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Viral nervous necrosis (VNN) is an infectious disease caused by the red-spotted grouper
nervous necrosis virus (RGNNV) in European sea bass and is considered a serious
concern for the aquaculture industry with fry and juveniles being highly susceptible. To
understand the genetic basis for resistance against VNN, a survival phenotype through the
challenge test against the RGNNV was recorded in populations from multiple year classes
(YC2016 and YC2017). A total of 4,851 individuals from 181 families were tested, and a
subset (n~1,535) belonging to 122 families was genotyped using a ~57K Affymetrix Axiom
array. The survival against the RGNNV showed low to moderate heritability with observed
scale estimates of 0.18 and 0.25 obtained using pedigree vs. genomic information,
respectively. The genome-wide association analysis showed a strong signal of
quantitative trait loci (QTL) at LG12 which explained ~33% of the genetic variance. The
QTL region contained multiple genes (ITPK1, PLK4, HSPA4L, REEP1, CHMP2,MRPL35,
and SCUBE) with HSPA4L and/or REEP1 genes being highly relevant with a likely effect on
host response in managing disease-associated symptoms. The results on the accuracy of
predicting breeding values presented 20–43% advantage in accuracy using genomic over
pedigree-based information which varied across model types and applied validation
schemes.
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INTRODUCTION

The aquaculture industry is expected to fulfill an increased
demand of fish for human consumption as fisheries realize
their resources reach their limits. The need to increase
production and fulfill current and future demands comes
together with challenges in long-term sustainability and
production value, such as diseases outbreaks, feed supplies,
water pollution, and global warming.

Diseases are a major challenge affecting fish welfare and
financial losses for the aquaculture industry, particularly those
from viral nature due to high mortalities and reduced growth on
affected fish. Viral nervous necrosis (VNN)—also known as
viral encephalopathy and retinopathy (VER)—is one of the
main infectious diseases affecting marine aquaculture. The
disease is caused by the red-spotted grouper nervous necrosis
virus (RGNNV) which belongs to the genus Betanodavirus of
the family Nodaviridae (OIE, 2019). VNN has been found in up
to 120 species from marine and freshwater environments
including European sea bass (Dicentrarchus labrax), the most
cultured species in the Mediterranean whose annual production
reached 168,642.57 tonnes in 2018 valued on $1,03 billion USD,
FAO. Recently, a reassortant betanodavirus (RGNNV/SJNNV)
has also been reported in gilthead sea bream (Sparus aurata)
with a postulated asymptomatic contagious host for
transmission of disease to European sea bass (Toffan et al.,
2017).

Viral nervous necrosis can be transmitted horizontally and
vertically (Hazreen-Nita et al., 2019). The acute phase of the
disease has been associated to the elevated sea temperature
where nervous signs appear, while the sub-acute form is
described as necrosis on the upper jaw and head regions and
has been linked to lower temperatures (Le Breton et al., 1997).
VNN is cataloged as the most important problem in the
Mediterranean mariculture (Vendramin et al., 2016), leading
a number of attempts to produce a vaccine (e.g., Stein et al.,
2013; Valero et al., 2016; Gonzalez-Silvera et al., 2019).
However, despite the approval of a commercial vaccine to
protect sea bass against the most common VNN genotype in
the Mediterranean, its use on mass scale is still limited due to its
cost as single vaccine and technical and logistic problems
presented when combined with other vaccines against
vibriosis and pasteurellosis. In addition, the global warming
trend and the temperature dependent nature of VNN remain a
threat for the sustainable production of this species (Costa and
Thompson, 2016).

Selective breeding is an effective tool to continuously
improve traits such as disease resistance (Gjedrem and Rye,
2018), usually by evaluating the trait on sibs of breeding
candidates. Reduction in the genotyping cost and turnaround
time for a large number of markers per sample has opened the
door to move and implement individual selection in sib-
evaluated traits such as disease resistance; this is performed
either by using markers linked to a major gene influencing the
trait or by implementing genomic selection (GS), leading to
higher genetic gains compared to more traditional methods
(Dekkers, 2007). Such programs have become a routine to

improve economically important traits such as survival
against pathogens in species such as Atlantic salmon,
rainbow trout, and Nile tilapia.

Major factors influencing the success of a breeding program
are high quality, robust and reproducible phenotypic data, and
the maintenance of a reliable pedigree; furthermore, when
introducing advanced genomic methods, this extends to the
use of genome-wide distributed, reliable, reproducible
molecular genetic markers (e.g., single nucleotide
polymorphisms, SNPs). The GS provides the opportunity to
rank individuals within and across families with higher accuracy
(Meuwissen et al., 2001). The availability of resources including
reference genomes, linkage maps, genotyping arrays, etc.,
convenes the applicability of the GS along with genome-wide
association studies. Not long ago, the reference genome of
European sea bass became available (Tine et al., 2014), and
very recently, the SNP genotyping Axiom arrays were also
developed, which are a part of the public domain now (Griot
et al., 2021; Peñaloza et al., 2021). There are several studies on
different aquaculture species where quantitative trait loci (QTL)
were detected for traits of economic and welfare importance
using medium- to high-density SNP arrays. The major QTLs
detected in Atlantic salmon for different traits include resistance
against the infectious pancreatic necrosis virus (Houston et al.,
2008; Moen et al., 2009), resistance against the piscine
myocarditis virus (Boison et al., 2019; Hillestad and
Moghadam, 2019), age at sexual maturity (Barson et al.,
2015), and fillet color (Baranski et al., 2010). QTLs have also
been detected in European sea bass with moderate to low
impact. The main targeted traits in sea bass for QTL
detections included body weight, resistance against VNN
disease, and stress resistance (Chatziplis et al., 2007;
Palaiokostas et al., 2018; Chatziplis et al., 2020; Griot et al.,
2021). The detected QTLs with major effects can assist in
implementation of cost-effective marker-assisted selection
(MAS). However, among other factors, the nature of trait(s)
in a breeding program affected by a few vs. many genes along
with the strategy of selection/culling within the course of the
growth cycle plays a major role for the adoption/application of
advanced selection methods (MAS vs. GS). The GS has shown
the advantage over the classical pedigree method by enabling the
prediction of breeding values for the candidates with higher
accuracy (Tsai et al., 2016; Correa et al., 2017; Vallejo et al., 2017;
Aslam M. L. et al., 2020; Aslam M. L. et al., 2020). The
application of the GS becomes highly important and efficient
for lowly heritable and difficult traits which are usually not
recorded on live candidates (e.g., carcass quality and disease
resistance traits which are currently recorded on sibs of live
selection candidates) and also allows selecting the best
individuals for such traits instead of best families with
traditional methods.

