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Abstract: In hydrolysis and electro-oxidation of the borohydride anion BH4
−, key reactions in the

field of energy, one critical short-living intermediate is BH3OH−. When water was used as both
solvent and reactant, only BH3OH− is detected by 11B NMR. By moving away from such conditions
and using DMF as solvent and water as reactant in excess, four 11B NMR quartets were observed.
These signals were due to BH3-based intermediates as suggested by theoretical calculations; they
were DMF·BH3, BH3OH−, and B2H7

− (i.e., [H3B−H−BH3]− or [H4B−BH3]−). Our results shed
light on the importance of BH3 stemming from BH4

− and on its capacity as Lewis acid to interact with
Lewis bases such as DMF, OH−, and BH4

−. These findings are important for a better understanding
at the molecular level of hydrolysis of BH4

− and production of impurities in boranes synthesis.

Keywords: borate; borohydride; hydrogen; hydrolysis; short-living intermediates

1. Introduction

Sodium borohydride NaBH4 in alkaline aqueous solution is a potential fuel of low-
temperature fuel cell [1]. It is regarded as an indirect fuel (i.e., H carrier) when it is hy-
drolyzed to produce H2, the as-produced H2 then feeding a fuel cell (Equation (1)) [2]. It is
regarded as a direct fuel (i.e., reductant) when it directly feeds a direct liquid fuel cell to be
electro-oxidized (Equation (2)) [3]:

BH4
− (aq) + 4H2O (l)→ B(OH)4

− (aq) + 4H2 (g) (1)

BH4
− (aq) + 8OH− (l)→ B(OH)4

− (aq) + 4H2O (l) + 8e− (2)

The aqueous solution has to be alkaline, that is, stabilized [4], because this is the only
way to prevent spontaneous (exothermic, with an enthalpy of about −240 kJ mol−1 [5])
hydrolysis of BH4

− from occurring extensively. In hydrolysis (Equation (1)), a metal
catalyst is therefore required to accelerate the production of H2 [6]. In electro-oxidation
(Equation (2)), a metal electro-catalyst is required to promote the generation of a maximum
of electrons (out of eight) [4]. However, the electro-catalyst also acts as catalyst of hydrolysis,
a reaction that is in this case regarded as heterogeneous because it is detrimental to the fuel
cell faradaic efficiency [7].

In hydrolysis (Equation (1)) as well as in electro-oxidation (Equation (2)), complete
reaction implies transformation of BH4

− into B(OH)4
− via formation of short-living in-

termediates. For spontaneous hydrolysis, Mochalov et al., suggested in 1965 BH3OH−,
BH2(OH)2

−, and BH(OH)3
− as possible short-living intermediates [8]. They showed, for

instance, that the direct transformation of BH4
− into B(OH)4

− has the same kinetic constant
(k = 5.31 × 107 min−1) as the transformation of BH4

− into BH3OH− (k’ = 5.15 × 107 min−1).
The same year, Gardiner and Collat suggested the formation of BH3, BH3OH−, and
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[H]+[BHOH]− as possible short-living intermediates [9]. More recently, Guella et al. re-
ported that, by 11B nuclear magnetic resonance (NMR) spectroscopy, they detected only
BH4

− and B(OH)4
− (Equation (1)) for a Pd-catalyzed hydrolysis [10]. The non-detection

of other species was explained by the fact that the hydrolysis intermediates are exces-
sively short-living in their experimental conditions. By quantum chemical calculations, Lu
et al. [11] confirmed Guella et al.’s explanation and modelled a multistep process involving
the following hypothetical short-living intermediates (Equation (3)):

BH4
− → BH3OH− → H2BO− → BH2(OH)2

− → HB(O)OH− → BH(OH)3
− → B(O)(OH)2

− → B(OH)4
− (3)

Comparable predictions were reported by Zhou et al. [12], Andrieux et al. [13],
Churikov et al. [14], and Choi et al. [15] detected traces of BH3OH− by using 11B NMR
spectroscopy. It is therefore arguable whether BH3OH−, as the first short-living intermedi-
ate, directly hydrolyzes into B(OH)4

−. This is a possible parallel pathway as suggested by
Mochalov et al. [8] for example.

