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Abstract

On one hand, studies on Salmo biological variations during the last centuries have led
to the morphological description of several Salmo species (>50). On the other hand, Salmo
trutta is seen as a polymorphic species, i.e. including populations with different morphotypes
and ecotypes, subdivided into nine genetically divergent evolutionary lineages. For 30 years,
phylogeographic and phylogenetic investigations tried to solve the Salmo systematic problem
using the mitochondrial control region, sometimes combined with other mitochondrial (e.g.
protein coding region or rRNA genes) or nuclear (e.g. allozymes or microsatellites) markers.
With the advent of high throughput next-generation sequencing, complete mitogenomes
were made available for Salmo phylogenetic studies. Even better, complete genome or
chromosomes with annotations as well as genes of interest can now be loaded from public
database. However, in the genomic era, some challenges still need to be addressed such as
an appropriate taxon sampling or the identification of orthologous genes before having an
accurate phylogeny. In the present review, | examine how traditional molecular markers
contributed to our knowledge of trout systematics, and what we can expect from the

genomics revolution.

Keywords: mitochondrial DNA, molecular phylogeny, next-generation sequencing

technologies, nuclear DNA, Salmo trutta
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Context

Salmonidae are the focus of much scientific attention, in particular the subfamily
Salmoninae, with, at least, three species (Onchorhynchus mykiss (Walbaum, 1792), Salmo
salar Linnaeus, 1758, and Salmo trutta Linnaeus, 1758) among the ten most studied fishes
(Hutching, 2014; Birnie-Gauvin et al., 2019). Despite this attention, some issues remain,
however, unresolved, such as Salmo systematics. Problems started nearly 300 years ago
when Linnaeus first classified Salmo trutta under different common and Latin names
(Linnaeus, 1758). Because of complex patterns of phenotypically distinct geographic forms
and considerable life-history strategies (Bernatchez et al., 1992; Elliott, 1994; Kottelat &
Freyhof, 2007; Sanz, 2018), studies of Salmo biological variations during the last centuries
have led to the morphological description of several Salmo species (or morphospecies;
Cronquist, 1978), from around 30 (Kottelat & Freyhof, 2007; IUCN, 2022) to more than 50
(Behnke, 1986; Froese & Pauly, 2021) depending on the source. Molecular data have,
however, refuted the validity of some species, such as S. dentex (Heckel, 1851) (Snoj et al.,
2010) or S. platycephalus Behnke, 1968 (Susnik et al., 2004), whereas they confirmed the
reclassification of others in the genus Salmo, such as S. obtusirostris (Heckel, 1851) (Snoj et
al., 2002) and S. ohridanus Steindachner, 1892 (Phillips et al., 2000; Susnik et al., 2006).
Indeed, most of the described (morpho)species have close phylogenetic relationships with S.
trutta, and, for this reason, several taxonomic and phylogenetic studies consider S. frutta as
a complex of species, except S. salar, S. obtusirostris and S. ohridanus (e.g. Patarnello et
al., 1994; Lo Brutto et al., 2010; Vera et al., 2011; Meraner et al., 2013; Gratton et al., 2014;
Tosi¢ et al., 2014; Splendiani et al., 2017). On the other hand, Salmo trutta is also seen as a
polymorphic species, i.e. including populations with different morphotypes and ecotypes,
subdivided into several genetically divergent evolutionary lineages (Bernatchez et al., 1992;
Bernatchez, 2001; Suarez et al., 2001; Susnik et al., 2005; Bardakci et al., 2006; Vera et al.,
2010; Snoj et al., 2011; Tougard et al., 2018). To avoid confusion, the term “trout” is here
used to refer to both the S. frutta species complex and the evolutionary lineages.