In this study, we investigated the genetic variation for resistance
to the RGNNV from a challenge test in a commercial European sea
bass breeding program performed during two consecutive years. In
addition, fish from the same challenge tests were genotyped to detect
QTL for survival against the RGNNV and assess the potential of the
GS to improve resistance against VNN.
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MATERIALS AND METHODS

Experimental Population
The presented results are based on challenge testing of two
different year classes in the Nireus SA’s breeding nucleus of
European sea bass (Thorland et al., 2017; Nirea et al., 2021). The
commercial family-based breeding program operates with
overlapping generations, and the presented experimental
population is part of year classes 2016 (YC2016) and 2017
(YC2017). These year classes have a selection history of
between three and four full cycles of selection from families in
base population (year-classes 2004 and 2005) and are in the
program defined in generations between F3 and F4. Families in
the breeding program are produced by artificial stripping of
mature females and males and subsequent controlled crossings
in the family design including both maternal and paternal half-
sibs.

Parents to both year classes included in this study were
photoperiod-manipulated to mature out of the natural
spawning season. YC2016, consisting of 89 full-sibs families
produced from 65 sires and 30 dams, generated between
September 3 and October 10, 2016; YC2017 consisted of
92 full-sib families derived from 85 sires and 35 dams produced
by artificial stripping in the period September 17 to October 13,
2017. In themating design, each female parent was mated with one
to four males with an average of 2.8 for YC2016 and 2.6 for
YC2017. Eachmale parent was mated with one to four females (on
average 1.4 females per male) in YC2016, whereas in YC2017 each
male parent was mated to one to two with an average of 1.1 females
per male. The average age of the male broodstock was 3.9 years
post-hatching for YC2016 and 3.6 years for YC2017, while for the
female broodstock, the average age was 3.5 and 4.0 years for
YC2016 and YC2017, respectively. The use of broodstock of
different years of age and the structure with overlapping
generations builds a strong genetic tie between year classes in
the breeding nucleus which allows for combined analysis of data
from both year classes in this experimental population.

Families were reared in separate circular tanks of 315-L capacity
at the Enalios-Breeding Programme hatchery of Nireus, S.A.,
located in Central Evia. Approximately 30 individuals per
family were individually PIT-tagged using 8-mm Biomark tags.
The PIT tagging for YC2016 was performed at an average body
weight of 10.9 g (sd = 2.5 g) between March 21 and April 12, 2017,
whereas the PIT tagging for YC2017 was performed from March
20 to March 23, 2018, at an average weight of 8.9 g (sd = 1.7 g). All
PIT-tagged individuals within each year class for the specific
challenge test were stocked in a single tank after transportation
to the challenge test facilities at the laboratory of Ichthyology,
Aquaculture and Diseases of Aquatic Organisms (ICHTHYAI),
Department of Marine Sciences, at the University of Aegean in
Lesvos, Greece. The date of transportation of individuals to the
challenge test facility was April 24 in 2017 (YC2016) and June 13
and 15 in 2018 (YC2017).

Challenge Tests for Viral Nervous Necrosis
Both year classes (YC2016 and YC2017) were challenged according
to similar protocols using a European sea bass RGNNV isolate

from a commercial fish farm outbreak in 2012, and the virus
challenge was performed with intramuscular (IM) injection. In
YC2016, sea bass individuals with an average weight of 14.4 g were
injected with a challenge dose of 106 TCID50/ml, defined from in-
house pre-trials. The fish were injected on May 13, 2017 and
distributed randomly to three experimental tanks of 2 m3, and
mortalities were recorded every 4 h for a period of 28 days after
infection (with no exceptions including recordings during nights
and weekends), until mortality had stopped. The second challenge
test was conducted on YC2017 (June 24, 2018) with similar
conditions and environment as on YC2016, but the infection
dose was 5 × 106 TCID50/ml. YC2017 had an initial average
body weight of 25.3 g in the test. All fish were fin-clipped
before the challenge test, and tissues were preserved in 95%
ethanol and stored at −4°C.

Genotyping
In order to reduce genotyping costs, challenge-tested individuals
(n = 4,851) were subsided from both year classes (YC2016 and
YC2017). Hence, out of total 4,851 individuals, a subsample of
1,535 individuals were selected for genotyping comprising 767
individuals belonging to 30 families of YC2016 and 768
individuals from 92 families of YC2017. Since the accuracy of
selection using genomic information would be highly dependent
on the relationship of training (the training group is referred to
the individuals with phenotype information available from the
same generation, normally the full sibs of candidates) and tested
(referred to individuals without phenotypic records i.e., the
candidate group) population, pedigree relationships were
considered to select individuals from families with genetic
links to contemporary families. Tissue samples from selected
fish were used for the DNA extraction and genotyping using the
SNPs-based ~57K Affymetrix Axiom array (DlabCHIP, Griot
et al., 2021), and the position of markers was determined based
on the genome build 1.0 of European sea bass (seabass_V1.0,
Tine et al., 2014). Genotyping was performed at the Gentyane
facility, Clermont-Ferrand, France.

