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We demonstrate that the general clinical conditions, risk factors and numerous patholog-
ical and biological features of COVID-19 are analogous with various disorders caused by
the uncontrolled formation of neutrophil extracellular traps and their by-products. Given the
rapid evolution of this disease’s symptoms and its lethality, we hypothesize that SARS-CoV2
evades innate immune response causing COVID-19 progresses under just such an ampli-
fier loop, leading to a massive, uncontrolled inflammation process. This work allows us to
propose new strategies for treating the pandemic.

December 2019 saw the emergence of the Severe acute respiratory syndrome – Coronavirus 2
(SARS-CoV-2), which causes the coronavirus disease-2019 (COVID-19) [1]. Several clinical syndromes
associated with SARS-CoV2 are described: asymptomatic forms, uncomplicated disease, non-severe
pneumonia and severe pneumonia, acute respiratory distress syndrome (ARDS), a life-threatening res-
piratory failure, and also sepsis and septic shock with multivisceral failure syndrome. Patients with
COVID-19 display polymorphic manifestations including clinical features like fever, nonproductive
cough, dyspnea, myalgia, fatigue, with paraclinical characteristics like normal or decreased leukocyte
counts, and radiographic evidence of pneumonia. Accumulating evidence reveals that an excessive and
uncontrolled release of pro-inflammatory cytokines, called cytokine storm, occurs frequently in severe
cases. This cytokine storm leads to ARDS, multiple organ damage and even death. The COVID-19 cy-
tokine storm is also clearly characterized in critically ill patients by substantial impairment of the host
immune system and, in particular, the innate immune response [2].

Neutrophils play an important role as the first line of innate immune defense. One of their functions
known as neutrophil extracellular traps (NETs) was discovered in 2004 [3–5]. These are extensive struc-
tures released extracellularly from activated neutrophils in response to infection. They are composed of
granular protein assembled on a scaffold of released chromatin. These structures impede the dissemina-
tion of microorganisms in blood by trapping them mechanically, and by exploiting coagulant function
to segregate them within the circulation [6]. NET components (DNA, histones, granule proteins) also
contribute to the triggering of an inflammatory process [3–6].

NET function, however, can be considered a ‘double-edged sword’ [7]. On one hand, as an innate im-
mune response, NET formation is an efficient strategy for neutralizing invasive microorganisms. On the
other hand, NET can be harmful to the host, in that its exposed by-products are toxic to endothelial cells
and parenchymal tissue. Unbalanced NET formation and neutrophil activation may therefore play a sig-
nificant role in the pathogenesis of numerous non-autoimmune pathologies, such as thrombosis, cystic
fibrosis, sepsis, transfusion-related acute lung injury, severe obesity, gouty arthritis, pre-eclampsia or kid-
ney diseases; and in the pathogenesis of autoimmune diseases such as lupus, Type 1 diabetes, vasculitis or
rare conditions affecting small blood vessels, particularly those of the lungs, skin and kidneys [5] (Table
1A) [8–20].
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Table 1 Physiopathological link between COVID-19 and dysregulation of NET formation

A B
Common pathological conditions or biological features COVID-19 comorbidities/host risk factors

Overall Non-auto-immuno

Complex disease Pulmonary diseases*

Inflammatory disease Cerebrovascular disease*

Multi-organ damage Kidney diseases*

Pathologies Cardiovascular disease*

Respiratory failure Hypertension*

ARDS Obesity*

Heart failure Chronic inflammation disease

Acute cardiac injury Disseminated intravascular coagulation

Sepsis Sepsis

Type 1 Diabetes sensitization Sickle cell disease

Kidney diseases Auto-immune

Inflammatory bowel disease Type 1 diabetes

Chronic inflammation disease Rheumatoid arthritis

Rheumatoid arthritis

Neuropathy

Gouty arthritis sensitization

Vascular and coagulation consequences

Disseminated intravascular coagulation

Endothelium damage

Systemic vascular permeability

Prothrombotic

Abnormality of coagulation function

Biological features

High level neutrophils

High level interferon

High level C reactive protein

High level proinflammatory cytokines

Elevated presence of fibrinogen

High level antipholipid antibodies

A: Common physiopathological conditions or biological features of COVID-19 and diverse pathologies caused by NETosis dysregulation. Italic: patholo-
gies found in a minority of cases. B: COVID-19 comorbidities/host risk factors. Italic: suggested comorbidity observed as trends. No italic: reported
comorbidity.
All COVID-19 comorbidities except cerebrovascular disease and immunodeficiency, are NETosis relevant diseases. Data updated up to April 22, 2020.
*Comorbidity as independent risk factors as reported by McMichael et al. [27].

