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Abstract 14 

On one hand, studies on Salmo biological variations during the last centuries have led 15 

to the morphological description of several Salmo species (>50). On the other hand, Salmo 16 

trutta is seen as a polymorphic species, i.e. including populations with different morphotypes 17 

and ecotypes, subdivided into nine genetically divergent evolutionary lineages. For 30 years, 18 

phylogeographic and phylogenetic investigations tried to solve the Salmo systematic problem 19 

using the mitochondrial control region, sometimes combined with other mitochondrial (e.g. 20 

protein coding region or rRNA genes) or nuclear (e.g. allozymes or microsatellites) markers. 21 

With the advent of high throughput next-generation sequencing, complete mitogenomes 22 

were made available for Salmo phylogenetic studies. Even better, complete genome or 23 

chromosomes with annotations as well as genes of interest can now be loaded from public 24 

database. However, in the genomic era, some challenges still need to be addressed such as 25 

an appropriate taxon sampling or the identification of orthologous genes before having an 26 

accurate phylogeny. In the present review, I examine how traditional molecular markers 27 

contributed to our knowledge of trout systematics, and what we can expect from the 28 

genomics revolution.  29 
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Context 34 

 Salmonidae are the focus of much scientific attention, in particular the subfamily 35 

Salmoninae, with, at least, three species (Onchorhynchus mykiss (Walbaum, 1792), Salmo 36 

salar Linnaeus, 1758, and Salmo trutta Linnaeus, 1758) among the ten most studied fishes 37 

(Hutching, 2014; Birnie-Gauvin et al., 2019). Despite this attention, some issues remain, 38 

however, unresolved, such as Salmo systematics. Problems started nearly 300 years ago 39 

when Linnaeus first classified Salmo trutta under different common and Latin names 40 

(Linnaeus, 1758). Because of complex patterns of phenotypically distinct geographic forms 41 

and considerable life-history strategies (Bernatchez et al., 1992; Elliott, 1994; Kottelat & 42 

Freyhof, 2007; Sanz, 2018), studies of Salmo biological variations during the last centuries 43 

have led to the morphological description of several Salmo species (or morphospecies; 44 

Cronquist, 1978), from around 30 (Kottelat & Freyhof, 2007; IUCN, 2022) to more than 50 45 

(Behnke, 1986; Froese & Pauly, 2021) depending on the source. Molecular data have, 46 

however, refuted the validity of some species, such as S. dentex (Heckel, 1851) (Snoj et al., 47 

2010) or S. platycephalus Behnke, 1968 (Sušnik et al., 2004), whereas they confirmed the 48 

reclassification of others in the genus Salmo, such as S. obtusirostris (Heckel, 1851) (Snoj et 49 

al., 2002) and S. ohridanus Steindachner, 1892 (Phillips et al., 2000; Sušnik et al., 2006). 50 

Indeed, most of the described (morpho)species have close phylogenetic relationships with S. 51 

trutta, and, for this reason, several taxonomic and phylogenetic studies consider S. trutta as 52 

a complex of species, except S. salar, S. obtusirostris and S. ohridanus (e.g. Patarnello et 53 

al., 1994; Lo Brutto et al., 2010; Vera et al., 2011; Meraner et al., 2013; Gratton et al., 2014; 54 

Tošić et al., 2014; Splendiani et al., 2017). On the other hand, Salmo trutta is also seen as a 55 

polymorphic species, i.e. including populations with different morphotypes and ecotypes, 56 

subdivided into several genetically divergent evolutionary lineages (Bernatchez et al., 1992; 57 

Bernatchez, 2001; Suárez et al., 2001; Sušnik et al., 2005; Bardakci et al., 2006; Vera et al., 58 

2010; Snoj et al., 2011; Tougard et al., 2018). To avoid confusion, the term “trout” is here 59 

used to refer to both the S. trutta species complex and the evolutionary lineages. 60 

 There is no phylogenetic study based on morphological characters and including all 61 

Salmo species. Attempts of molecular phylogeny were restricted to a limited number of 62 

Salmo species, while relationships between S. trutta evolutionary lineages are not fully 63 

resolved (e.g. Bernatchez, 2001; Cortey et al., 2004; Pustovrh et al., 2014; Sanz, 2018; 64 

Tougard et al., 2018; Guinand et al., 2021; Hashemzadeh Segherloo et al., 2021). In all 65 

cases, Salmo is a monophyletic genus with S. salar as the first offshoot of this group (Crespi 66 

& Fulton, 2004; Crête-Lafrenière et al., 2012; Shedko et al., 2013; Horreo, 2017; Lecaudey et 67 

al., 2018). From the molecular dating, this genus originated during the Miocene, between 16 68 

and 10 Myr (Crête-Lafrenière et al., 2012; Shedko et al., 2013; Horreo, 2017; Lecaudey et 69 
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al., 2018). In most phylogenetic studies, S. obtusirostris is the sister species of S. ohridanus, 70 

except in Pustovrh et al. (2014) where S. obtusirostris was found to be the sister species of 71 