Budroni et al. [16] refers to BH3OH− as a critical short-living intermediate. As dis-
cussed above, this applies to the hydrolysis reaction (Equation (1)). Interestingly, this also
applies to electro-oxidation of BH4

− (Equation (2)) on metal electrodes (e.g., Pd, Pt, and
Au) [17–23]. For instance, Molina Concha et al. [24] studied Pt-catalyzed electro-oxidation
of BH4

− by in situ Fourier Transform Infrared (FTIR) spectroscopy. They observed that:
(i) BH3OH− formed at low potentials (<0.7 V) by hydrolysis of BH4

− and/or partial ox-
idation of BH4

−; (ii) BH3OH− quickly electro-oxidized into BH2 intermediates such as
BH2OH and BH2(OH)2

−; and (iii) the BH2 intermediates electro-oxidized into BO2
− at

high potentials (>0.7 V).
Similarly, Nanayakkara et al. [25] investigated the mechanism of H2 release of BH3

in water and the following solvent effects by using MP2 quantum calculations. One H2O
molecule interacting with BH3 led to an activation energy equal to 24.9 kcal mol−1, while
the energy values ranged from 29 and 32 kcal mol−1 when one H2O molecule interacted
with BH3 and another H2O molecule interacted with the H2O molecule bonded to BH3. The
resulting enthalpy was estimated at 20 kcal mol−1 for the first configuration and ranged
between 12 and 14 kcal mol−1 for the others.

The present study is to be seen against the background described above. Based on
a systematic study using 11B NMR spectroscopy, we attempted to detect and identify
any short-living intermediates in order to gain insight and better understanding of both
hydrolysis and electro-oxidation of BH4

−. Furthermore, theoretical investigations were
performed for obtaining vibrational results, determining the sensitive frequencies and
estimating the energies of the different hypothetical molecular structures.

2. Results and Discussion
2.1. Hydrolysis Conditions Where H2O Acts as Both Reactant and Solvent

In hydrolysis and electro-oxidation conditions, the fuel is an alkaline aqueous solution
of BH4

− for which the concentration of BH4
− is usually kept low (typically < 1 M). We

therefore set our experimental conditions to be in line with such practices: the concentration
of NaOH was fixed as 0.1 M and the concentration of BH4

− (from NaBH4) was chosen as
0.66 M.

In hydrolysis and electro-oxidation conditions, the reaction is catalyzed by a metal
catalyst and an electro-catalyst, respectively. We selected three bulk metals such as Pd, Pt,
and Au (each as a piece of metal wire). They were selected because each has been used in
hydrolysis [26] and electro-oxidation [22].

In the present study and unlike in common practices [26], our objective was not to
develop an active (or very active) hydrolysis catalyst. Our objective was to work with a
lowly active catalyst so that the kinetics of H2 production remains slow when analyzing
the solutions by 11B NMR spectroscopy. We thus focused on metals in bulk state, which is
a state that offers the desired catalytic activity. We ensured this by performing a series of
hydrolysis experiments. Typically, 2 mL of the aforementioned alkaline solution of BH4

−
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(corresponding to 50 mg of NaBH4) were put into contact with 16 mg of Pd, 14.5 mg of
Pt, or 14.3 mg of Au at 30 ◦C. Regardless of the nature of the metal, it took 2 h to produce
<1.6 mol H2 per mol BH4

− (Figure 1), that is, <53 mL H2 (out of 132 mL for a conversion
of 100%). This means a H2 generation rate of <0.45 mL(H2) min−1 that is in agreement
with our need. We also ensured that, in the absence of any metal, the alkaline solution of
BH4

− was quite stable. At 30 ◦C, <0.1 mol H2 per mol BH4
− was produced in 2 h (namely,

<3 mL(H2)).
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Figure 1. H2 evolution curve for the hydrolysis of 2 mL of an aqueous alkaline (0.1 M NaOH) solution
of BH4

− (0.66 M; i.e., 50 mg NaBH4 in 2 mL) catalyzed by 16.1 mg of Pd, 14.5 mg of Pt, or 14.3 mg of
Au at 30 ◦C. The H2 evolution curve for the uncatalyzed hydrolysis test is also shown. The y-axis has
been limited to the range 0–2 for clarity.