The raw genotype data were quality-filtered by PLINK
software (Purcell et al., 2007). SNP markers with the minor
allele frequency (MAF) lower than 5%, missing rate higher
than 10%, and those not passing the Hardy–Weinberg
equilibrium exact test (p < 1.0 × 10−6) were excluded from the
data. Filtering was also performed at the individual level with
individuals removed based on the missing genotype rate (>10%)
and poor heterozygosity (higher than ±3sd of population). The
filtering step retained a total of 1,489 individuals (754 and 735 for
YC2016 and YC2017, respectively) from 120 full-sib families of
which 28 families represented YC2016 (15–30 sibs per family),
and 92 families from YC2017 (4–14 sibs per family) genotyped
with approximately 52K SNPs.

Statistical Analyses
Data description and statistics: The statistics for the recorded
traits and the initial evaluation of models were obtained using
the generalized linear model in statistical software “R”. With the
full dataset (n = 4,851) year classes and the family effects were
tested; year classes did not show significant effects (p = 0.106),
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while the family effect was highly significant with p < 0.001.
Though the effect of year classes was not significant, it was still
used in the model to avoid year class-specific deviations in
estimates. The analysis and/or results presented below are
mainly focused on using the combined dataset from both
year classes (YC2016 and YC2017) unless otherwise specified.

Quantitative genetic parameter estimation: Estimation of
genetic parameters was conducted for the binary survival trait
recorded at the end of test(s) (1 = survival; 0 = dead). The
analysis was conducted including either all data (nind = 4,851) or
the genotyped subset of the data (nind = 1,489) summarized in
Table 1. Two models (Model-1 and Model-2) were applied to
estimate the variance component by ASReml software (Gilmour
et al., 2015).Model-1 was the linear mixed animal model which
can be written as follows:

y � Xb + Ta + Zc + e, (1)
where y is the observed survival status in the challenge test; b is a
vector containing the overall mean and fixed effect of year class; a
is a vector of additive genetic effects with a distribution
~ N(0, [A/G]σ2

a), where A is the numerator relationship
matrix calculated from the pedigree (for pedigree-based
estimates); G is a genomic relationship matrix (for genomic
estimates) computed using VanRaden (Vanraden, 2008); c is a
vector of random effects common to full sibs caused by other
factors than additive genetics (i.e., including environmental tank
effects caused by the separate rearing of full-sib families until
individual tagging, non-additive genetic effects, and maternal
effects) with distribution ~ N(0, Iσ2

c ); and e is the vector of
random environmental effects with distribution ~ N(0, Iσ2

e).
X, T, and Z are the assigned design matrices to the respective
vectors b, a, and c.

Model-2 was a sire-dam model where the binary data (1 =
survival; 0 = dead) were fitted to a threshold model using the
“probit” link function. In matrix notation, the model can be
written as follows:

y � Xb + (Ts + Td)u + Zc + e, (2)
where y, Xb, Zc, and e components of the model are the same, as
explained earlier; u is a vector of half the sire-dam additive genetic
effects with a distribution ~ N(0,Aσ2

a), where sire and dam were
constrained to have equal additive genetic variance
(σ2

s � σ2
d � σ2

u � ¥1/4σ2a); the component A in distribution
refers to the relationship matrix among the parents (sire and
dams); Ts and Td are the assigned design matrices linking sire
and dam to the respective value of u.

From Model-1, heritability was estimated as h2 � σ2a/σ2
p
,

whereas from Model-2, it was estimated as h2 � 4σ2
s/σ2

p
. For

both models, the non-additive effect common to full sibs was
estimated as c2 � σ2

c/σ2
p
,

where σ2
a is the additive genetic variance; σ2

s is the additive
genetic sire variance; σ2

c is the non-additive variance common to
full sibs; σ2

e is the residual variance; and σ2
p � σ2

a + σ2
c + σ2

e for
results from model-1 and σ2

p � 2σ2s + σ2c + σ2
e for results from

model-2.
Genome-wide association analysis (GWAS): Genome-wide

association analysis was performed using the linear mixed animal
model implemented in the GCTA program with the “--mlma-
loco” function (Yang et al., 2011a). The “--mlma-loco” function
allows the estimation of an SNP effect by accounting the additive
genetic variance expressed by all the markers distributed over all
the linkage groups other than the linkage group which contains
the SNP. The method of leaving one chromosome out (the
chromosome carrying the marker in question for which the
effect and association must be computed) increases the power
of the association analysis. This removal of the marker in question
and all the other linked markers from the chromosome avoids
double-fitting/adjusting in the model, both as a fixed effect tested
for association and as a random component by including in the
genomic relationship matrix (Yang et al., 2014). The model used
in GWAS was similar to Model-1 except that the first five
eigenvectors computed from the genomic relationship matrix
were included as covariates in the model, and the common
environment effect was excluded. The eigenvectors as
covariates in genome-wide association analysis are usually
used to adjust for population stratification and control
spurious genetic associations caused by false linkages of
markers with the population structure instead of true marker
trait associations (Price et al., 2006). The G-matrix was computed
according to the VanRaden (Vanraden, 2008) method as

PP’

2p∑Nsnp

i�1 pi(1−pi)
, where P, Nsnp, and pi are the matrix of

centralized genotypes, total number of SNP markers, and the
allele frequency of the reference allele, respectively.

The SNPmarkers were categorized as genome-wide significant
when they surpass the Bonferroni threshold for multiple testing
p-value of P≤ 2.37 × 10 −07 with −log10(P) � 6.62, or if they
surpassed the p-value of P≤ 5.69 × 10 −05 with
−log10(P) � 5.24, then they were classified as suggestive if
they surpassed the p-value P≤ 0.05. The significant values
(chromosome and/or genome-wide) were computed, as
described in the study by Aslam M. L. et al. (2020). The
observed −log10(P − values) for all the SNPs were plotted

TABLE 1 | Data statistics for the survival trait.

