438, an EZH2 inhibitor,
or the IC50 of three inhibitors of oncogene kinases (Aurora kinase inhibitor, MELKi, PBKi) in a
function of the RNA-seq-based risk score in HMCLs. (B) RNA risk score predictions for EPZ-6438
sensitivity of primary patient myeloma cells. R represents the Pearson correlation coefficient (Pearson
correlation test).

4. Discussion

Here, we defined an RNA-sequencing-based transcriptomic signature with prognostic
value in two independent cohorts of patients with MM. Despite a significant accumulation
of knowledge related to MM drug resistance, there is a need to routinely integrate these data
into clinical decision making. However, several profiling methods have been developed
to provide information related to molecular classification and risk prediction. Different
groups have combined GEP analysis with cytogenetics to delineate 10 different molecular
subgroups with distinct prognostic values and clinical features [4,38,39]. These prognostic
classifications have been associated with the clinical data and incorporated into a consensus
statement by the International Myeloma Working Group (IMWG) [40]. Several groups
including IFM [7], UAMS [5], our group [8], and HOVON [6] have developed microarray-
based GEP prognostic signatures. More recently, large-scale clinical studies have leveraged
NGS including WES and have targeted NGS panels in MM [41–46]. Microarrays are being
phased out, and our study sought to validate the use of RNAseq as an alternative. There is
currently a need to integrate clinically useful biomarkers to predict treatment response in
association with the growing palette of anti-MM therapies that are available.

In this study, we built a 267-genes risk score using RNA-seq data. The RNA-seq-
based risk score demonstrated a prognostic value in the two independent cohorts of
newly diagnosed MM patients. MM patients with high-risk UAMS- or RS-microarray-
defined GEP signatures demonstrated significantly higher RNA-seq-based risk score values
(Figure 2B). Targeted sequencing could be used for clinical applications of the RNA-seq
score where cost is important. Recently, Jang JS et al. reported a single cell RNA-seq
of 597 cells derived from 15 MM patients. They developed a gene expression signature
associated with MM progression that demonstrated significant prognostic value using
the microarray GEP data of the APEX trial dataset [47]. We investigated the overlap
between the two reported gene signatures and six common genes that were identified,
including BST2, FAM214A, HBP1, ISG20, KLF6, and RAB30. The low degree of overlap
could be explained by the fact that the signatures were defined using bulk RNA-seq or
single-cell RNA-seq. The number of expressed genes detected from single cell RNA-seq is
typically lower compared to bulk RNA-seq. The high-risk patients identified with our score
were characterized by the genes involved in several major pathways implicated in MM
pathophysiology, including interferon response, cell proliferation, hypoxia, IL-6 signaling
pathway, stem cell genes, MYC, and epigenetic deregulation (Figure 2A). c-MYC is a key
regulator in MM with deregulations related to translocations, gains and amplification,
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mutations in RAS genes, and MYC transcription or translation activation [48]. Hypoxia is
a specific feature of MM with a significant increase of hypoxia-inducible factor-1 (HIF-1)
in the bone marrow of MM tumor-bearing mice [49]. This suggests that the inhibition of
HIF-1-mediated transcription may represent an interesting target in MM. Recently, we
reported that chetomin, an inhibitor of HIF-1/p300 interaction, exhibits specific antitumor
activity in human myeloma cell lines and in the primary MM cells from patients [50]. This
approach could present therapeutic interest for high-risk patients identified with the RNA-
seq risk score. IL-6 is one of the major MM growth factors [51]. Blocking IL-6 signaling
was thus developed into a therapeutic approach for MM. Even if the first clinical trials did
not demonstrate clear benefits, the development of IL-6 antagonism is still ongoing with
clinical trials [52]. The clinical and biological role of IFN is controversial in MM. Several
groups have reported that IFN-α inhibits MM cell growth [53], whereas other groups
have shown that it is an MM growth factor [54]. IFN-α was used in the treatment of MM,
and this was stopped due to the absence of reproducible clinical efficacy [55,56]. More
recently, we reported that DNA methyltransferase inhibitors induce the overexpression
of IFN-regulated genes [20]. Since high-risk MM patients identified by RNA-seq are
characterized by gene signature enrichment related to DNA methylation, the identified IFN
response genes could be related to epigenetic deregulations. Interestingly, high-risk RNA-
seq score-defined MM patients are characterized by a significant enrichment in the genes
related to stem cell genes. Genes that unrelated to the cell cycle and that are overexpressed
in pluripotent, hematopoietic, and mesenchymal stem cells have been reported to be
significantly overexpressed in MM in association with a poor outcome [57]. Furthermore,
RNA-seq-defined high-risk patients present significant enrichment in terms of repressive
epigenetic modifications, including the overexpression of the Polycomb repressive complex
PRC1 and PRC2 target genes, DNMT target genes, and HDAC target genes (Figure 2A).
These data underline major epigenetic remodeling in high-risk MM patients. Interestingly,
a significant overlap between the PRC2 and DNA methylation target genes has been
reported in MM, suggesting an overlap between these repressive chromatin marks to
inactivate important MM tumor suppressor genes [21]. Transcriptional programs mediated
by DNA methylation and HDAC are also associated with poor outcome and key biological
deregulations [19,20]. Furthermore, a combination of epidrugs has demonstrated anti-MM
cell cytotoxicity in preclinical studies [21,58]. Of particular interest, using our large cohort
of MM cell lines, we found that our RNA-seq-based risk score was significantly correlated
with the response to the EZH2 inhibitor. Moreover, these data were validated using primary
samples from MM patients. These data suggest that MM patients with a high-risk RNA-seq
score may respond to EZH2i in combination with conventional treatment. Additionally,
we also found that HMCLs with high RNA-seq score values presented sensitivity to three
oncogene kinase inhibitors: MELKi, TOPK/PBKi, and Aurora kinase inhibitor. Aurora
A kinase inhibitor in combination with bortezomib is currently in clinical development
to treat relapsed or refractory MM patients (NCT01034553) [59]. MELK and PBK were
identified as being of therapeutic interest in MM [22,60]. The RNA-seq score may be of
interest for patient stratification in clinical trials. The validation of these results using the
primary MM cells of patients will be of interest.