There is no phylogenetic study based on morphological characters and including all
Salmo species. Attempts of molecular phylogeny were restricted to a limited number of
Salmo species, while relationships between S. trutta evolutionary lineages are not fully
resolved (e.g. Bernatchez, 2001; Cortey et al., 2004; Pustovrh et al., 2014; Sanz, 2018;
Tougard et al.,, 2018; Guinand et al., 2021; Hashemzadeh Segherloo et al., 2021). In all
cases, Salmo is a monophyletic genus with S. salar as the first offshoot of this group (Crespi
& Fulton, 2004; Créte-Lafreniéere et al., 2012; Shedko et al., 2013; Horreo, 2017; Lecaudey et
al., 2018). From the molecular dating, this genus originated during the Miocene, between 16
and 10 Myr (Créte-Lafreniére et al., 2012; Shedko et al., 2013; Horreo, 2017; Lecaudey et
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al., 2018). In most phylogenetic studies, S. obtusirostris is the sister species of S. ohridanus,
except in Pustovrh et al. (2014) where S. obtusirostris was found to be the sister species of
S. trutta and S. marmoratus Cuvier, 1829. The clade including S. obtusirostris, S. ohridanus
and trout is dated back to the Pliocene, around 5-4 Myr (Créte-Lafreniére et al., 2012;
Pustovrh et al., 2014; Lecaudey et al., 2018), while the trout age was estimated between 4
and 0.40 Myr (Créte-Lafreniére et al., 2012; Pustovrh et al., 2014; Horreo, 2017; Lecaudey et
al., 2018). This is more or less concordant with the fossil record since the oldest fossil
remains of Salmo, found in Croatia, dated from the Middle or Upper Miocene (13 — 5.33 Myr;
Gorjanovi¢-Kramberger, 1891; Andelkovi¢,1989), and those of S. frutta, found in Caucasus,
dated from the Pliocene (~ 2 Myr) (Vladimirov, 1946, 1948). Several hypotheses were
proposed in trying to understand the trout evolutionary history during the Pleistocene, and
how it was impacted by the Quaternary climatic changes (e.g. Hamilton et al., 1989; Garcia-
Marin et al., 1999; Sanz et al., 2000; Bernatchez, 2001; Antunes et al., 2002; Cortey et al.,
2004; McKeown et al., 2010; Snoj et al., 2011; Splendiani et al., 2016). However, since
phylogenetic relationships between evolutionary lineages are poorly resolved, and no
phylogeny includes all Salmo species, this history can only be partial at best.

Paradoxically, S. trutta, considered as one of the world's invasive species in countries
(at least 24) where it was introduced, is imperiled in much of its native distribution, i.e. in
Eurasia and North Africa (Budy et al., 2013; Elliott, 2018). Among the 36 Salmo species
listed in the International Union for Conservation of Nature, 18 are threatened or
endangered, and one (S. pallaryi Pellegrin, 1924) considered extinct (Crivelli, 2006; I[UCN
2022). Trout provides recreation and food to million of people and plays important roles in
ecosystem functioning, but it is extremely sensitive to habitat disturbances induced by human
activities (e.g. overfishing, pollution, dams, deforestation, agriculture, grazing, and mining)
and climate change (Muhlfeld et al., 2018). Native trout diversity is also threatened by the
massive stocking of domesticated strains that facilitates the spread of pathogens and
parasites. By hydridization of native populations with specimens from hatcheries, stocking
erodes genetic diversity or eliminates original local adaptations (Garcia-Marin et al., 1998;
Lobon-Cervia, 2018). Even if the genetic diversity of Salmo populations is relatively well
understand, notably at the intra-basin level, concrete conservation strategies should take into
account practices that do not erode and/or modify this natural diversity. Efforts to protect
native trout morphological, ecological and genetic diversity should rely on appropriate local
and/or global conservation and management strategies, and systematics is essential to
biodiversity conservation by helping to set conservation priorities (Wheeler, 2001). However,
what must be done in the case of a messy systematics as in the trout case?

Indeed, systematics discrepancies hamper our understanding of trout evolutionary

history, and impede the development of appropriate strategies to protect natural diversity of



107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143

native trout (Bernatchez et al., 1992; Antunes et al., 2001; Fumagalli et al., 2002; Snoj et al.,
2010; Créte-Lafreniere et al., 2012; Gratton et al., 2013; Ninua et al., 2018; Hashemzadeh
Segherloo et al., 2021). Trout systematics thus needs urgently revision/clarification. This
systematics was mostly investigated from a genetic standpoint, and the use of genetics in
trout systematics has a long history (Fig. 1). In the present review, | examine how traditional
molecular markers, and notably mitochondrial DNA (mtDNA), contributed to our knowledge

of trout systematics, and what we can expect from the genomics revolution.

PAST: mitochondrial DNA rise

Until the end of the 1980s, genetic discrimination of trout relied mostly on protein
electrophoretic (allozyme) analyses (e.g. Ryman & Stahl, 1980; Ferguson & Mason, 1981;
Vuorinen & Piironen, 1984; Guyomard & Krieg, 1986; Skaala & Naevdal, 1989). First
investigations on trout systematics were performed with these markers, and refuted the
classification of Greek trout populations into five subspecies (Karakoukis & Triantaphyllidis,
1990). Despite their usefulness in the delineation of genetically distinct salmonid populations,
allozymes displayed a limited ability to identify existing genetic diversity by detecting only a
part of amino acid substitutions and examining only coding regions of the genome (Hynes et
al., 1989). Genetic diversity was thus studied in a population genetics context (genetic
similarities between populations) rather than in a phylogenetic view (relationships among or
within species with inference of their evolutionary history).