Phenotyped Genotyped

Population N Fam N fish Fish/family %Survival N Fam N fish Fish/family % Survival

YC2016 89 2499 28.1 42 30 767 27.4 46
YC2017 92 2352 25.7 41 92 768 8.4 44
Total/Mean 181 4851 26.9 42 122 1535 17.9 45
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against expected −log10(P − values) from a theoretical
distribution. The inflation factor (lambda, λ) was calculated
using λ � median(χ2)

0.456 to assess deviations (inflation/deflation) in
p-values.

Estimation of the SNP(s) variance: The proportion of the
genetic variance explained by the top significant SNP(s) were
computed using two methods. One is the direct method where
genetic variances of SNPs were computed using allele frequencies
and allele substitution effects as 2piqiα2i (Hill and Mackay, 2004).
The other is the indirect method where the highest significant
SNP(s) from the GWAS analysis were used as additional fixed
effect(s), as explained in the study by Aslam et al. (2018). The
statistical model used for the indirect method was the same as
described under GWAS, but the G matrix was constructed with
all other SNPs except the SNP(s) used as a fixed effect. The
proportional reduction in the total genetic variance due to the
addition of the fixed effect of the SNP(s) was considered as the
contribution from the SNP(s).

Breeding value estimation: Breeding values for the survival
(binary, 0/1 trait) against VNN were computed through model-1
without using random effects common to full-sibs (c). The
estimates of breeding values were obtained using a customized
script involving R/BGLR (Pérez and De los Campos, 2014) and
the ASReml (Gilmour et al., 2015) programs. The obtained
breeding values were used to evaluate the accuracy of
predictions acquired through models involving information
from pedigree (PBLUP), genomic, i.e., GBLUP, BayesB,
BayesC, and Bayesian Lasso (Park and Casella, 2008; Habier
et al., 2011), and the hybrid information matrix, i.e., HBLUP, also
known as single-step genomic evaluation, where the relationship
matrix could link genotyped and ungenotyped individuals
(Legarra et al., 2009).

Accuracy of prediction: For the evaluation of accuracy of
predictions, two datasets were used, 1) genotyped individuals (n =
1,489) and 2) a full dataset (n = 4,851, genotyped and
ungenotyped individuals). The comparison for the accuracy of
predictions among the genomic and pedigree models was
performed using genotyped individuals only, while PBLUP
and HBLUP models were compared using the full dataset (n =
4,851).

To compare prediction accuracies, validation schemes were
designed in two ways.

1) Within family masking: Under this scheme, 30% of
individuals within each family were randomly masked,
which produced 447 individuals as validation animals, and
the remaining 1,042 individuals with available phenotypes
were kept as the training set.

2) Random masking: Under this scheme, 30% of the individuals
were randomly masked without giving any consideration on
families. Hence, 1,042 individuals were used for training and
447 as validation animals.

The adopted schemes for the comparison of PBLUP vs.
HBLUP were the same as 1) and 2), but the number for
validation and training individuals ended up large with 1,455
validation and 3,396 training animals. The breeding values for the

masked individuals were computed using pedigree, genomic, and
the hybrid relationship matrices The mean accuracy of 20
replicates was computed as the correlation (rcorr) of the
estimated breeding values (pedigree/genomic/hybrid) with the
pre-adjusted phenotype, yadj, which was scaled by the square root

of the heritability as rcorr � ρ(P[G|H]EBV ,yadj)
√h2

, where ρ, P[G|H]EBV ,

and h2 are correlation coefficients, breeding values estimated
using pedigree or genomic or hybrid information, and pedigree-
based heritability estimates (h2 = 0.18), respectively.

RESULTS

Challenge Test
The challenge test resulted significant and very similar
mortalities with 58.2 and 59.3% for YC2016 (Bakopoulos
et al., 2018) and YC2017, respectively (Figure 1). Mortalities
started to appear during the first and second day after infection
in YC2016 and YC2017, respectively, reaching a peak during day
5 for both challenge tests. Mortalities ceased before termination
of the trial approx. on day 20 after challenge. All mortalities were
recorded, and the individuals who survived until day ~20 from
the start of the challenge were considered as survivors (alive).
The distribution of mortalities in each full-sib family along with
the distribution of full-sibs per family is given in
Supplementary Figure S1.1.

Data Statistics
The recorded data contained 4,851 observations (nYC2016 = 2,499
and nYC2017 = 2,352) from pedigreed individuals while the subset
of these pedigree individuals 1,489 also had genotype information
with ~52K SNPs. The average survival in the large dataset (n =
4,851) and the subset (n = 1,489) of the data was very similar, with
42 and 45%, respectively (Table 1).

Genetic Parameters
The observed and the liability scale heritability estimates
obtained using genomic information were higher than the
pedigree-based estimates (Table 2). The observed scale
heritability estimates obtained using the large dataset
(including YC2016 and YC2017) were 0.18 ± 0.03 and 0.25 ±
0.04 for pedigree and genomic information, respectively. The
liability scale heritability estimates obtained using pedigree
information were 0.27 ± 0.04 while the same scale estimates
with genomic information were 0.40 ± 0.06, respectively. The
estimates for the environment common to full sibs, c2 were close
to zero and non-significant with either kinds of model or source
of information. The highest obtained estimates of c2 were 0.02 ±
0.03 through the sire-dam threshold model used on
YC2017 data.