S. trutta and S. marmoratus Cuvier, 1829. The clade including S. obtusirostris, S. ohridanus 72 

and trout is dated back to the Pliocene, around 5-4 Myr (Crête-Lafrenière et al., 2012; 73 

Pustovrh et al., 2014; Lecaudey et al., 2018), while the trout age was estimated between 4 74 

and 0.40 Myr (Crête-Lafrenière et al., 2012; Pustovrh et al., 2014; Horreo, 2017; Lecaudey et 75 

al., 2018). This is more or less concordant with the fossil record since the oldest fossil 76 

remains of Salmo, found in Croatia, dated from the Middle or Upper Miocene (13 – 5.33 Myr; 77 

Gorjanović-Kramberger, 1891; Anđelković,1989), and those of S. trutta, found in Caucasus, 78 

dated from the Pliocene (~ 2 Myr) (Vladimirov, 1946, 1948). Several hypotheses were 79 

proposed in trying to understand the trout evolutionary history during the Pleistocene, and 80 

how it was impacted by the Quaternary climatic changes (e.g. Hamilton et al., 1989; García-81 

Marín et al., 1999; Sanz et al., 2000; Bernatchez, 2001; Antunes et al., 2002; Cortey et al., 82 

2004; McKeown et al., 2010; Snoj et al., 2011; Splendiani et al., 2016). However, since 83 

phylogenetic relationships between evolutionary lineages are poorly resolved, and no 84 

phylogeny includes all Salmo species, this history can only be partial at best. 85 

 Paradoxically, S. trutta, considered as one of the world's invasive species in countries 86 

(at least 24) where it was introduced, is imperiled in much of its native distribution, i.e. in 87 

Eurasia and North Africa (Budy et al., 2013; Elliott, 2018). Among the 36 Salmo species 88 

listed in the International Union for Conservation of Nature, 18 are threatened or 89 

endangered, and one (S. pallaryi Pellegrin, 1924) considered extinct (Crivelli, 2006; IUCN 90 

2022). Trout provides recreation and food to million of people and plays important roles in 91 

ecosystem functioning, but it is extremely sensitive to habitat disturbances induced by human 92 

activities (e.g. overfishing, pollution, dams, deforestation, agriculture, grazing, and mining) 93 

and climate change (Muhlfeld et al., 2018). Native trout diversity is also threatened by the 94 

massive stocking of domesticated strains that facilitates the spread of pathogens and 95 

parasites. By hydridization of native populations with specimens from hatcheries, stocking 96 

erodes genetic diversity or eliminates original local adaptations (García-Marín et al., 1998; 97 

Lobón-Cerviá, 2018). Even if the genetic diversity of Salmo populations is relatively well 98 

understand, notably at the intra-basin level, concrete conservation strategies should take into 99 

account practices that do not erode and/or modify this natural diversity. Efforts to protect 100 

native trout morphological, ecological and genetic diversity should rely on appropriate local 101 

and/or global conservation and management strategies, and systematics is essential to 102 

biodiversity conservation by helping to set conservation priorities (Wheeler, 2001). However, 103 

what must be done in the case of a messy systematics as in the trout case? 104 

 Indeed, systematics discrepancies hamper our understanding of trout evolutionary 105 

history, and impede the development of appropriate strategies to protect natural diversity of 106 
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native trout (Bernatchez et al., 1992; Antunes et al., 2001; Fumagalli et al., 2002; Snoj et al., 107 

2010; Crête-Lafrenière et al., 2012; Gratton et al., 2013; Ninua et al., 2018; Hashemzadeh 108 

Segherloo et al., 2021). Trout systematics thus needs urgently revision/clarification. This 109 

systematics was mostly investigated from a genetic standpoint, and the use of genetics in 110 

trout systematics has a long history (Fig. 1). In the present review, I examine how traditional 111 

molecular markers, and notably mitochondrial DNA (mtDNA), contributed to our knowledge 112 

of trout systematics, and what we can expect from the genomics revolution. 113 

 114 

PAST: mitochondrial DNA rise 115 

 Until the end of the 1980s, genetic discrimination of trout relied mostly on protein 116 

electrophoretic (allozyme) analyses (e.g. Ryman & Ståhl, 1980; Ferguson & Mason, 1981; 117 

Vuorinen & Piironen, 1984; Guyomard & Krieg, 1986; Skaala & Nævdal, 1989). First 118 

investigations on trout systematics were performed with these markers, and refuted the 119 

classification of Greek trout populations into five subspecies (Karakoukis & Triantaphyllidis, 120 