Interestingly, RNA-seq-based risk score values were significantly higher in the MM
cells of patients characterized by ASXL1, ATM, BRAF, DIS3, EP300, FGFR3, KMT2B, LRP1B,
MAP3K1, MAX, NOTCH2, NUP214, PRDM1, PTPRD, RB1, ROS1, SETD2, TP53, TRRAP,
and ZFHX3 mutations compared to patients with unmutated MM cells. Among these
mutated genes, TP53, DIS3, BRAF, PRDM1, are RB1 are part of the most frequently mutated
genes in MM patients [61,62]. RB1 mutation is involved in MM pathogenesis in the same
way as BRAF and DIS3 [61,63,64] and is associated with a shorter outcome than ATM and
TP53 [65–67]. Furthermore, the RNA-seq-based risk score was significantly higher in MM
patients with double-hit events TP53mut/del(17p) or FGFR3mut/t(4;14) compared to MM
patients without double-hit events. These double-hits are associated with very aggressive
disease and therapeutic resistance [68,69].
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Moreover, among the genes composing the RNA-seq-based risk score and associated
with bad prognosis, 11 genes were identified as significant essential MM genes, including
SF3B3, FGFR4, TNFRSF10B, UMPS, and NPTXR. SF3B3 encodes a subunit of the splicing
factor 3b protein complex. SF3B3 regulates EZH2 alternative splicing, and its expression
is associated with poor outcome in renal cell carcinoma [70]. Moreover, the alternative
splicing of EZH2 seems to have an important role in the tumorigenesis of human renal
cancer. Since EZH2 is overexpressed in myeloma cells in association with a poor out-
come [21,71], it would be interesting to explore the potential role of alternative EZH2
splicing regulated by SF3B3 in plasma cell tumorigenesis and disease progression. Fur-
thermore, the potential role of SF3B3 in splicing regulation in MM remains unknown.
The protein encoded by the FGFR4 (fibroblast growth factor receptor 4) gene is a tyrosine
kinase and cell surface receptor for fibroblast growth factors (FGF). Acting as proangiogenic
and mitogenic cytokines, FGF/FGFR protects myeloma cells for oxidative stress-induced
apoptosis, leading to myeloma cell survival and progression [72]. In Rhabdomyosarcoma,
FGFR4-specific single-domain antibodies demonstrated a good specificity and affinity for
targeting FGFR4-expressing cells and for blocking the FGF19–FGFR4–MAPK signaling
axis [73]. These FGFR4 antibodies could be of therapeutic interest for high-risk MM patients
who have been identified with the RNA-seq-based risk score. TNFRSF10B, also called
TRAIL-R2 or DR5, encodes a protein belonging to the TNF-receptor superfamily. The tumor
necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis through the
activation of DR5 [74]. It was already reported that the anti-DR5 monoclonal antibody,
lexatumumab, induces myeloma cell death [75]. Moreover, because DR5 is transcriptionally
regulated by p53, the efficiency of lexatumumab is increased by p53, inducing stress in
myeloma cells [76]. UMPS (uridine monophosphate synthetase) is the last enzyme in the
novo pyrimidine biosynthetic pathway. The inhibition of UMPS by 5-aminoimidazole-
4-carboxamide-1-beta-riboside treatment decreases UMP levels and leads to pyrimidine
starvation and myeloma cell death [77]. These data identify pyrimidine biosynthesis as a
potential molecular target for future therapeutic targeting in MM. The neuronal pentraxin
receptor is a type II transmembrane protein that functions as a trans-synaptic organizer
and anchors neuronal pentraxin complexes to plasma membranes [78]. The role of NPTXR
remains unclear in cancers. NPTXR is associated with cancer progression and shorter
survival in gastric and colorectal cancers [79,80]. Silencing NPTXR using a monoclonal Ab
against NPTXR inhibits gastric cancer cell proliferation and leads to cell apoptosis [79]. It
could be interesting to investigate the function of NPTXR in myeloma cells.

Despite improvement in MM patient survival due to the clinical use of novel agents,
the acquisition of drug resistance remains a major limitation of MM therapy. Indeed, the
great majority of MM patients relapse and eventually become resistant to all treatments.
We developed an RNA-seq-based risk score that allows the identification of high-risk MM
patients that may benefit from EZH2, MELK, TOPK/PBK, and Aurora kinase inhibitors.
The RNA-seq-based risk score may be used to implement precision medicine strategies
in MM.
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