There are various approaches to controlling NET formation in the context of viral infection. Naturally occurring de-
oxyribonuclease I (DNase-1) digests extracellular chromatin and NETs [10–14]. Low level bioactivity of endogenous
DNase-1 may lead to a dysregulation of NETs, thus causing autoimmune diseases and other inflammatory disorders.
DNase-1 is the only NET-targeting molecule already in use in clinical practice, as it is used to treat both cystic fibrosis
in order to improve lung function and reduce infectious exacerbations, and virus-associated bronchiolitis [15,16].
However, the fact that DNase-1 dismantles the NET structure without degrading the whole protein components of
NETs, and indicates that it is less effective in abrogating a NET-triggered inflammatory response. The latter can be
targeted with using histone-blocking antibodies [9]. As regards neutrophil–platelet interactions, aspirin treatment
decreases NET formation in the lung microcirculation and plasma, and also decreases the deposition of platelets with
neutrophils on lung vascular walls [9]. Very different structural classes of molecules can inhibit the potent neutrophil
stimulus for the release of NETs by platelet activation of endosomal toll-like receptors (TLRs) [10]. Such approaches
include anti-CLEC (C-type Lectin-like receptors) [12] and especially a bispecific anti-CLEC5A/TLR2 monoclonal an-
tibody [13]. Hydroxychloroquine, a broadly anti-malarial and anti-inflammatory drug, shows TLR-pathway blockage
capacity [21]. Note, Zuo et al. [22] recently showed that hydroxychloroquine treatment in COVID-19 does not affect
the level of NETs in the serum of hospitalized patients showing either mild or severe forms of the disease. The use of
biologics to block cytokines is now widespread, as in the use of newer, small molecule drugs such as ‘Jakinibs’ [23],
or anti-interleukin 6 (IL-6) approaches to block neutrophil function [24]. Self-DNA re-entry may be recognized by
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TLR DNA sensors as damage-associated molecular patterns (DAMPs); the observation of IL-26 as a ‘cargo’ molecule
for DNA, therefore, suggests the possibility of targeting IL-26, as part of a strategy to reduce inflammatory response
[25].

In all of this, we are flagging the analogous biological and physiological features of COVID-19 infection [1,2,26]
(Table 1A) and the detrimental amplification loop between inflammation and tissue damage induced by NETosis
dysregulation (Table 1A). Widely described, both are complex diseases that result in inflammatory processes and
multi-organ damages. More specifically, both are associated with an abnormality of coagulation factors, prothrom-
botic activity and with cytoxicity toward endothelial and epithelial cells, leading in particular to systemic vascular
permeability [2,25]. As a result of this, vasculitis, myocardial infarction, hemorrhage or systemic side effects on the
blood supply and on the functions of multiple organs are observed in both disorders (Table 1A). With respect to bi-
ologics, their effects include overconcentration of neutrophils in lung vascularization and high levels of interferon,
C reactive protein, lactate deshydrogenases, proinflammatory cytokines and high amount of circulating fibrinogen.
Accordingly, both may lead to failure of respiration function to the extent of ARDS, and also thrombosis, sepsis, acute
cardiac injury and heart failure [1,2,23,26–29] (Table 1B).

High levels of circulating NETs (and related increased amounts of circulating DNA and histones) are detected in
patients with viral infections such as hantavirus or human immunodeficiency virus (HIV). NETs and neutrophils
are also involved in the pathologies of chikungunya virus, simian immunodeficiency virus, influenza, parvovirus,
rhinovirus and influenza-associated pneumonia [19,30,31].

Although most people with COVID-19 have mild to moderate symptoms, the disease can cause severe medical
complications, and in some individuals leads to death. Older adults or people with existing chronic medical condi-
tions are at greater risk of evolving toward a serious form of COVID-19 [1,2,27]. As recently reported, hypertension,
obesity, diabetes mellitus and cardiac, renal or pulmonary diseases were found to be the most common chronic un-
derlying health conditions in old residents with COVID-19 in a long-term care facility [28]. Other comorbidities were
recently reported: inflammatory bowel disease, disseminated intravascular coagulation, sepsis, rheumatoid arthritis,
and chronic inflammation and Sickle cell diseases [9,32–35] (Table 1B). All these clinical conditions correlate with
the pathologies resulting from NETosis dysregulation [36–46] (Table 1A).