The hydrolysis tests were repeated to analyze the solution by 11B NMR spectroscopy
every hour. Similar to a previous study [13], we detected only three signals (examples of
spectra in Figure 2; Table 1). The first main signal was a quintet at δ −41.5 ppm due to
BH4

−. The second main signal was a singlet at δ +1.9 ppm evidencing the formation of
B(OH)4

− (Equation (1)). There was an additional minor and almost negligible signal, a
quartet at δ−12.8 ppm. It was ascribed to the short-living intermediate BH3OH− [10,15,27].
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Table 1. Chemical shifts (δ, in ppm) of the signals observed for the following three experiments:
(a) hydrolysis conditions where H2O acts as both reactant and solvent; (b) hydrolysis conditions
where H2O is only a reactant and DMF is used as solvent; (c) hydrolysis conditions where DMF is the
solvent and H2O is a reactant in excess. I1 to I3 indicates the intermediates associated to the quartets
observed in the spectra collected for the experiment (c).

Experiment B(OH)4− I1 BH3OH− I2 I3 BH4−

(a) +1.9 −12.8 −41.5
(b) −14.1 −39.7
(c) −8.9 −14.4 −20.3 −21.8 −40.5

No additional 11B NMR signals that would be attributed to other short-living interme-
diates were seen. This might be explained by concentrations that are below the detection
limit (ca. 1 × 10−3 mol L−1) of the spectrometer. This might be also explained by low
symmetry of the intermediates’ structures, which would lead to broad signals of very low
intensity and thus indistinguishable from the base line. It is worth mentioning that we
used Gaussian 09 software to perform geometry optimization and NMR calculations for a
series of possible intermediates including BH2(OH)2

− and BH(OH)3
−. We found that the

signals of BH2(OH)2
− and BH(OH)3

− should be a triplet and a doublet appearing between
δ −7 and δ 0 ppm, respectively.

Another possible explanation of the absence of additional 11B NMR signals is that
the experimental conditions were not suitable for detecting intermediates with a lifetime
that is shorter than that of the detected BH3OH−. Based on our observations, we can state
that the lifetime scale of BH3OH− is of tens of seconds, whereas it might be much shorter
(e.g., microseconds scale) for the other intermediates. Yet, the hydrolysis tests described
above were performed in the presence of an excess of water: we used 2 mL (mol ratio
H2O/BH4

− of 84) whereas about 0.1 mL (mol ratio H2O/BH4
− of 4) would be enough

to totally hydrolyze BH4
−. Water acted as both reactant and solvent, and the excess of

water could be a favorable context to promote extremely fast hydrolysis of short-living
intermediates.

2.2. Hydrolysis Conditions Where H2O Is Only a Reactant

In order to move away from the conditions using water as both reactant and solvent,
we drew on two ancient reports dealing with hydrolysis of BH4

−. Modler and Kreevoy
investigated the hydrolysis of BH4

− (0.002 M) in moist acetonitrile (i.e., containing 0.6 M
H2O) [28], and Taub et al. used aqueous dimethylformamide (DMF) [29]. We thus selected
DMF as aprotic solvent of NaBH4 and used H2O as reactant only.

We prepared four 10 mL DMF solutions of BH4
− by dissolving 0.5 g of NaBH4 (1.32 M).

A piece of the aforementioned Pd, Pt, and Au was added in each of three of the DMF
solutions. The fourth DMF solution was kept metal-free and is denoted uncatalyzed. We
then added 0.95 mL of alkaline (0.1 M NaOH) aqueous solution to each of the four DMF
solutions (resulting in a concentration of H2O in DMF of 5.291 M). In these conditions,
the mol ratio H2O/BH4

− was about four as for the stoichiometric hydrolysis reaction
(Equation (1)). The as-prepared solutions were analyzed by 11B NMR spectroscopy. It
is worth mentioning that in such conditions, the hydrolysis was expected to be slow.
Accordingly, the solutions were analyzed every 24 h for 3 days.