By the early 1990s, two molecular markers were proposed as new diagnostic markers
to genetically differentiate salmonid species and populations: the eye-specific lactate
dehydrogenase Ldh-5 nuclear locus (Hamilton et al., 1989), and the mitochondrial DNA
(Hynes et al., 1989). The Ldh-5 locus, now called LDH-C1* locus, is polymorphic for two co-
dominant alleles, Ldh-5 (100) or LDH-C1*100 and Ldh5 (90) or LDH-C1*90. The “100” or
“ancestral” allele is present in several species of Salmonidae including southern European
trout populations, while the “90” or “modern” allele is fixed for north-western European and
hatchery trout populations (Hamilton et al.,, 1989). Initially proposed to differentiate
“ancestral” from “modern” populations in phylogeographic studies, this marker is today
mostly used to differentiate natural populations from domesticated Atlantic strains or to
detect and characterize introgression patterns between these populations (Berrebi et al.,
2019; Rossi et al., 2019; Splendiani et al., 2019; Vera et al., 2019; Kanjuh et al., 2020).
Oleinik et al. (2017) also tested this locus as phylogenetic marker in a study including 11
salmonid genera. If the genus Salmo was monophyletic, this locus failed to solve
phylogenetic relationships between S. obtusirostris, S. ohridanus and S. trutta. Indeed, the
most used molecular marker to date in trout phylogeographic and phylogenetic studies (116
out of 137; Table S1) is mtDNA (Fig. 1). Compared to nuclear DNA (nucDNA), mtDNA is a
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fast evolving and easy-to-isolate genome with a small size, simple constitution, and
uniparental inheritance avoiding recombination and allowing matrilineal phylogeny inferences
and molecular dating (Hynes et al., 1989; Meyer, 1993). Comparison of mtDNA variations
can be realised by restriction fragment length polymorphism (RFLP) analyses of
mitochondrial fragments and/or by nucleotide sequences of mitochondrial partial or complete
genes (e.g. Hansen & Loeschcke, 1996; Osinov & Bernatchez, 1996; Machordom et al.,
2000; Weiss et al., 2000; Aurelle & Berrebi, 2001; Bernatchez, 2001; Sell & Spirkovski, 2004;
Bardakci et al., 2006; Splendiani et al., 2006; Apostolidis et al., 2008; Cortey et al., 2009;
Griffiths et al., 2009; McKeown et al., 2010; Schenekar et al., 2014).

Craze for mitochondrial markers, and especially the control region (CR), is particularly
linked to a study focused on the phylogeography of European S. ftrutta populations
(Bernatchez et al., 1992). Based on two CR fragments (310+330 base pairs, bp), this study
was the first assessment of phylogenetic relationships between widely remote European
populations (151 individuals from 24 populations). Identified haplotypes were distributed in
five major mitochondrial evolutionary lineages: Adriatic (AD), Atlantic (AT), Danubian (DA),
marmoratus or Marble (MA) and Mediterranean (ME) (see Fig. 2 for their distribution). These
genetic lineages were not congruent with ecological and morphological differentiation
(Bernatchez et al., 1992). These preliminary results were later confirmed by Bernatchez
(2001) in a study based on 1794 individuals from 174 populations. Bernatchez (2001)
suggested that both Pleistocene glaciations and biological factors impacted the distribution of
these major lineages as well as trout population structure. Since then, others evolutionary
lineages, with a more restricted distribution (Fig. 2), were highlighted: the Duero lineage (DU)
endemic of the north-western Iberian Peninsula (Cortey et al., 2009; Vera et al., 2010, 2015);
the Tigris lineage (TI) endemic of the Catak river in Turkey (Sudnik et al., 2005; Bardakci et
al., 2006); the Dades lineage endemic of the Draa basin in Morocco (Snoj et al., 2011); the
North-African lineage (NA) found in Morocco, Algeria, Sicily and maybe in Spain (Tougard et
al., 2018; Splendiani et al., 2019). Mitochondrial DNA was also a valuable marker to estimate
past trout genetic diversity from museum samples (Giuffra et al., 1994; Lahnsteiner &
Jagsch, 2005; Splendiani et al., 2017) or even archeological remains (Splendiani et al.,
2016), notably because nucleic acids degrade over time, and mtDNA is available in much
higher copy numbers per cell compared with single-copy nucDNA (Hdéss, 2000; Wandeler et
al., 2003).