We were amongst the very first to report COVID-19 pathogenesis in light of NETs formation [28], at a moment
which saw several groups independently and concurrently reach similar conclusions to our own [22,47,48]. Here, we
showed the risk factor correlation, and that most of COVID-19’s pathological and biological features are analogous
with the deleterious effects of NET dysregulation (Table 1A). Acknowledging, of course, that correlation does not
equal causation, we are nonetheless confident in our hypothesis that COVID-19 progresses under an amplifier loop,
leading to a massive, uncontrolled inflammation process, so called cytokine storm, which is due in part at least to
unbalanced NET formation. We postulate that SARS-CoV2 induces a disproportionate virus-induced NET release,
and that this plays a key role in the COVID-19 pathogenesis. Further to this, we speculate that these patients may
have pathogenic host factors that allow SARS-CoV2 to find ways of evading the innate immune response, and that this
may in turn generate chronic NET auto-stimulation, whose impact is that of an autoimmune-like disease. It should
be noted that a recent experimental work clearly supports our account of the link between COVID-19 and NETosis
[22].

NETs appear to involve several mechanisms, as evidenced by the variety of deleterious effects of NETs and
by-products following SARS-CoV2 infection. First, overformation of NETs may trigger thrombosis by attracting
platelets and fibrinogen [5,7,16,49]. Extracellular DNA of mitochondrial or nuclear origin may stimulate the inflam-
matory response that participates in the ‘cytokine storm’ in an auto-inflammatory process [4,11,19,44,45]. Circulating
histones may contribute to this process [4,11]. Granulated proteases such as elastase may facilitate the virus cell entry
by enabling Spike protein cleavage [50], and by interfering with epithelial Na+ transport leading to inefficient mu-
cociliary clearance [51]. In addition, a high concentration of local or circulating proteases is toxic to endothelial and
epithelial cells leading to serious multi-organ tissue damage, in particular to vascular walls [52]. Note, no formation
of NETs by any other coronavirus was previously observed.

While neutrophils are the main starting point for extracellular and circulating DNA release, an effective strategy
may be to target NETs rather than neutrophils themselves. Considering the severe impact of the COVID-19 pandemic
on public health, the clinical imperative now should be to implement combination therapy with drugs currently
used on patients or in the final stages of clinical development. These drugs should include Remdesivir (GS-5734), a
Lopinavir/Ritonavir association combined or not (with or without interferon β-1a), hydroxychloroquine, anti-IL-6,
Jakinibs or intravenous immunoglobulins [2,22]. Note, these drugs did not show major effects in clinical trials. We
propose that, in the short term, DNase-1 treatment should be evaluated in clinical trials [53,54], with or without
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associated drugs. We also propose, in the longer term, a significant increase in research on the development of TLR
and CLEC inhibitors, and of anti-IL26 therapies.

Competing Interests
The authors declare that there are no competing interests associated with the manuscript.

Funding
A.R. Thierry is supported by INSERM. This work was funded by the ‘SIRIC Montpellier Cancer Grant INCa Inserm DGOS 12553’.

Acknowledgements
The authors thank S. Dejasse, C. Mc Carthy, J. Lopez and RC Gallo.

Abbreviations
ARDS, acute respiratory distress syndrome; CLEC, C-type lectin-like receptor; COVID-19, coronavirus disease-2019; DAMP,
damage-associated molecular pattern; DNase-1, deoxyribonuclease I; HIV, human immunodeficiency virus; IL-6, interleukin 6;
NET, neutrophil extracellular trap; TLR, toll-like receptor.

References
1 Wu, F. et al. (2020) A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269,

https://doi.org/10.1038/s41586-020-2008-3
2 Li, X., Geng, M., Peng, Y., Meng, L. and Lu, S. (2020) Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharmaceut. Analysis

S2095177920302045
3 Brinkmann, V. (2018) Neutrophil Extracellular Traps in the Second Decade. J. Innate Immun. 10, 414–421, https://doi.org/10.1159/000489829
4 Elkon, K.B. (2018) Review: Cell Death, Nucleic Acids, and Immunity: Inflammation Beyond the Grave. Arthritis Rheumatol. 70, 805–816,

https://doi.org/10.1002/art.40452
5 Pertiwi, K. et al. (2018) Neutrophil Extracellular Traps Participate in All Different Types of Thrombotic and Haemorrhagic Complications of Coronary

Atherosclerosis. Thromb. Haemost. 118, 1078–1087
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