1990). Despite their usefulness in the delineation of genetically distinct salmonid populations, 121 

allozymes displayed a limited ability to identify existing genetic diversity by detecting only a 122 

part of amino acid substitutions and examining only coding regions of the genome (Hynes et 123 

al., 1989). Genetic diversity was thus studied in a population genetics context (genetic 124 

similarities between populations) rather than in a phylogenetic view (relationships among or 125 

within species with inference of their evolutionary history). 126 

 By the early 1990s, two molecular markers were proposed as new diagnostic markers 127 

to genetically differentiate salmonid species and populations: the eye-specific lactate 128 

dehydrogenase Ldh-5 nuclear locus (Hamilton et al., 1989), and the mitochondrial DNA 129 

(Hynes et al., 1989). The Ldh-5 locus, now called LDH-C1* locus, is polymorphic for two co-130 

dominant alleles, Ldh-5 (100) or LDH-C1*100 and Ldh5 (90) or LDH-C1*90. The “100” or 131 

“ancestral” allele is present in several species of Salmonidae including southern European 132 

trout populations, while the “90” or “modern” allele is fixed for north-western European and 133 

hatchery trout populations (Hamilton et al., 1989). Initially proposed to differentiate 134 

“ancestral” from “modern” populations in phylogeographic studies, this marker is today 135 

mostly used to differentiate natural populations from domesticated Atlantic strains or to 136 

detect and characterize introgression patterns between these populations (Berrebi et al., 137 

2019; Rossi et al., 2019; Splendiani et al., 2019; Vera et al., 2019; Kanjuh et al., 2020). 138 

Oleinik et al. (2017) also tested this locus as phylogenetic marker in a study including 11 139 

salmonid genera. If the genus Salmo was monophyletic, this locus failed to solve 140 

phylogenetic relationships between S. obtusirostris, S. ohridanus and S. trutta. Indeed, the 141 

most used molecular marker to date in trout phylogeographic and phylogenetic studies (116 142 

out of 137; Table S1) is mtDNA (Fig. 1). Compared to nuclear DNA (nucDNA), mtDNA is a 143 
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fast evolving and easy-to-isolate genome with a small size, simple constitution, and 144 

uniparental inheritance avoiding recombination and allowing matrilineal phylogeny inferences 145 

and molecular dating (Hynes et al., 1989; Meyer, 1993). Comparison of mtDNA variations 146 

can be realised by restriction fragment length polymorphism (RFLP) analyses of 147 

mitochondrial fragments and/or by nucleotide sequences of mitochondrial partial or complete 148 

genes (e.g. Hansen & Loeschcke, 1996; Osinov & Bernatchez, 1996; Machordom et al., 149 

2000; Weiss et al., 2000; Aurelle & Berrebi, 2001; Bernatchez, 2001; Sell & Spirkovski, 2004; 150 

Bardakci et al., 2006; Splendiani et al., 2006; Apostolidis et al., 2008; Cortey et al., 2009; 151 

Griffiths et al., 2009; McKeown et al., 2010; Schenekar et al., 2014). 152 

 Craze for mitochondrial markers, and especially the control region (CR), is particularly 153 

linked to a study focused on the phylogeography of European S. trutta populations 154 

(Bernatchez et al., 1992). Based on two CR fragments (310+330 base pairs, bp), this study 155 

was the first assessment of phylogenetic relationships between widely remote European 156 

populations (151 individuals from 24 populations). Identified haplotypes were distributed in 157 

five major mitochondrial evolutionary lineages: Adriatic (AD), Atlantic (AT), Danubian (DA), 158 

marmoratus or Marble (MA) and Mediterranean (ME) (see Fig. 2 for their distribution). These 159 

genetic lineages were not congruent with ecological and morphological differentiation 160 

(Bernatchez et al., 1992). These preliminary results were later confirmed by Bernatchez 161 

(2001) in a study based on 1794 individuals from 174 populations. Bernatchez (2001) 162 

suggested that both Pleistocene glaciations and biological factors impacted the distribution of 163 

these major lineages as well as trout population structure. Since then, others evolutionary 164 

lineages, with a more restricted distribution (Fig. 2), were highlighted: the Duero lineage (DU) 165 

endemic of the north-western Iberian Peninsula (Cortey et al., 2009; Vera et al., 2010, 2015); 166 

the Tigris lineage (TI) endemic of the Çatak river in Turkey (Sušnik et al., 2005; Bardakci et 167 

al., 2006); the Dades lineage endemic of the Drâa basin in Morocco (Snoj et al., 2011); the 168 

North-African lineage (NA) found in Morocco, Algeria, Sicily and maybe in Spain (Tougard et 169 

al., 2018; Splendiani et al., 2019). Mitochondrial DNA was also a valuable marker to estimate 170 

past trout genetic diversity from museum samples (Giuffra et al., 1994; Lahnsteiner & 171 