The mitochondrial control region is thus considered as a reference to identify trout
lineages or species (Table S2). However, this highly variable marker does not allow, alone,
to get resolved trout phylogenetic relationships. Other mitochondrial markers, such as protein
coding (cytochrome b, or cytochrome c¢ oxidase, ATPase and NADH dehydrogenase

subunits) and/or rRNA (12S and 16S) genes, have been proposed as alternatives (e.g.
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Giuffra et al., 1994; Patarnello et al., 1994; Machordom et al., 2000; Dudu et al., 2010; Lo
Brutto et al.,, 2010; Dudu et al., 2011; Créte-Lafreniere et al., 2012; Shedko et al., 2013;
Rezaei, 2015; Turan et al., 2020). Some phylogenetic studies have involved also nucDNA
such as allozymes (e.g. Bernatchez & Osinov, 1995; Riffel et al., 1995; Apostolidis et al.,
1996; Antunes et al., 1999; Bouza et al., 2001; Cagigas et al., 2002), microsatellites (e.g.
Suénik et al., 2007; Snoj et al., 2011; Kohout et al., 2013; Gratton et al., 2014; Mari¢ et al.,
2017) or nuclear genes (e.g. transferin in Antunes et al., 2002; internal transcribed spacer 1
or ITS1 in Presa et al.,, 2002; Turan et al.,, 2009; Vera et al., 2011; C intron of growth
hormone 2 or GH2C in Razpet et al., 2007; somatolactin in Snoj et al., 2010; recombination
activating gene 1 or RAG1 in Shedko et al., 2012). For both mitochondrial and nuclear
alternatives, few studies were, however, fully freed from the CR reference. Even the genomic
study of Hashemzadeh Segherloo et al. (2021) based on 15,169 single nucleotide
polymorphisms markers (SNPs) includes CR sequences. Recently, Pustovrh et al. (2011a,
2014) and Snoj et al. (2021) performed phylogenetic analyses based exclusively on nuclear
loci. These studies contradicted mtDNA observations. Among the 7000 to 8000 bp of the
final alignments, few variations are, however, informative sites (70, 196 and 286,
respectively), and this low number of information could provide insufficient phylogenetic
signal, and thus false phylogenetic inference (Philippe & Douzery, 1994; Wiens, 2003;
Phillipe et al., 2004) as suggested, for instance, by the lack of resolution at several nodes of
the trees and the trichotomy linking S. obtusirostris, S. marmoratus and S. trutta in Pustovrh
et al. (2011a, 2014).

Over the years, molecular diagnostic protocols were designed to allow rapid trout
identification, either from SNPs (CR SNPs in Apostolodis et al., 2007; nucDNA SNPs in
Pustovrh et al., 2011b; Casanova et al., 2022) or pyrosequencing assay (Keller et al., 2010).
Both approaches did not receive, however, the expected success. As illustrated by the
numerous references cited above, genetic trout identification is mostly done through mtDNA
or nucDNA sequences, and the combination or concatenation of these markers provided
better inferences on trout systematics as in the following examples: inclusion of
Acantholingua ohridana (cytochrome b, ITS1 and GH2C sequences; Phillips et al., 2000) and
Salmothymus obtusirostris (CR, cytochrome b and LDH-C1* sequences; Snoj et al., 2002) in
the genus Salmo (S. ohridanus and S. obtusirostris, respectively); reclassification of Salmo
(Platysalmo) platycephalus in a lower taxonomic category (CR, cytochrome b and ITS1
sequences; Susnik et al., 2004).

With the advent of high throughput next-generation sequencing (NGS), complete
mitochondrial genomes (or mitogenomes) were made available for Salmo phylogenetic
studies (Horreo, 2017). Compared to S. salar (Hurst et al., 1999), it is very recently that first

S. trutta mitogenomes were published. One (KT634053) was obtained in a more classical
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way with amplification by PCR and Sanger sequencing of overlapping mtDNA fragments (Li
et al., 2016), while the other (KT633607) was obtained through shotgun libraries subjected to
lllumina Miseq sequencing (Sahoo et al., 2016). Since then, mitogenomes were produced for
several trouts (S. macrostigma (Duméril, 1858), S. ischchan Kessler, 1877, S. trutta fario
Linnaeus, 1858 and S. trutta caspius Kessler, 1877) from modern (Rezaei & Akhshabi, 2017;
Rezaei et al., 2017) or museum (Levin et al., 2018, 2022; Nedoluzhko et al., 2018a, 2018b;
Tougard et al., 2018) samples. More than any other technology, NGS has also made
thousand of loci and SNPs available through the whole trout genome. For instance,
Restriction-site Associated DNA sequencing markers (RADseq) or double digest RADseq
(ddRADseq) were recently used to screen for genetic variations in Atlantic and
Mediterranean populations (Leitwein et al., 2016, 2018; Saint-Pé et al., 2019), while RADseq
and Genotyping-by-Sequencing methods were recently used to investigate phylogenetic
relationships among Salmoninae and some Salmo species, respectively (Lecaudey et al.,
2018; Hashemzadeh Segherloo et al., 2021).