The 11B NMR spectra focusing on the δ range varying from +20 to−50 ppm (Figure S1)
showed only the quintet at δ−39.7 ppm due to BH4

−. By zooming over the δ range varying
from +20 to −30 ppm (Figure S2), it was possible to distinguish an additional signal of
very small intensity at δ −14.1 ppm, namely the quartet due to BH3OH−. The quartet
could be seen after 24 h for the Pd-, Pt-, and Au-catalyzed solutions, and after 48 h for the
uncatalyzed solution. These results highlighted that, in the stoichiometric conditions, the
hydrolysis took place to a negligible extent. Another observation is that, even in the absence
of a metal, hydrolysis spontaneously took place. The non-detection of B(OH)4

− may have
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up to three explanations: the amount of H2O was too low and the H2O molecules were very
diluted in DMF, which hindered interaction-reaction with BH4

− and BH3OH−; borates
including B(OH)4

− were practically insoluble in DMF [30] and may have precipitated;
and/or, the concentration of B(OH)4

− was below the detection limit.

2.3. Hydrolysis Conditions Where H2O Is a Reactant in Excess

We therefore repeated the experiments while increasing the water content: the mol
ratio H2O/BH4

− passed from 4 to 32. Once more, we prepared four 10 mL DMF solutions
of BH4

− (1.32 M) and added 7.6 mL of alkaline (0.1 M NaOH) aqueous solution. In
comparison to the experiments presented in Section 2.1, the present series used water to
a lesser extent (i.e., mol ratio H2O/BH4

− of 32 versus 84) and the 32 equivalents of H2O
were dispersed in 10 mL of DMF, mitigating the hydrolysis of BH4

−.
As before, the 11B NMR spectra (Figure S3) mainly showed the quintet at δ −40.5 ppm

due to BH4
−, and B(OH)4

− was not observed because of the reasons listed at the end of the
previous section. In contrast to the results discussed above, the 11B NMR spectra showed
additional signals at δ < 0 (Figure 3). This is discussed hereafter.
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Figure 3. 11B NMR spectra of the 10 mL DMF solutions of BH4
− (1.32 M) hydrolyzed by 7.6 mL of

alkaline (0.1 M NaOH), uncatalyzed or catalyzed by Pd, Pt, or Au after 0, 24, 48 and 72 h. These
spectra focus on the range between δ 0 ppm and δ −25 ppm to show the signals at δ < 0 ppm.

The first of the additional signals was a quartet at δ−14.4 ppm. As for our experiments
discussed above, it was ascribed to BH3OH−.

The second of the additional signals was also a quartet, centered at δ −8.9 ppm. It
indicated the formation of another BH3-containing intermediate.
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The third of the additional signals appeared as a multiplet located between δ−18.5 ppm
and δ −23.5 ppm. With the help of 1H-decoupled 11B NMR spectroscopy, we shed light on
its nature. It was the result of two distinct signals peaking at δ −20.3 ppm and δ −21.8 ppm
(Figure 4). By deconvolution of the signal, we found that the two signals were more
likely to be two overlapping quartets, thereby indicating the formation of two other BH3
intermediates (Figure S4 and Table S1).
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7.6 mL of alkaline (0.1 M NaOH), uncatalyzed or catalyzed by Pd, Pt, or Au after 72 h.

To summarize the above: the hydrolysis of DMF-solubilized BH4
− in the presence of

32 equivalents of H2O involved more intermediates than the only short-living intermediate
BH3OH−. There were three additional intermediates and they all showed a quartet in 11B
NMR spectroscopy, indicating that they all were made up of the BH3 group.