Jagsch, 2005; Splendiani et al., 2017) or even archeological remains (Splendiani et al., 172 

2016), notably because nucleic acids degrade over time, and mtDNA is available in much 173 

higher copy numbers per cell compared with single-copy nucDNA (Höss, 2000; Wandeler et 174 

al., 2003). 175 

The mitochondrial control region is thus considered as a reference to identify trout 176 

lineages or species (Table S2). However, this highly variable marker does not allow, alone, 177 

to get resolved trout phylogenetic relationships. Other mitochondrial markers, such as protein 178 

coding (cytochrome b, or cytochrome c oxidase, ATPase and NADH dehydrogenase 179 

subunits) and/or rRNA (12S and 16S) genes, have been proposed as alternatives (e.g. 180 
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Giuffra et al., 1994; Patarnello et al., 1994; Machordom et al., 2000; Dudu et al., 2010; Lo 181 

Brutto et al., 2010; Dudu et al., 2011; Crête-Lafrenière et al., 2012; Shedko et al., 2013; 182 

Rezaei, 2015; Turan et al., 2020). Some phylogenetic studies have involved also nucDNA 183 

such as allozymes (e.g. Bernatchez & Osinov, 1995; Riffel et al., 1995; Apostolidis et al., 184 

1996; Antunes et al., 1999; Bouza et al., 2001; Cagigas et al., 2002), microsatellites (e.g. 185 

Sušnik et al., 2007; Snoj et al., 2011; Kohout et al., 2013; Gratton et al., 2014; Marić et al., 186 

2017) or nuclear genes (e.g. transferin in Antunes et al., 2002; internal transcribed spacer 1 187 

or ITS1 in Presa et al., 2002; Turan et al., 2009; Vera et al., 2011; C intron of growth 188 

hormone 2 or GH2C in Razpet et al., 2007; somatolactin in Snoj et al., 2010; recombination 189 

activating gene 1 or RAG1 in Shedko et al., 2012). For both mitochondrial and nuclear 190 

alternatives, few studies were, however, fully freed from the CR reference. Even the genomic 191 

study of Hashemzadeh Segherloo et al. (2021) based on 15,169 single nucleotide 192 

polymorphisms markers (SNPs) includes CR sequences. Recently, Pustovrh et al. (2011a, 193 

2014) and Snoj et al. (2021) performed phylogenetic analyses based exclusively on nuclear 194 

loci. These studies contradicted mtDNA observations. Among the 7000 to 8000 bp of the 195 

final alignments, few variations are, however, informative sites (70, 196 and 286, 196 

respectively), and this low number of information could provide insufficient phylogenetic 197 

signal, and thus false phylogenetic inference (Philippe & Douzery, 1994; Wiens, 2003; 198 

Phillipe et al., 2004) as suggested, for instance, by the lack of resolution at several nodes of 199 

the trees and the trichotomy linking S. obtusirostris, S. marmoratus and S. trutta in Pustovrh 200 

et al. (2011a, 2014). 201 

Over the years, molecular diagnostic protocols were designed to allow rapid trout 202 

identification, either from SNPs (CR SNPs in Apostolodis et al., 2007; nucDNA SNPs in 203 

Pustovrh et al., 2011b; Casanova et al., 2022) or pyrosequencing assay (Keller et al., 2010). 204 

Both approaches did not receive, however, the expected success. As illustrated by the 205 

numerous references cited above, genetic trout identification is mostly done through mtDNA 206 

or nucDNA sequences, and the combination or concatenation of these markers provided 207 

better inferences on trout systematics as in the following examples: inclusion of 208 

Acantholingua ohridana (cytochrome b, ITS1 and GH2C sequences; Phillips et al., 2000) and 209 

Salmothymus obtusirostris (CR, cytochrome b and LDH-C1* sequences; Snoj et al., 2002) in 210 

the genus Salmo (S. ohridanus and S. obtusirostris, respectively); reclassification of Salmo 211 

(Platysalmo) platycephalus in a lower taxonomic category (CR, cytochrome b and ITS1 212 

sequences; Sušnik et al., 2004). 213 

With the advent of high throughput next-generation sequencing (NGS), complete 214 

mitochondrial genomes (or mitogenomes) were made available for Salmo phylogenetic 215 

studies (Horreo, 2017). Compared to S. salar (Hurst et al., 1999), it is very recently that first 216 

S. trutta mitogenomes were published. One (KT634053) was obtained in a more classical 217 
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way with amplification by PCR and Sanger sequencing of overlapping mtDNA fragments (Li 218 

et al., 2016), while the other (KT633607) was obtained through shotgun libraries subjected to 219 

Illumina Miseq sequencing (Sahoo et al., 2016). Since then, mitogenomes were produced for 220 

several trouts (S. macrostigma (Duméril, 1858), S. ischchan Kessler, 1877, S. trutta fario 221 