PRESENT: new hope through next-generation sequencing

Despite 30 years of trout phylogeographic and phylogenetic investigations, no
consensus was found between morphological and genetic approaches about trout
systematics. In fact, no molecular phylogeny has yet included specimens from all trout
(morpho)species and/or covering the whole geographic distribution of S. trutta evolutionary
lineages. Some studies underlined, however, relationships between one of the nine trout
lineages from CR - sometimes combined with other mtDNA or nucDNA markers - with some
trout (morpho)species (e.g. Lo Brutto et al., 2010; Kalayci et al., 2018; Tougard et al., 2018;
Hashemzadeh Segherloo et al., 2021; Table S2). Moreover, it should be noted that higher
morphological diversity is associated to southern lineages compared to the AT lineage, but
this diversity is not congruent with genetic diversity known for each evolutionary lineage. The
AT and DA lineages have an extended distribution (Fig. 2) associated to a higher haplotype
diversity (Sanz, 2018) compared to the AD, Dades, DU, MA, ME, Tl and NA lineages. This
unequally distributed diversity could be one of the reasons why phylogenetic relationships
between lineages remain poorly solved. However, it seems more likely that currently used
mtDNA (control region or cytochrome b) and/or nucDNA markers are not sufficiently
informative. Informative sites in these markers represent a weak proportion of the genetic
variation, compared, for instance, to the whole mitochondrial genome (Fig. 3).

As already mentioned, NGS technologies are promising to study trout phylogeny.
Through these technologies, the whole annotated genome of Salmo trutta was recently made
available from the National Center for Biotechnology Information

(https://www.ncbi.nim.nih.gov/genome/31807). Complete genome or chromosomes with
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annotations as well as genes of interest can now be loaded, and used to identify more
appropriate markers (e.g. Sass et al.,, 2016; Hughes et al., 2018; Cloutier et al., 2019;
Hansen et al., 2021) to get an accurate trout phylogeny, and to understand morphological
character evolution such as colour pattern, a key character in trout description and

identification.

FUTURE: challenges to face

Without clear phylogenetic consensus, it is unrealistic to draw conclusions on the
trout evolutionary history. It seems that genomics methods can provide qualitatively and
quantitatively new types of information that cannot be achieved using traditional methods,
and our ability to reconstruct evolutionary histories from (phylo)genomic analyses will thus
help us to define conservation units. However, if technical processes of NGS technologies
are increasingly better mastered, practical and analytical issues remain challenging such as
taxon sampling, identification of orthologous genes, bioinformatics, and data storage.

Sampling choice is a crucial step in phylogenetic studies. First, stocking programs
may conceal Salmo natural genetic patterns. In Morocco, for instance, Salmo populations
with higher levels of genetic diversity were those affected by stocking programs (Perea et al.,
2020). Then, it may lead to contradictory evolutionary assumptions as in the studies of
Doadrio et al. (2015) and Tougard et al. (2018) focused on Moroccan populations. In Doadrio
et al. (2015), specimens only from Moroccan populations were taken into account, and no
type specimen was included in the molecular dataset, while Tougard et al. (2018) included in
their molecular dataset sequences from Doadrio et al. (2015) and specimens belonging to
the nine evolutionary lineages, valid species (S. orhidanus and S. obtusirostris), as well as
one syntype of S. macrostigma. Conclusions of both studies were not congruent: Doadrio et
al. (2015) considered populations of the Lake Isli and the Drda basin as distinct species (S.
viridis Doadrio et al., 2015 and S. multipunctata Doadrio et al., 2015, respectively); Tougard
et al. (2018) identified a new evolutionary lineage (NA) including specimens from Algeria
(notably S. macrostigma syntype), Sicily and all Moroccan populations, except the Draa
basin population that was already considered a different lineage (Dades) by Snoj et al.
(2011). Therefore, in phylogenetic studies, especially those discussing specific status, and
for more relevant comparisons, it would be recommended to include, in the molecular
dataset, sequences of specimens from the evolutionary lineages, some genetically valid
species such as S. obtusirostris and S. ohridanus and/or type specimens (e.g. holotype,
syntype, lectotype) to check the taxa validity, and thus to strengthen phylogenetic and/or
systematic inferences.