Genome-wide Association Analysis
The GWAS analysis from the combined dataset of both year
classes (YC2016 and YC 2017) revealed a strong signal of QTL at
LG12 with 72 SNPs crossing the genome-wide threshold
(Figure 2). Moreover, the analyses on individual year class
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(YC2016 or YC2017) were also performed which showed a
consistent strong peak of QTL at LG12 (Supplementary
Figure S1.2). The details for the top ten highest significant
SNPs with their position in genome and allele substitution
effects, along with the genetic variances explained by the
SNPs, are given in Table 3. The detected genome-wide
significant SNPs (n = 72) cover a large region of 15 Mb
(3,778,017 bp to 18,822,298 bp) with the top significant SNP
AX-172280857 centered at 11,359,282 bp (Figure 3). However,
when the most significant SNP (AX-172280857) was used as an
additional fixed effect in the model (as explained under the
indirect method for computation of SNP variance), none of the
SNPs showed any chromosome and/or genome-wide
significance, indicating that there is only one QTL in the
region (Supplementary Figure S1.3). A quantile–quantile
plot (QQ-plot) obtained using −log10(P − values) acquired
from the genome-wide association analysis is presented in
Supplementary Figure S1.4. The obtained genomic inflation

factor (lambda value, λ) with the applied GWAS model was
1.168. The inflation factor of 1.168 seems to suggest slight
inflation of p-values even with the application of first five
eigenvectors as covariates in the model to possibly correct
the existed population structure (Supplementary Figure
S1.5). However, much larger lambda values can also be
obtained when GWAS is performed with a large sample size
using high-density genome-wide distributed markers (Yang
et al., 2011b).

SNP variance: The proportion of genetic variance explained
by the highest significant SNP using the direct method was
~26.0% (Table 3). The application of the highest significant SNP
as an additional fixed effect in the GWAS model caused
reduction of genetic variance from 0.06 to 0.04
(Supplementary Table S1.1). Hence, the proportion of
genetic variance explained by the highest significant SNP
using the indirect method was 33.33%, which is a
proportional reduction in the genetic variance with the

FIGURE 1 | Distribution of mortalities in YC2016 and YC2017 during the challenge test against the nervous necrosis virus.

TABLE 2 | Genetic parameters with standard errors for survival at the end of the VNN challenge test.

Pedigree estimates Genomic estimates

Dataset/Models LM TMsire−dam LM TM

Components h2 c2 h2 c2 h2 c2 h2

Year 2016 0.15 ± 0.04 0.00 ± 0.00 0.23 ± 0.05 0.00 ± 0.00 0.26 ± 0.04 0.00 ± 0.03 0.40 ± 0.10
Year 2017 0.15 ± 0.06 0.02 ± 0.02 0.23 ± 0.09 0.02 ± 0.03 0.20 ± 0.06 0.00 ± 0.02 0.32 ± 0.10
Year 2016 + 2017 0.18 ± 0.03 0.00 ± 0.00 0.27 ± 0.04 0.00 ± 0.00 0.25 ± 0.04 0.00 ± 0.02 0.40 ± 0.06

LM, linear animal model; TMsire-dam, sire-dam threshold model; TM, estimates computed using the conversion equation (Lee et al., 2011) from the observed scale to the liability scale; h2,
heritability; c2, random effects common to full sibs.
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application of the highest significant SNP as an additional fixed
effect.

Accuracy of Predictions
Accuracies of prediction using pedigree vs. genomic
information are plotted in Figure 4. Regardless of validation
schemes applied, the mean accuracies obtained using genomic
information were significantly higher than the pedigree
information-based accuracies (Figure 4 and Supplementary
Table S1.2). The mean accuracy achieved from the genomic
models (GBLUP, BayesB, BayesC, and Bayesian Lasso) was 0.71,
while the mean accuracy from the pedigree-based PBLUPmodel
was 0.55 (Figure 4 and Supplementary Table S1.2). The mean
accuracy of 0.70 and 0.72 was achieved with the genomic models
using validation scheme “a” (within family masking) and
validation scheme “b” (random masking), respectively. A
similar trend was also seen using the PBLUP model with

higher mean accuracy obtained with validation scheme “b”
(rcorr = 0.59) compared to “a” (rcorr = 0.52).

The comparison among the genomic models with respect to
the prediction accuracy for survival against VNN showed that
the Bayesian models worked either better or equally well as
GBLUP. The trend in the rank on performance of genomic
models was the same within both validation schemes (“a” and
“b”). The BayesB model displayed the highest accuracy with
estimates of 0.77 ± 0.09 and 0.75 ± 0.09 for validation schemes
“b” and “a”, respectively. The other genomic models (BayesC,
Bayesian Lasso, and GBLUP) showed approximately similar
accuracy of prediction with fractional differences with values
0.69 ± 0.09 and 0.71 ± 0.09 for validation schemes “a” and “b”,
respectively (Figure 4 and Supplementary Table S1.2).

The comparison of the prediction accuracy for PBLUP vs.
HBLUP models showed higher accuracies obtained with the
HBLUP model, with estimates of 0.57 ± 0.05 and 0.58 ± 0.05 for

FIGURE 2 | Manhattan plot with the distribution of −log10(p) values of SNPs across different chromosomes. The solid red line represents the genome-wide
Bonferroni-corrected threshold, while the dashed blue line is the chromosome-wide Bonferroni-corrected threshold. The green highlighted point is the highest significant
SNP of GWAS analysis, and the arrows are depicting underlying genes within the ±25 Kb region from the position of the highest significant SNP.

TABLE 3 | The top 10 significant SNPs detected in GWAS analysis ranked with respect to the level of significance.

SNP-ID LG Pos(bp) A1 A2 MAF α SE p %VarG

AX-172280857 12 11359282 C T 0.115 0.289 0.032 3.42E-19 26.204
AX-172273041 12 10690280 C T 0.103 0.314 0.036 2.02E-18 27.120
AX-172298845 12 13410063 A C 0.078 0.325 0.038 1.60E-17 22.638
AX-172279801 12 11085391 A G 0.078 0.323 0.038 2.52E-17 24.046
AX-172305328 12 8782984 G A 0.265 0.203 0.024 4.95E-17 24.250
AX-172296534 12 11941161 C A 0.165 0.230 0.028 2.49E-16 22.636
AX-172277566 12 13335186 G A 0.104 0.277 0.034 2.74E-16 21.804
AX-172278329 12 16168988 C A 0.108 0.287 0.036 1.02E-15 24.165
AX-172311789 12 11061935 A G 0.087 0.312 0.039 1.90E-15 26.025
AX-172310909 12 11986782 G A 0.172 0.216 0.027 3.52E-15 20.241