Linnaeus, 1858 and S. trutta caspius Kessler, 1877) from modern (Rezaei & Akhshabi, 2017; 222 

Rezaei et al., 2017) or museum (Levin et al., 2018, 2022; Nedoluzhko et al., 2018a, 2018b; 223 

Tougard et al., 2018) samples. More than any other technology, NGS has also made 224 

thousand of loci and SNPs available through the whole trout genome. For instance, 225 

Restriction-site Associated DNA sequencing markers (RADseq) or double digest RADseq 226 

(ddRADseq) were recently used to screen for genetic variations in Atlantic and 227 

Mediterranean populations (Leitwein et al., 2016, 2018; Saint-Pé et al., 2019), while RADseq 228 

and Genotyping-by-Sequencing methods were recently used to investigate phylogenetic 229 

relationships among Salmoninae and some Salmo species, respectively (Lecaudey et al., 230 

2018; Hashemzadeh Segherloo et al., 2021). 231 

 232 

PRESENT: new hope through next-generation sequencing 233 

 Despite 30 years of trout phylogeographic and phylogenetic investigations, no 234 

consensus was found between morphological and genetic approaches about trout 235 

systematics. In fact, no molecular phylogeny has yet included specimens from all trout 236 

(morpho)species and/or covering the whole geographic distribution of S. trutta evolutionary 237 

lineages. Some studies underlined, however, relationships between one of the nine trout 238 

lineages from CR - sometimes combined with other mtDNA or nucDNA markers - with some 239 

trout (morpho)species (e.g. Lo Brutto et al., 2010; Kalayci et al., 2018; Tougard et al., 2018; 240 

Hashemzadeh Segherloo et al., 2021; Table S2). Moreover, it should be noted that higher 241 

morphological diversity is associated to southern lineages compared to the AT lineage, but 242 

this diversity is not congruent with genetic diversity known for each evolutionary lineage. The 243 

AT and DA lineages have an extended distribution (Fig. 2) associated to a higher haplotype 244 

diversity (Sanz, 2018) compared to the AD, Dades, DU, MA, ME, TI and NA lineages. This 245 

unequally distributed diversity could be one of the reasons why phylogenetic relationships 246 

between lineages remain poorly solved. However, it seems more likely that currently used 247 

mtDNA (control region or cytochrome b) and/or nucDNA markers are not sufficiently 248 

informative. Informative sites in these markers represent a weak proportion of the genetic 249 

variation, compared, for instance, to the whole mitochondrial genome (Fig. 3). 250 

 As already mentioned, NGS technologies are promising to study trout phylogeny. 251 

Through these technologies, the whole annotated genome of Salmo trutta was recently made 252 

available from the National Center for Biotechnology Information 253 

(https://www.ncbi.nlm.nih.gov/genome/31807). Complete genome or chromosomes with 254 
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annotations as well as genes of interest can now be loaded, and used to identify more 255 

appropriate markers (e.g. Sass et al., 2016; Hughes et al., 2018; Cloutier et al., 2019; 256 

Hansen et al., 2021) to get an accurate trout phylogeny, and to understand morphological 257 

character evolution such as colour pattern, a key character in trout description and 258 

identification. 259 

 260 

FUTURE: challenges to face 261 

 Without clear phylogenetic consensus, it is unrealistic to draw conclusions on the 262 

trout evolutionary history. It seems that genomics methods can provide qualitatively and 263 

quantitatively new types of information that cannot be achieved using traditional methods, 264 

and our ability to reconstruct evolutionary histories from (phylo)genomic analyses will thus 265 

help us to define conservation units. However, if technical processes of NGS technologies 266 

are increasingly better mastered, practical and analytical issues remain challenging such as 267 

taxon sampling, identification of orthologous genes, bioinformatics, and data storage. 268 

 Sampling choice is a crucial step in phylogenetic studies. First, stocking programs 269 

may conceal Salmo natural genetic patterns. In Morocco, for instance, Salmo populations 270 

with higher levels of genetic diversity were those affected by stocking programs (Perea et al., 271 

2020). Then, it may lead to contradictory evolutionary assumptions as in the studies of 272 

Doadrio et al. (2015) and Tougard et al. (2018) focused on Moroccan populations. In Doadrio 273 

et al. (2015), specimens only from Moroccan populations were taken into account, and no 274 

type specimen was included in the molecular dataset, while Tougard et al. (2018) included in 275 

their molecular dataset sequences from Doadrio et al. (2015) and specimens belonging to 276 

the nine evolutionary lineages, valid species (S. orhidanus and S. obtusirostris), as well as 277 

one syntype of S. macrostigma. Conclusions of both studies were not congruent: Doadrio et 278 

al. (2015) considered populations of the Lake Isli and the Drâa basin as distinct species (S. 279 

viridis Doadrio et al., 2015 and S. multipunctata Doadrio et al., 2015, respectively); Tougard 280 

et al. (2018) identified a new evolutionary lineage (NA) including specimens from Algeria 281 