A diversity of NGS technologies exists to produce data suitable for phylogenomic
studies (e.g. Diaz-Arce et al., 2016; Dong et al., 2016; Hughes et al., 2018; Parhi et al.,
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2019). One main question then arises: will it be possible to easily identify orthologous genes
since the common ancestor of all Salmonidae experienced a whole genome duplication no
later than 88 Myr, resulting in an autotetraploid genome (Moghadam et al., 2011; Alexandrou
et al., 2013; Macqueen & Johnston, 2014)? Two recently released databases, PhyloFish
database (http://phylofish.sigenae.org/index.html; Pasquier et al., 2016) and SalmoBase
(https://salmobase.org/; Samy et al., 2017) constitute promising genomic tools for this
challenging key task. The PhyloFish database is a resource offering the possibilty to analyze
gene expression after gene duplication for 23 ray-finned fish species, including six salmonids
(Thymallus thymallus (Linnaeus, 1758), Coregonus lavaretus (Linnaeus, 1758), C.
clupeaformis (Mitchill, 1818), S. trutta, Oncorhynchus mykiss, Salvelinus fontinalis (Mitchill,
1814)) (Pasquier et al., 2016), while SalmoBase is an online database to access, visualize
and download genomic data of salmonids (S. salar, S. ftrutta, O. mykiss, O. kisutch
(Walbaum, 1792), Salvelinus alpinus (Linnaeus, 1758)) (Samy et al., 2017). Guidelines for de
novo or graph-based inference methods for orthologous gene identification were also
proposed, and several pipelines are available for automating this procedure (see Kapli et al.,
2020).

Phylogenomic reconstruction methods are of two kinds: methods based on whole-
genome features (such as SNPs), and methods based on primary sequences (such as
mitogenomes). First methods are, however, sensitive to hidden paralogy, horizontal gene
transfert or tree reconstruction artifacts (Delsuc et al., 2005; Philippe et al., 2005). For these
reasons, the second methods, having already a substantial methodological background, are
thus currently preferred and recommended (Delsuc et al., 2005; Philippe et al., 2005; Kapli et
al., 2020). These latter phylogenomic methods have, however, also their own sets of
problems related to phylogenomic dataset construction and inference. Although NGS
technologies have greatly improved sequence quality, they also led to the amplification of
data errors that are manually intractable because of the amount of data generated (Philippe
et al., 2017). Despite the development of humerous custom scripts, no consensus has yet
been found regarding the quality controls that should be included in phylogenomic dataset
construction (Philippe et al., 2017). A special care should be then brought to the data
assembly to avoid frameshift errors (sequencing or annotation errors) for protein-coding
genes, and/or contaminant sequences (commensals/symbionts, parasites, gut contents in
animals, environmental sources or experimental errors) (Philippe et al., 2017; Kapli et al.,
2020). Contaminants can be identified and excluded based on the GC content of sequences,
read coverage and taxonomy of sequence similarity matches (Kapli et al., 2020). Data
alignment is also a challenging task since alignment errors would hamper phylogenetic
inferences. It is thus crucial to identify the homologous nucleotides or amino-acid residues at

every position of the sequences (Philippe et al., 2017; Kapli et al., 2020). Alignment methods

10
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can be classified into several categories, and for each category, a panel of softwares is
available (for a review, see Philippe et al., 2017; Kapli et al., 2020). Lastly, the choice of
phylogenetic reconstruction methods constitutes one of the most essential criteria to avoid
phylogenomic result inconsistency. Character-based methods, and in particular the
probabilistic maximum likelihood and Bayesian methods, are based on an explicitly
evolutionary model of sequences (Delsuc et al., 2005; Kapli et al., 2020). The use of the
most complex models will thus reduce the probability of inconsistency, except when
sequences evolve heterogeneously and are not identically distributed (Kolaczkowski &
Thornton, 2004; Delsuc et al., 2005). Research on more realistic models of sequence
evolution is a work-in-process (Delsuc et al., 2005; Philippe et al., 2017). Detailed guidelines
and a phylogenomic pipeline recently proposed by Kapli et al. (2020) could easily be applied
to trout phylogenomic studies.

Last but not least, the raw data generated, considered part of the “Big Data science”,
and all steps from data assembly to phylogenetic inference need huge storage requirements
(Giribet, 2015). Although some public databases allow to store raw data, assemblies or data
matrices, satisfactory repositories are still lacking (Giribet, 2015). Moreover, these amounts
of generated genomic data and the complexity in evolutionary models come at a high
computational cost (Giribet, 2015). For instance, most heuristic searches with probabilistic
methods will be nearly impossible with more than 200 species (Philippe et al., 2005). Faster
and more efficient algorithms are thus required to overcome the current and upcoming size
of phylogenomic datasets (Giribet, 2015).