The SNPs are sorted based on their level of significance with LG, linkage group; Pos(bp), physical position of SNP; A1 & A2, Minor and major alleles, respectively; MAF, minor allele
frequency; α, allele substitution effect for A1 allele; SE, standard error; p, significance value;%VarG, proportion of the genetic variance explained using the direct method. The SNP positions
are based on genome build 1.0 (seabass_V1.0, Tine et al., 2014) of European sea bass.
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FIGURE 3 |High-resolution depiction of the QTL region at LG12with linkage disequilibrium information. (A) displays the distribution of −log10(p) in the QTL region,
the horizontal red line represents the genome-wide Bonferroni-corrected threshold, (B) exhibits the LD of SNPs with the highest significant SNP, the solid red line shows
the pattern of LD decay from the highest significant SNP, and (C) shows the LD among the SNPs within 1.0 Mb (10.86–11.86 Mb). The green dots denote the genome-
wide significant SNPs, while the asterisk dot is the highest significant SNP of GWAS analysis. The dashed vertical blue line shows the position of the highest
significant SNP, and the fainted vertical gray lines mark the 1.0 Mb region with ±500 Kb from the highest significant SNP.
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validation schemes “a” and “b”, respectively (Supplementary
Figure S1.6). The prediction accuracy for the PBLUPmodel was
0.52 ± 0.05 and 0.53 ± 0.05 with validation schemes “a” and “b”,
respectively.

DISCUSSION

Viral nervous necrosis is one of the highly contagious and
deadliest diseases for many aquaculture species which also
pose a serious threat for European sea bass producers, with fry
and juveniles being highly susceptible. The outbreak of VNNmay
cause up to 100%mortalities at larval and around 20%mortalities
at advanced juvenile stages (Le Breton et al., 1997; Munday et al.,
2002). Moreover, the surviving fish present poor growth rate and
ultimately high economic losses for the producers. In the current
study, we explored the genetic basis of resistance against the
RGNNV using large-scale challenge experimentation, phenotype
recording, and high-density genotyping using SNP markers with
ultimate intentions to improve fish health and welfare, leading to
sustainable production.

The challenge test results from the current study presented
steady/predictable survival/mortality curves, with a peak in
mortality at day 5 after infection and sharp reduction of
mortalities at day 11 after infection, which were similar to
results reported by Doan et al. (2017) and Faggion et al.
(2021) where individuals were infected via intraperitoneal and
intramuscular injections, respectively. The reported trend from
the studies of Doan et al., and Faggion et al., was followed as peak
mortalities at days 6 and 4 after the infection and the sharp
decrease in mortalities from days 7 and 9 after infection,
respectively. Contrarily, Palaiokostas et al. (2018) reported
smoother mortality curves with mortality peaks at days 8 and
15 post-infection where fish were infected by the immersion
model. In another study conducted by Griot et al. (2021), the
immersion-based challenge test that was performed showed
variable mortality/survival curves (specific to each population)
with survival ranging from 38 to 79% and peak mortalities at day
10 post-infection. Hence, the behavior of the mortality curve may
slightly deviate depending on experimental population and the
type of the infection model used. The level of peak mortalities
reaches in the first week when applying injection-based infection

FIGURE 4 | The accuracies of prediction for resistance against VNN using pedigree vs. genomic models.
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models and may move to the second week of infection with
immersion models. The shift/delay in reaching the peak mortality
from day 4 or 5 [(Faggion et al., 2021); current study] to day 10 or
15 (Palaiokostas et al., 2018; Griot et al., 2021) and the duration of
challenge tests (~40–49 (Palaiokostas et al., 2018; Griot et al.,
2021) vs. 20–28 days (Faggion et al., 2021); current study) meet
the expectations because intramuscular injection-based models
skip mucus and skin barriers which are also a part of the defense
system in case of immersion-based models that will ultimately
delay the time to infection and immune response of the host.

The current study revealed moderate heritability estimates for
survival to VNN (Table 2) which are concordant with those
reported in the literature (Palaiokostas et al., 2018; Faggion et al.,
2021; Griot et al., 2021). However, a few extreme estimates of
heritability as high as 0.59 (observed scale) and 0.84 (on
underlying liability scale) were also reported by Griot et al.
(2021) which were computed using data recorded on four
backcross families. In general, the estimates of heritability for
survival against VNN are quite consistent and robust probably
because the history of breeding for European sea bass is not very
long, and possibly, selection-based divergence has not taken place
for this trait in farmed populations.

The GWAS analysis of the current study presented a strong
signal of QTL at LG12 which was very consistent across datasets
coming from two different year classes, though both year classes
YC2016 and YC2017 were exposed to the virus in two
independent challenge tests (Supplementary Figure S1.2).
Moreover, the study from Griot et al. (2021) also reported
very stable QTL detected at the same region of LG12 using
composite interval mapping analysis. However, Griot et al.
(2021) also detected multiple other putative QTLs at LG8,
LG15, and LG19 with weaker signal crossing the chromosome-
wide significance threshold. The putative QTLs of LG15 and
LG19 in the study by Griot et al. (2021) were also consistent with
our results when GWAS analysis was performed on YC2016 only
(Supplementary Figure S1.2). The inconsistency of QTLs
detected at LG15 and LG19, especially with the increased
power by the added dataset from YC2017 perhaps indicates
false signals possibly due to pseudo-linkages among markers
which turn out to be insignificant with added datasets from
relatively less-related individuals of YC2017. A study from
Palaiokostas et al. (2018) also reported putative QTLs (signals
crossing the chromosome-wide threshold) located at LG3, LG20,
and the markers from unassigned scaffolds which were not
detected either in our study or the study from Griot et al.
(2021). However, a single QTL in the current study vs.
multiple detected QTLs in both studies by Griot et al. (2021)
and Palaiokostas et al. (2018) might be due to the genetic
differences in populations and/or may reflect the differences in
challenge tests (immersion vs. injection models) as infecting the
fish by the immersion method will involve both specific and non-
specific immune responses (through skin and mucus barriers)
while infection through injection (this study) will skip the skin
and mucus barriers and triggers specific immune responses.