(notably S. macrostigma syntype), Sicily and all Moroccan populations, except the Drâa 282 

basin population that was already considered a different lineage (Dades) by Snoj et al. 283 

(2011). Therefore, in phylogenetic studies, especially those discussing specific status, and 284 

for more relevant comparisons, it would be recommended to include, in the molecular 285 

dataset, sequences of specimens from the evolutionary lineages, some genetically valid 286 

species such as S. obtusirostris and S. ohridanus and/or type specimens (e.g. holotype, 287 

syntype, lectotype) to check the taxa validity, and thus to strengthen phylogenetic and/or 288 

systematic inferences. 289 

 A diversity of NGS technologies exists to produce data suitable for phylogenomic 290 

studies (e.g. Díaz-Arce et al., 2016; Dong et al., 2016; Hughes et al., 2018; Parhi et al., 291 
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2019). One main question then arises: will it be possible to easily identify orthologous genes 292 

since the common ancestor of all Salmonidae experienced a whole genome duplication no 293 

later than 88 Myr, resulting in an autotetraploid genome (Moghadam et al., 2011; Alexandrou 294 

et al., 2013; Macqueen & Johnston, 2014)? Two recently released databases, PhyloFish 295 

database (http://phylofish.sigenae.org/index.html; Pasquier et al., 2016) and SalmoBase 296 

(https://salmobase.org/; Samy et al., 2017) constitute promising genomic tools for this 297 

challenging key task. The PhyloFish database is a resource offering the possibilty to analyze 298 

gene expression after gene duplication for 23 ray-finned fish species, including six salmonids 299 

(Thymallus thymallus (Linnaeus, 1758), Coregonus lavaretus (Linnaeus, 1758), C. 300 

clupeaformis (Mitchill, 1818), S. trutta, Oncorhynchus mykiss, Salvelinus fontinalis (Mitchill, 301 

1814)) (Pasquier et al., 2016), while SalmoBase is an online database to access, visualize 302 

and download genomic data of salmonids (S. salar, S. trutta, O. mykiss, O. kisutch 303 

(Walbaum, 1792), Salvelinus alpinus (Linnaeus, 1758)) (Samy et al., 2017). Guidelines for de 304 

novo or graph-based inference methods for orthologous gene identification were also 305 

proposed, and several pipelines are available for automating this procedure (see Kapli et al., 306 

2020). 307 

 Phylogenomic reconstruction methods are of two kinds: methods based on whole-308 

genome features (such as SNPs), and methods based on primary sequences (such as 309 

mitogenomes). First methods are, however, sensitive to hidden paralogy, horizontal gene 310 

transfert or tree reconstruction artifacts (Delsuc et al., 2005; Philippe et al., 2005). For these 311 

reasons, the second methods, having already a substantial methodological background, are 312 

thus currently preferred and recommended (Delsuc et al., 2005; Philippe et al., 2005; Kapli et 313 

al., 2020). These latter phylogenomic methods have, however, also their own sets of 314 

problems related to phylogenomic dataset construction and inference. Although NGS 315 

technologies have greatly improved sequence quality, they also led to the amplification of 316 

data errors that are manually intractable because of the amount of data generated (Philippe 317 

et al., 2017). Despite the development of numerous custom scripts, no consensus has yet 318 

been found regarding the quality controls that should be included in phylogenomic dataset 319 

construction (Philippe et al., 2017). A special care should be then brought to the data 320 

assembly to avoid frameshift errors (sequencing or annotation errors) for protein-coding 321 

genes, and/or contaminant sequences (commensals/symbionts, parasites, gut contents in 322 

animals, environmental sources or experimental errors) (Philippe et al., 2017; Kapli et al., 323 

2020). Contaminants can be identified and excluded based on the GC content of sequences, 324 

read coverage and taxonomy of sequence similarity matches (Kapli et al., 2020). Data 325 

alignment is also a challenging task since alignment errors would hamper phylogenetic 326 

inferences. It is thus crucial to identify the homologous nucleotides or amino-acid residues at 327 

every position of the sequences (Philippe et al., 2017; Kapli et al., 2020). Alignment methods 328 
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can be classified into several categories, and for each category, a panel of softwares is 329 

available (for a review, see Philippe et al., 2017; Kapli et al., 2020). Lastly, the choice of 330 

phylogenetic reconstruction methods constitutes one of the most essential criteria to avoid 331 

phylogenomic result inconsistency. Character-based methods, and in particular the 332 

probabilistic maximum likelihood and Bayesian methods, are based on an explicitly 333 

evolutionary model of sequences (Delsuc et al., 2005; Kapli et al., 2020). The use of the 334 

most complex models will thus reduce the probability of inconsistency, except when 335 

sequences evolve heterogeneously and are not identically distributed (Kolaczkowski & 336 