Nevertheless, genomics, thanks to a much larger number of loci available, has
increased our ability to evaluate the degree of genetic isolation of populations and to detect
introgression in many species. For this reason, genomic data can play an important role in
species delimitation under many species concepts (Rannala & Yang, 2020). In order to
propose clear and objective definition of species, powerful methods, such as coalescent-
based species delimitation (Fujita et al., 2012), were developed. Because species can show
low genetic divergence but high divergence in other traits, the whole process of lineage
diversification cannot be explained by these methods alone (Fujita et al., 2012, Cicero et al.,
2021). Some authors advocate that studies aimed at delimiting species are best framed in a
more integrative context, by taking into account, notably, morphological and ecological
characters as well as life-history traits of taxa across their distribution and habitats (Fujita et
al., 2012; Cicero et al.,, 2021). Indeed, when the taxa in question are of conservation
concern, it is important to use multiple lines of evidence into taxonomic decision, even if this
evidence can now, in theory, be provided by genomic data (for some examples, see Stanton
et al.,, 2019). Trout systematics will thus benefit from a more integrative view of the

taxonomy.
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Implications and prospective directions

In conservation biology, taxa identification (taxonomy) and the understanding of their
evolutionary relationships (systematics) is fundamental to design efficient biodiversity
conservation priorities and management strategies (Allendorf, 2012). In taxonomy and
systematics, the central and fundamental unit is the species. Therefore, conservation
strategies have long been focused on species. In order to protect trout biodiversity, some
authors suggested thus to maintain species names for some trout populations despite
discrepancies between morphology and genetics. For instance, S. letnica (Karaman, 1924)
populations of the Lake Ohrid in the Balkans represent a monophyletic group inside the AD
lineage, whereas differences in morphology, intralacustrine distribution, ecology and the
season of spawning were observed between populations (Sell & Spirkovski, 2004; Susnik et
al., 2007). In order to preserve the Lake Ohrid biodiversity, Sudnik et al. (2007)
recommended, however, to keep the taxonomic epithet S. letnica for the endemic Ohrid trout.
At a larger geographic scale, S. marmoratus, characterized by a marbled-colour pattern, is
supposed to inhabit northern and southern parts of the Adriatic Sea drainage, and it is often
associated to the mitochondrial MA lineage (Sanz, 2018). However, the marble-colour
pattern was also found in some trouts from Norway (Skaala & Solberg, 1997), while MA
haplotypes were identified in Central Italy as well as in French, Turkish or Greek populations
(Fig. 2). These cases are just some examples among some others underlying the urgent
need to revise the trout systematics in an integrative view. In this purpose, it will be crucial to
consider all types of diversity (morphology, ecology, genetics, life-history traits, and so on),
but also to choose appropriate morphological and genetic/genomic proxies, and taxon
sampling (including type specimens) to describe a part of these diversities.

On the one hand, because species is a fundamental unit in conservation and, on the
other hand, because less attention has been focused on the definition and delimitation of
conservation units from intraspecific diversity, numerous known subspecies are elevated to
the species rank for conservation purposes (Isaac et al., 2004; Berrebi et al., 2013; Zachos
et al., 2013). Subspecies seem, however, also relevant in biodiversity conservation, with
many taxa listed under the International Union for the Conservation of Nature Red List
criteria (Gippoliti & Amori, 2007; Braby et al., 2012; IUCN, 2022), and recognized as a
taxonomic unit by the International Code of Nomenclature (Article 5.2;
https://www.iczn.org/the-code/the-code-online/; Braby et al., 2012). The utility of subspecies
in taxonomy and conservation biology has been debated for decades, notably, because
subspecies are not defined conceptually with objective criteria allowing their delimitation
(Braby et al., 2012). Moreover, discrepancies exist, at the subspecies level, between

molecular and phenotypic characters (Phillimore & Owens, 2006; Cicero et al., 2021). Other
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intraspecific conservation units — e.g., the evolutionary significant units (ESU; Ryder, 1986;
Waples, 1991; Dizon et al., 1992; Moritz, 1994; Crandall et al., 2000), the operational
conservation units (OCU; Doadrio et al., 1996) or the management units (MU; Taylor &
Dizon, 1999) - have been proposed. Several definitions exist to define an ESU, but the most
popular one is that proposed by Moritz (1994): an ESU can be defined as populations that
are monophyletic for mtDNA and showing significant divergence in nucDNA allele
frequencies. An OCU is rather a continuous area limited by geographic boundaries, and
inhabited by one or more populations sharing the same genetic pattern (Doadrio et al.,
1996), while a MU is for populations of conspecific individuals among which the degree of
connectivity is sufficiently low so that each population should be monitored and managed
separately (Palsbgll et al., 2006). Some of these units were, in fact, already suggested to
manage and conserve natural diversity of Iberian trout populations (Machordom et al., 2000;
Almodévar et al., 2006). Even if the definition of most of these conservation units relies on
genetic/genomic data, other types of information (e.g. life history traits, habitat type,
phenotype, gene flow pattern, genomic clusters) are proposed to define conservation units
(Allendorf, 2012; Hashemzadeh Segherloo et al., 2021). In the near future, genomic
approaches could be really appropriate to estimate the level of vulnerability of Salmo native
populations as well as the extant of threats acting on them.