We therefore focused our efforts on attributing the aforementioned quartets to possible
BH3 intermediates. We thought about any species likely to form in our conditions while
exploring the open literature [31–34]. The following ones were listed (Figure 5):

• The complex H2O·BH3 because H2O is a Lewis base able to complex the Lewis acid
BH3;

• The complex DMF·BH3 because DMF is Lewis bases able to complex BH3;
• The anion BH3OH−;
• The anion B2H7

− (i.e., [H3B−H−BH3]− or [H4B−BH3]−); and
• The pentacoordinate BH3(H2).

According to Tague and Andrews [34], the last species BH3(H2) possibly acts as
intermediate before the formation of BH3OH− by reaction of BH4

− and H2O.
We then used Gaussian 09 software to perform geometry optimization and NMR

calculations for each of these possible intermediates. We found the chemical shifts listed
in Table 2. As observed in this table, a relatively good agreement between CASTEP and
Gaussian 09 results was obtained considering the two investigated functionals (B3LYP
for Gaussian 09 and PBE for CASTEP), except for BH3(H2). In the case of this species,
the impact of the dispersion could be invoked but additional calculations using DFT-D
in CASTEP showed a very small influence of dispersion on the calculations. It is worth
mentioning that in a previous study [31], the chemical shift of B2H7

− in THF as solvent was
reported to be δ −26 ppm. Similarly, using CASTEP calculations, we found comparable
values (Table 2). We also calculated the chemical shifts for the intermediates based on
BH4−x(OH)x

− (with x = 1, 2, 3, 4), such as: BH4
− with δ −51.5 ppm; BH3OH− with

δ −11.4 ppm; BH2(OH)2
− with δ +0.1 ppm; BH(OH)3

− with δ +1.1 ppm; and B(OH)4
−

with δ +3.1 ppm.
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Table 2. Chemical shifts (δ, in ppm) for the hypothetic BH3-based short-living intermediates plus
that of BH4

− for comparison as calculated using Gaussian 09 and CASTEP. The experimental values
for the experiment (c) are recalled, where I1 is proposed to be DMF·BH3, and I2 to be B2H7

−.

Calculation H2O·BH3 DMF·BH3 BH3OH− B2H7− BH3(H2) BH4−

Gaussian 09 0 −6.3 −16.8 −29.7 −40.2 −54.7
CASTEP +2 −8.2 −11.4 −31.8 −48.1 −51.5

Experim. (c) −8.9 −14.4 −20.3 −40.5

Going back to the results presented in Figure 3 and using the data in Table 2, we
ascribed the quartets at follows. The signals at δ−8.9 ppm and δ−14.4 ppm (Figure 3) were
unambiguously attributed to DMF·BH3 and BH3OH−. Because the calculated chemical
shift of BH3(H2) is much different from that of remaining signals at around δ −21 ppm,
we discarded its formation. We also discarded the formation of H2O·BH3 due to the
absence of signals at around 0 ppm in our experimental conditions. Accordingly, the
partly overlapping quartets are at δ −20.3 ppm and δ −21.8 ppm and are attributed to
B2H7

− and B2H7
− in interaction with H2O. Indeed, the chemical shift for the quartet due

to [B2H7·H2O]− was calculated as −28.1 ppm using Gaussian 09 and −32.6 ppm using
CASTEP; these shifts were close to those calculated for B2H7

− (Table 2).
Based on the experimental results reported above and supported by the calculations

performed, we suggest that the BH4
− anions dissolved in DMF are able to react with H2O

taken in excess to form BH3-based intermediates such as DMF·BH3, BH3OH−, and B2H7
−.

These intermediates are much likely to be in equilibrium. Based on the discussions reported
in [30], we thus suggest that in DMF, BH3OH− forms first and DMF·BH3 and B2H7

− forms
from BH3OH− (by substitution of Lewis bases). This is illustrated in Figure 6.
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Figure 6. Mechanistic sequence illustrating the formation of the identified BH3-based intermediates
BH3OH−, DMF·BH3, and B2H7

−.