Thornton, 2004; Delsuc et al., 2005). Research on more realistic models of sequence 337 

evolution is a work-in-process (Delsuc et al., 2005; Philippe et al., 2017). Detailed guidelines 338 

and a phylogenomic pipeline recently proposed by Kapli et al. (2020) could easily be applied 339 

to trout phylogenomic studies. 340 

 Last but not least, the raw data generated, considered part of the “Big Data science”, 341 

and all steps from data assembly to phylogenetic inference need huge storage requirements 342 

(Giribet, 2015). Although some public databases allow to store raw data, assemblies or data 343 

matrices, satisfactory repositories are still lacking (Giribet, 2015). Moreover, these amounts 344 

of generated genomic data and the complexity in evolutionary models come at a high 345 

computational cost (Giribet, 2015). For instance, most heuristic searches with probabilistic 346 

methods will be nearly impossible with more than 200 species (Philippe et al., 2005). Faster 347 

and more efficient algorithms are thus required to overcome the current and upcoming size 348 

of phylogenomic datasets (Giribet, 2015).  349 

 Nevertheless, genomics, thanks to a much larger number of loci available, has 350 

increased our ability to evaluate the degree of genetic isolation of populations and to detect 351 

introgression in many species. For this reason, genomic data can play an important role in 352 

species delimitation under many species concepts (Rannala & Yang, 2020). In order to 353 

propose clear and objective definition of species, powerful methods, such as coalescent-354 

based species delimitation (Fujita et al., 2012), were developed. Because species can show 355 

low genetic divergence but high divergence in other traits, the whole process of lineage 356 

diversification cannot be explained by these methods alone (Fujita et al., 2012, Cicero et al., 357 

2021). Some authors advocate that studies aimed at delimiting species are best framed in a 358 

more integrative context, by taking into account, notably, morphological and ecological 359 

characters as well as life-history traits of taxa across their distribution and habitats (Fujita et 360 

al., 2012; Cicero et al., 2021). Indeed, when the taxa in question are of conservation 361 

concern, it is important to use multiple lines of evidence into taxonomic decision, even if this 362 

evidence can now, in theory, be provided by genomic data (for some examples, see Stanton 363 

et al., 2019). Trout systematics will thus benefit from a more integrative view of the 364 

taxonomy. 365 
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 366 

Implications and prospective directions 367 

 In conservation biology, taxa identification (taxonomy) and the understanding of their 368 

evolutionary relationships (systematics) is fundamental to design efficient biodiversity 369 

conservation priorities and management strategies (Allendorf, 2012). In taxonomy and 370 

systematics, the central and fundamental unit is the species. Therefore, conservation 371 

strategies have long been focused on species. In order to protect trout biodiversity, some 372 

authors suggested thus to maintain species names for some trout populations despite 373 

discrepancies between morphology and genetics. For instance, S. letnica (Karaman, 1924) 374 

populations of the Lake Ohrid in the Balkans represent a monophyletic group inside the AD 375 

lineage, whereas differences in morphology, intralacustrine distribution, ecology and the 376 

season of spawning were observed between populations (Sell & Spirkovski, 2004; Sušnik et 377 

al., 2007). In order to preserve the Lake Ohrid biodiversity, Sušnik et al. (2007) 378 

recommended, however, to keep the taxonomic epithet S. letnica for the endemic Ohrid trout. 379 

At a larger geographic scale, S. marmoratus, characterized by a marbled-colour pattern, is 380 

supposed to inhabit northern and southern parts of the Adriatic Sea drainage, and it is often 381 

associated to the mitochondrial MA lineage (Sanz, 2018). However, the marble-colour 382 

pattern was also found in some trouts from Norway (Skaala & Solberg, 1997), while MA 383 

haplotypes were identified in Central Italy as well as in French, Turkish or Greek populations 384 

(Fig. 2). These cases are just some examples among some others underlying the urgent 385 

need to revise the trout systematics in an integrative view. In this purpose, it will be crucial to 386 

consider all types of diversity (morphology, ecology, genetics, life-history traits, and so on), 387 

but also to choose appropriate morphological and genetic/genomic proxies, and taxon 388 

sampling (including type specimens) to describe a part of these diversities.  389 