| cannot agree more with Kottelat & Freyhof (2007) when they say that, despite the
innumerable studies on trout, this interest has resulted in very little data usable in the
taxonomic framework, unfortunately still today. To cite Kottelat & Freyhof (2007), it is thus
more than time that the “hordes” of geneticists and taxonomists studying trout start working
together to better preserve natural diversity of trout in its native distribution. This will be
probably allowed in a near future thanks to the combination of NGS technologies, a more
integrative approach of the trout systematics and the appropriate definition of conservation

units.
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Figure legend

Fig. 1 Number of publications dealing with trout systematics found in public reference
databases (Web of Sciences, Google Scholar, PubMed) in December 2021 using the words

”

“Salmo” and “phylogeny”, “systematics” or “diversity”. A reference was considered when, at
least, two Salmo species or S. frutta evolutionary lineages were included in the studied
dataset, and phylogenetic relationships were represented by a tree or a network. The list of
references considered is in Table S1. MtDNA, mitochondrial DNA; nucDNA, nuclear DNA;

NGS, next-generation sequencing technologies.

Fig. 2 Approximate native distribution of the nine Salmo trutta mitochondrial DNA

evolutionary lineages based on references listed in Table S1.

Fig. 3 Maximum likelihood phylogenetic trees reconstructed from the mitochondrial control
region (A), the mitochondrial cytochrome b gene (B), the concatenation of these two
mitochondrial regions (C) and the complete mitogenome (D) using PhyML v3 (Guindon et al.,
2010). Informative sites (IS) are indicated in brackets. Numbers at nodes are for bootstrap
percentages (BP=50%). Black circles indicate nodes with BP = 100%. White circles are for
node with BP < 50%. Acquisition of new molecular data was done according to Tougard et al.
(2018). Sample list and information related to phylogenetic analyses are in Table S3. AD,
Adriatic; AT, Atlantic. DA, Danubian; DU, Duero; MA, marble; ME, Mediterranean; NA, North

African.

Supplementary information

Table S1 Detailed list of references taken into account for Figures 1 and 2.

Table S2 Relationships between evolutionary lineages and morphospecies based on genetic

studies.

Table S3 Details on models of sequence evolution and sampling (accession number, locality

and reference) used for phylogenetic reconstruction with PhyML v3 (Guindon et al., 2010).

29



N o o
— -~

suoleo|ignd Jo gN

120c
0c0¢
6102
81L0¢
L10¢
910¢
gloc
v10¢
€10¢
4304
LLoc
0L0C

. Total number of publications

Years

I mtDNA [ nucDNA [ NGS




500 kms

)

\ A Adriatic (AD),7"

'\ B- Atlantic (AT),¥""

500 kms

)
d

N o
/A D. Marble (MA

500 kms

Duero (DU)

a A North African (NA)

. Tig

afa Tigris (1)
500 kms_ / *~Dades’ N




65

65 ’AM910409

JQ390057

MW632113

MW632106

MW632105

0 LY
MW632107

92

—1 MW632108

MW632110

MW632109

S. obtusirostris

MW632111
90/ MW632112

0.009

ﬁ S. salar

A. Control Region (28 IS)

98- MW632110
MW632109
93 MW632108
MW632107

99rMW632111

IMW632112
om

MW632106
A MW632105

97
io M._ouocoﬂ
921AM910409

L MW632113

S. obtusirostris

0.01

ﬁ S. salar

C. Control Region + Cytochrome b (58 IS)

D)
85

98,MW632111
MW632112
MW632110

ow_||
3 MW632109

A

96,MW632108
MW632107
54|93, MW632105
MW632106
08,AM910409
JQ390057

M)

91

——— MW632113

S. obtusirostris

0.01

B. Cytochrome b (30 IS)

ﬁ S. salar

MW632105 Dades

99 MW632106
MW632107 ME
79 MW632108
MW632109 AD
MW632110
@ MW632111 MA
MW632112
97 m
AM910409 AT
JQ390057
9
92
MW632113 DU

S. obtusirostris

0.009

ﬁ S. salar

D. Complete Mitogenome (387 1IS)
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