3. Materials and Methods

Sodium borohydride NaBH4 (99%), sodium hydroxide NaOH (≥98%), N,N-dimethyl
formamide C3H7NO (DMF; 99.8%, anhydrous), Pt wire (99.9%, Ø 1.0 mm), Pd wire (99.9%,
Ø 1.0 mm), and Au wire (99.95%, Ø 1.0 mm) all from Sigma-Aldrich were used as received.
We stored and handled them in our argon-filled glove box (MBraun M200B, with O2/H2O <
0.1 ppm). We used Milli-Q deionized water (18.2 MΩ cm) and it was degassed by bubbling
argon for 30 min before its use.

In a first step, the hydrolysis conditions were such that water acted as both reactant
and solvent. The H2 evolution experiments were performed as follows. Under argon, 50 mg
of NaBH4 were transferred in a Schlenk tube (used as hydrolysis reactor). For the catalyzed
experiments, a piece of metal wire (16.1 mg of Pd, 14.5 mg of Pt, or 14.3 mg of Au) was also
transferred in the tube. The tube was sealed and the glove box was taken out, installed
to our hydrolysis set-up (reactor connected to an inverted burette via a cold trap kept at
0 ◦C), and immersed in an oil bath at 30 ◦C. The hydrolysis reaction was started by injecting
2 mL of an aqueous alkaline (0.1 M NaOH) solution. In these conditions, the mol ratio
H2O/BH4

− was 84. The displacement of the blue-colored liquid in the inverted burette due
to the generated H2 was video monitored. The H2 evolution experiments were repeated
to analyze the solution by 11B NMR spectroscopy (Bruker Avance 400 NMR spectrometer
equipped with a BBOF probe; BF3·OEt2 as reference; acetonitrile-d3 such as ≥99.8 atom %
D and from Sigma-Aldrich).

In a second step, the hydrolysis conditions were modified such that water only acted
as reactant. To do so, 10 mL of DMF was used as solvent of 50 mg of NaBH4. To this
solution prepared under argon, a piece of metal was added to catalyze the reaction. The
hydrolysis reaction was started by injecting 0.95 mL of alkaline (0.1 M NaOH) aqueous
solution. The concentration of H2O in DMF was 5.291 M and the mol ratio H2O/BH4

− was
about 4. The solutions were analyzed by 11B NMR spectroscopy every 24 h for 3 days.

In a third step, the hydrolysis conditions were once again modified. They were such
that the water amount in DMF was increased and the mol ratio H2O/BH4

− passed from
4 to 32. Otherwise, the solutions were prepared similarly and they were analyzed by 11B
NMR spectroscopy every 24 h for 3 days.

We finalized the attribution of the 11B NMR signals using theory and calculations. We
used Gaussian 09 software to perform geometry optimization, vibrational analysis, and the
NMR calculations. The molecular structures were determined by density functional theory
calculations. A gas phase geometry optimization of the Gibbs free energy was calculated
using B3LYP hybrid density functional with 6-311(++)G(2d,p) basis set at 298.15 K. NMR
spectra (NMR references: TMS and BF3-OEt2) were predicted by using the same level of
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theory (B3LYP/6-311++G(2d,p)). Additional computational methods were used to probe
the structural properties of the different intermediates (Figure 5 and Table 2). As the reac-
tions are difficult to stop, to isolate the structures, molecular simulations appeared to be
the most powerful strategy to determine the corresponding spectroscopic properties. In
complement of Gaussian 09 calculations to determine the NMR chemical shifts, calculations
consisting into geometry optimization and NMR properties determination were performed
using CASTEP implemented in Materials Studio 2020 [35]. This is a DFT-based code using
the projector-augmented waves (PAW) and gauge-included projector-augmented waves
(GIPAW) algorithms for NMR chemical shifts, respectively. Here, the PBE functional was
used in the generalized gradient approximation (GGA) for the exchange correlation en-
ergy. The core−valence interactions were described by norm-conserving pseudopotentials
within the NMR CASTEP package and without implementation of any additional correc-
tions. A kinetic energy cut-off was considered and the size of the box was fixed at 10 Å
(additional calculations have been performed by considering a box size fixed at 20 Å and
leading to similar results), which produced converged results for geometry optimization
and NMR shielding determination. The convergence of the self-consistent field (SCF)
calculations were reached when the total energy variation of the system was lower than
10−5 eV/atom, the maximum force variation was lower than 0.03 eV/Å, and the maximal
displacement was lower than 0.001 Å. In order to compare the GIPAW calculated 11B shield-
ing values with the corresponding experimental values, the following expression was used:
δiso, calc = σref − σiso, where σref corresponds to the value obtained for 11B (BH3-OEt2) and
σiso is the computational value for the investigated species.