The statistics of the top ten highest significant SNPs including
minor allele frequencies, position in the genome, and allele
substitution effects are detailed in Table 3. All the top 10

SNPs present low minor allele frequencies ranging from 0.078
to 0.265 with a similar magnitude of the allele substitution effect
(ranging from 0.203 to 0.325) along with the same direction with
minor alleles being favorable with the positive effect on survival
(phenotype coded as 1 = survival and 0 = dead). These
observations perhaps indicate that these top significant SNPs
are in linkage disequilibrium (LD) and possibly are in the same
phase with the causative mutation. The distribution of the
survival percentage across the genotypes from the highest
significant SNP (SNP-ID = AX-172280857) showed ~118%
higher survival for individuals carrying favorable genotypes
(CC) than homozygous unfavorable (TT) genotypes
(Supplementary Figure S1.7).

The highest significant SNP in our study explained up to
33.33% (Supplementary Table S1.1) of the genetic variance
detected through the analysis of combined datasets from both
year classes (YC2016 and YC2017). The proportion of the genetic
variance explained by the highest significant SNP computed using
the direct method (Hill andMackay, 2004) was ~26.20%, which is
slightly lower than what is obtained using the indirect method,
33.33%. The variances computed using the direct method are
largely influenced by allele frequencies and computed,
considering SNPs/markers are independent genomic fragments
which is normally not the case. Hence, variances of significant
SNPs within the QTL region should not be summed to calculate
the total genetic variance due to possible LD among the SNPs.
The top ten genome-wide significant SNPs from our study
showed a mean LD of 0.49 (ranging from 0.19 to 0.87, in
Supplementary Figure S1.8) although the markers are
distributed over a large distance of more than 7 Mb (Table 3).
Moreover, the application of the highest significant SNP as a fixed
effect in the indirect method causes shrinkage of p-values for all
the other chromosomes and/or genome-wide significant SNPs at
LG12 (Supplementary Figure S1.3) which further supports the
argument on the existence of single QTL rather summing the
variances from all the SNPs in the QTL region. The relatively
large impact of single QTL (up to 33.33% of the genetic variance)
does not necessarily mean that the tagged SNP (SNP-ID = AX-
172280857) is a causative mutation, but this SNP explains an
important part of QTL variation, either directly or through LD
with the causative mutation.

The QTLs in the study from Griot et al. (2021) explained
relatively small proportion (up to 9%) of total genetic variance
which is approximately four times lower than what is found in the
current study. These large differences might be very likely due to
the differences in computational methods used (e.g., effects using
Bayesian models (Griot et al., 2021) vs. effects computed using
linear mixed models). The other factors which might also
contribute include specific genetic variations among
populations, challenge test methods (immersion vs. IM
injection in our study), and/or family structures. The infection
model using the immersion method is relatively less controlled
which might have been influenced by the natural history of the
disease such as involvement of natural external barriers of skin
and mucus, random variations on pathogen loads, nonspecific
immunity response, and stress among others (Oidtmann and
Sitja-Bobadilla, 2017). Moreover, Griot et al. (2021) did not

Frontiers in Genetics | www.frontiersin.org March 2022 | Volume 13 | Article 80458410

Vela-Avitúa et al. Genetics for Resistance to VNN

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


observe the putative QTL of LG12 when the progeny of the VNN-
susceptible parent/line was challenge tested via IP injection, and
the most of the detected QTLs were population-specific,
suggesting the influence of challenge test methods and/or level
of population differences. The consistency of detected QTLs of
LG12 across different year classes of our study and the
concordance with the results from the study by Griot et al.
(2021) possibly validate the large effect of the QTL region on
survival against VNN.Moreover, it also strengthens the argument
that the effect of identified genomic regions at LG12 perhaps
covers variation due to the specific immune-based defense
mechanism of the host.

Genes underlying the QTL region i.e., the 50 Kb region
covering ±25 Kb from the highest significant SNP (AX-
172280857) position was searched using the European sea bass
genome (seabass_V1.0, Tine et al., 2014). The QTL region
contained seven genes including ITPK1, PLK4, HSPA4L,
REEP1, CHMP2, MRPL35, and SCUBE1 (Supplementary
Material S1, Supplementary Table S1.3, Supplementary
Figure S1.9). The upstream genes to the highest significant
SNP were ITPK1 (inositol tetrakisphosphate 1-kinase 1) and
polo-like kinase 4 (PLK4). The ITPK1 gene is known to be
engaged with cell physiological functions involving signaling
molecules inositol phosphates (Desfougères et al., 2019), and
PLK4 (polo-like kinase 4) has a role in cell replication by centriole
duplication (Garvey et al., 2021). The highest significant SNP was
annotated as the intronic SNP, that is, located within the intron of
theHSPA4L (heat shock protein family A, member four like) gene
which belongs to a family of heat shock proteins (HSPs), HSP70
and plays a role in response to harmful circumstances and protect
the cell from stress (Liu et al., 2019). Moreover, HSPs from the
family of HSP70 have also shown association nervous necrosis
virus infection in Asian sea bass (Liu et al., 2016) and with
immune system maintenance in humans (Chiricosta et al., 2020).
The immediate next downstream gene after HSPA4L is REEP1
(receptor expression-enhancing protein 1) which is found in
nerve cells (neurons), the brain, and the spinal cord (Hurt
et al., 2014). The other downstream genes from the position of
the highest significant SNP were CHMP2 (charged multivesicular
body protein 2) and MRPL35 (mitochondrial ribosomal protein
L35), which are known to be involved in the physiological
function in cells while SCUBE1 (signal peptide-CUB-EGF
(epidermal growth factor) domain-containing protein 1) seems
to be localized in the endothelium with developmental functions.