 On the one hand, because species is a fundamental unit in conservation and, on the 390 

other hand, because less attention has been focused on the definition and delimitation of 391 

conservation units from intraspecific diversity, numerous known subspecies are elevated to 392 

the species rank for conservation purposes (Isaac et al., 2004; Berrebi et al., 2013; Zachos 393 

et al., 2013). Subspecies seem, however, also relevant in biodiversity conservation, with 394 

many taxa listed under the International Union for the Conservation of Nature Red List 395 

criteria (Gippoliti & Amori, 2007; Braby et al., 2012; IUCN, 2022), and recognized as a 396 

taxonomic unit by the International Code of Nomenclature (Article 5.2; 397 

https://www.iczn.org/the-code/the-code-online/; Braby et al., 2012). The utility of subspecies 398 

in taxonomy and conservation biology has been debated for decades, notably, because 399 

subspecies are not defined conceptually with objective criteria allowing their delimitation 400 

(Braby et al., 2012). Moreover, discrepancies exist, at the subspecies level, between 401 

molecular and phenotypic characters (Phillimore & Owens, 2006; Cicero et al., 2021). Other 402 
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intraspecific conservation units – e.g., the evolutionary significant units (ESU; Ryder, 1986; 403 

Waples, 1991; Dizon et al., 1992; Moritz, 1994; Crandall et al., 2000), the operational 404 

conservation units (OCU; Doadrio et al., 1996) or the management units (MU; Taylor & 405 

Dizon, 1999) - have been proposed. Several definitions exist to define an ESU, but the most 406 

popular one is that proposed by Moritz (1994): an ESU can be defined as populations that 407 

are monophyletic for mtDNA and showing significant divergence in nucDNA allele 408 

frequencies. An OCU is rather a continuous area limited by geographic boundaries, and 409 

inhabited by one or more populations sharing the same genetic pattern (Doadrio et al., 410 

1996), while a MU is for populations of conspecific individuals among which the degree of 411 

connectivity is sufficiently low so that each population should be monitored and managed 412 

separately (Palsbøll et al., 2006). Some of these units were, in fact, already suggested to 413 

manage and conserve natural diversity of Iberian trout populations (Machordom et al., 2000; 414 

Almodóvar et al., 2006). Even if the definition of most of these conservation units relies on 415 

genetic/genomic data, other types of information (e.g. life history traits, habitat type, 416 

phenotype, gene flow pattern, genomic clusters) are proposed to define conservation units 417 

(Allendorf, 2012; Hashemzadeh Segherloo et al., 2021). In the near future, genomic 418 

approaches could be really appropriate to estimate the level of vulnerability of Salmo native 419 

populations as well as the extant of threats acting on them. 420 

 I cannot agree more with Kottelat & Freyhof (2007) when they say that, despite the 421 

innumerable studies on trout, this interest has resulted in very little data usable in the 422 

taxonomic framework, unfortunately still today. To cite Kottelat & Freyhof (2007), it is thus 423 

more than time that the “hordes” of geneticists and taxonomists studying trout start working 424 

together to better preserve natural diversity of trout in its native distribution. This will be 425 

probably allowed in a near future thanks to the combination of NGS technologies, a more 426 

integrative approach of the trout systematics and the appropriate definition of conservation 427 

units. 428 

 429 

 430 

 431 

432 
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Figure legend 950 

 951 

Fig. 1 Number of publications dealing with trout systematics found in public reference 952 

databases (Web of Sciences, Google Scholar, PubMed) in December 2021 using the words 953 

“Salmo” and “phylogeny”, “systematics” or “diversity”. A reference was considered when, at 954 

least, two Salmo species or S. trutta evolutionary lineages were included in the studied 955 

dataset, and phylogenetic relationships were represented by a tree or a network. The list of 956 

references considered is in Table S1. MtDNA, mitochondrial DNA; nucDNA, nuclear DNA; 957 

NGS, next-generation sequencing technologies. 958 

 959 

Fig. 2 Approximate native distribution of the nine Salmo trutta mitochondrial DNA 960 

evolutionary lineages based on references listed in Table S1. 961 

 962 

Fig. 3 Maximum likelihood phylogenetic trees reconstructed from the mitochondrial control 963 

region (A), the mitochondrial cytochrome b gene (B), the concatenation of these two 964 

mitochondrial regions (C) and the complete mitogenome (D) using PhyML v3 (Guindon et al., 965 

2010). Informative sites (IS) are indicated in brackets. Numbers at nodes are for bootstrap 966 

percentages (BP≥50%). Black circles indicate nodes with BP = 100%. White circles are for 967 

node with BP < 50%. Acquisition of new molecular data was done according to Tougard et al. 968 

(2018). Sample list and information related to phylogenetic analyses are in Table S3. AD, 969 

Adriatic; AT, Atlantic. DA, Danubian; DU, Duero; MA, marble; ME, Mediterranean; NA, North 970 

African. 971 
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Table S3 Details on models of sequence evolution and sampling (accession number, locality 979 

and reference) used for phylogenetic reconstruction with PhyML v3 (Guindon et al., 2010). 980 
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