Additional calculations were performed with CASTEP to investigate the effect of
the dispersion (by considering DFT-D corrections (suing OBS method implemented in
Materials Studio)) and the use of ultrasoft pseudo-potentials. A small influence on the
NMR properties was observed if the dispersion was taken into account, while the use of
ultrasoft pseudo-potentials led to stronger variations.

4. Conclusions

When hydrolysis of BH4
− took place in water that acted as both solvent and reactant,

only one short-living intermediate was detected. It was the well-known BH3OH−. In such
conditions, the amount of water was excessive, offering a favorable environment to the
complete hydrolysis of each BH4

− into B(OH)4
−. When hydrolysis of BH4

− took place in
DMF in the presence of a stoichiometric amount of water, only BH3OH− was detected again.
In these conditions, the amount of water was too low and, if any, the other intermediates
were not detected because of too low concentrations (below the detection limit). When
hydrolysis of BH4

− took place in DMF as solvent and in the presence of an excess of water,
four BH3-based intermediates were detected, as evidenced by 11B NMR quartets peaking at
δ −8.9, δ −14.4, δ −20.3, and δ −21.8 ppm. Using geometry optimization and calculations,
these signals could be ascribed to DMF·BH3, BH3OH−, and B2H7

− (in two conformations
or in interaction with DMF or H2O) that are likely to be equilibrium. This illustrates
the capacity of the Lewis acid BH3 to interact with Lewis bases such as DMF, OH−, and
BH4

−. We also suggest that in DMF, BH3OH− forms first and DMF·BH3 and B2H7
− forms

from BH3OH−. These findings are important from a fundamental point of view for a
better understanding of hydrolysis of BH4

− at the molecular level. These findings are also
important for a better understanding of production of boron-based impurities in synthesis
of boranes; boranes can be produced from BH4

− in an organic solvent like DMF that may
contain traces of moisture.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27061975/s1. Figure S1: 11B NMR spectra of the
10 mL DMF solutions of BH4

− (1.32 M) hydrolyzed by 0.95 mL of alkaline (0.1 M NaOH), un-
catalyzed or catalyzed by Pd, Pt, or Au after 0, 24, 48, and 72 h. These spectra focus on the
range between δ +20 ppm and δ −50 ppm; Figure S2: 11B NMR spectra of the 10 mL DMF so-
lutions of BH4

− (1.32 M) hydrolyzed by 0.95 mL of alkaline (0.1 M NaOH), uncatalyzed or cat-
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alyzed by Pd, Pt, or Au after 0, 24, 48, and 72 h. These spectra focus on the range between
δ +20 ppm and δ −30 ppm; Figure S3: 11B NMR spectra of the 10 mL DMF solutions of BH4

−

(1.32 M) hydrolyzed by 7.6 mL of alkaline (0.1 M NaOH), uncatalyzed or catalyzed by Pd, Pt, or
Au after 0, 24, 48, and 72 h. These spectra focus on the range between δ +20 ppm and δ −50 ppm;
Figure S4: Deconvolution of the multiplet located between δ −18.5 ppm and δ −23.5 ppm for the
11B NMR spectrum of the 10 mL DMF solutions of BH4

− (1.32 M) hydrolyzed by 7.6 mL of alkaline
(0.1 M NaOH) and catalyzed by Au after 48 and 72 h; Table S1: Results of the deconvolution made for
the signal shown in Figure S4. The chemical shifts, Pascal’s triangles, and convergences are shown;
the mol files of the structures are presented in Figure 5.
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