Out of these seven genes, HSPA4L and REEP1 appear to have
more relevant functions which might be playing a role for
variation in survival against the RGNNV. The involvement of
HSPA4L with managing stress and cell protection may assist
individuals by coping with the pathological condition when the
fish is infected with virus. The function of the REEP1 gene is very
relevant to the disease as infected individuals present neurological
symptoms with clinical signs characterized as rapid swimming,
spiraling, whirling, and lying down at the bottom (Yoshikoshi
and Inoue, 1990). The autopsy observations of the VNN disease
include hemorrhages in the brain tissues and vacuolization in
cells of the spinal cord, brain, and retina along with the high level
of necrosis in the nervous cells (Munday et al., 2002; Yang et al.,

2021). The findings seem to suggest that the RGNNV mainly
targets the nerve cells although lesions can also be detected in the
liver and spleen tissues (Yang et al., 2021). The mutations in
regulatory regions of a gene may cause its under or
overexpression and ultimately deviates in the availability of
receptor expression-enhancing protein in the cells. The
changes in the availability of protein (abundance or shortage
than optimal level) under RGNNV infection might be playing a
role for variation in survival against the virus possibly by coping
or managing disease symptoms from the hosts. Further studies
involving identification/validation of the causative mutation/gene
through functional level assays (proteomics, gene editing etc.)
would likely assist in unveiling the biological mechanism behind
the host resistance against the RGNNV. The selection of
individuals based on the actual causative mutation is highly
likely to make a faster genetic progress in the desired direction
due to increased accuracy of selection compared to when the
selection is performed based on markers in LD with the causative
mutation.

The accuracy of prediction using validation schemes, random
vs. within-family masking did not show significant difference,
which may be the result of genetic links across the population as
accuracy of predictions using the GS is known to be sensitive to
close the genetic relationship between training and candidate
populations. Regardless of validation schemes, the average
prediction accuracy for survival against VNN using pedigree
information was 0.56 while the average accuracy using
genomic information was 0.71, which is 29% higher than the
pedigree information-based accuracy (Supplementary Table
S1.2). The highest gain in accuracy using genomic over
pedigree information was 44% which was obtained using the
BayesB model (Supplementary Table S1.2). The use of genomic
information for survival against VNN clearly outperformed the
use of pedigree information-based predictions with a clear
advantage. The advantage of genomic information over
pedigree mainly contributed through the realized genomic-
based relatedness among individuals which deviates from the
pedigree information-based relationship coefficients. The
realized relationships derived through variations contributed
by mutations/variants at the QTL regions possibly become
much more important when the QTL(s) have a relatively large
effect on the trait. The effect of genomic relationship matrices
designed using QTL-linked vs. -unlinked markers on prediction
accuracy was recently tested which revealed three times increase
in the prediction accuracy with QTL-linked markers compared to
when the genomic relationship matrix designed using only
unlinked markers (Ling et al., 2021) which highlights the
importance of variants within the QTL region. The difference
of the prediction accuracy between genomic vs. pedigree is likely
to shrink with the availability of deep phenotypes and pedigree
information with minimal pedigree errors. The availability of
deep pedigree is not possible for the recent commercial
populations in breeding, and hence, genomic information can
play a very important role to improve traits effectively and
efficiently in the desired direction.

The comparison for the accuracy of predictions within
genomic models showed that Bayesian models worked better
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or equally well as GBLUP (Figure 4, Supplementary Table S1.2).
The BayesB model outperformed all other genomic models with
the highest mean accuracy of 0.76 across the validation schemes
(Supplementary Table S1.2). The top ranked BayesB model was
followed by BayesC, GBLUP, and lastly Bayesian Lasso with a
mean accuracy of ~0.70 across validation schemes. Hence, the
genomic model BayesB showed ~7% increase in the accuracy
compared to other genomic models. The performance of genomic
models is known to be affected by the genetic architecture of
trait(s), and the Bayesian models are expected to perform better if
the trait(s) are affected by a few QTLs (Daetwyler et al., 2012; Van
Den Berg et al., 2015; Vallejo et al., 2017). Recently, Aslam et al.
(2021) evaluated the accuracy of prediction for survival against
the RGNNV using QTL markers (i.e., marker assisted selection,
MAS) with the prediction accuracy obtained with the genomic
and the pedigree-based models which showed that the gain in the
accuracy of prediction using marker-assisted selection was ~37%
higher than pedigree-based selection but fractionally lower than
the BayesB model (0.692 with MAS vs. 0.752 with BayesB). The
GWAS analysis of our study detected a single genome-wide
significant QTL with a large effect and hence validates the
expectation on the accuracy of prediction as well supports that
the survival against VNN is perhaps affected by a few QTLs.

The presence of a relatively simpler genetic architecture for
survival against VNN with a single genome-wide detected QTL
explaining a large proportion (though a large part is still missing)
of the total genetic variance along with the obtained highest
accuracy of prediction using BayesB is very convincing and
complimenting results which present a strong potential for the
application of efficient and economical marker-assisted selection.
Increasing the resolution of a QTL region using more variants
(SNPs, deletions, copy number variations, etc.) along with a high-
quality phenotype might assist to uncover the missing genetic
variance and detect the actual causative mutation affecting
the trait.

CONCLUSION

The survival against the VNN disease showed low to moderate
levels of genetic variation with a possibility of improvement in
traits through selective breeding. The genetic architecture for host
resistance to the RGNNV appears to be affected by a locus with a
large effect and perhaps smaller contribution from the other loci.
Multiple genes were identified within the QTL region with the
REEP1 gene located immediately at the upstream of the highest
significant SNP which seems to be more pronounced with
functions involving the nervous system. The detected QTL
explained ~33% of genetic variance suggesting a strong
potential of marker(s)-based efficient and economical selection
for improving survival against VNN. The comparative results on
the accuracy of predicting breeding values with genomic
information were substantially higher (20–44%) than
predictions using pedigree information which suggests a
strong advantage of using genomics over pedigree-based
selection to genetically improve host resistance against the
RGNNV.
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