
HAL Id: hal-03596105
https://hal.umontpellier.fr/hal-03596105

Submitted on 3 Mar 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An FPGA-based Emulation Platform for Edge
Computing Node Design Exploration

Theo Soriano, David Novo, Pascal Benoit

To cite this version:
Theo Soriano, David Novo, Pascal Benoit. An FPGA-based Emulation Platform for Edge Computing
Node Design Exploration. RSP 2021 - 32nd International Workshop on Rapid System Prototyping,
Oct 2021, Virtual event, France. pp.8-14, �10.1109/RSP53691.2021.9806230�. �hal-03596105�

https://hal.umontpellier.fr/hal-03596105
https://hal.archives-ouvertes.fr

An FPGA-based Emulation Platform
for Edge Computing Node Design Exploration

Theo Soriano, David Novo, and Pascal Benoit
LIRMM, University of Montpellier, CNRS

Montpellier, France
Email: {firstname}.{lastname}@lirmm.fr

Abstract—Recent advances in machine learning have made it
possible to consider the implementation of smart applications in
constrained systems at the edge of the network. These memory
and Central Processing Unit (CPU) intensive applications may
require specific exploration methodologies to design efficient node
computing devices. To better guide and validate these explo-
rations, we need to perform energy and performance evaluations
of the system. Software-based evaluation tools are application-
oriented and do not consider real-time and hardware constraints.
Alternatively, hardware prototyping allows an accurate and real-
time evaluation but offers limited flexibility and does not allow
agile design exploration of the microcontroller unit (MCU).
In this work, we propose a Field Programmable Gate Arrays
(FPGA) based edge computing node emulation platform. Our
solution combines the flexibility and the real-time capability of
programmable logic with hardware prototype evaluation. We
present an open-source microcontroller architecture for design
exploration which integrates an activity monitor to collect traces
at run-time. These activity traces are then used to profile
the energy consumption of different components in the edge
computing node. Importantly, our FPGA is connected to real
sensors and communication modules to enable interactions with
the environment during the node evaluation and exploration.

I. INTRODUCTION

In recent years, the concept of edge computing has emerged
as an efficient solution to reduce the amount of data generated
by IoT nodes and thus reduce the energy needed to transport
and store this data [1] [2]. In opposition to cloud computing,
in edge computing, the data is processed locally (i.e., in the
node) and only relevant information is sent over the network.
The edge computing approach leads to more complex appli-
cations running on the node, resulting in more computations
and memory accesses, which may have an impact on the
energy consumed by the device. Still, end nodes are highly
constrained devices, their limited size and access to energy
make energy efficiency a critical issue in these systems.

Ultra-low-power nodes, operating for years on small batter-
ies, are limited to low bandwidth sensors (e.g., temperature,
humidity, pressure). However, edge computing based devices
will need to process richer sensor data (e.g., images, audio,
motions), applying strong constraints on the MCU regarding
energy management. The study of the energy distribution
(i.e., component-level energy breakdown) is a key enabling
tool to optimise the energy efficiency of these objects. These
evaluations allow identifying the components that consume
the most and therefore guide optimisation. Depending on
the application, the critical components may be different.

Accordingly, our goal is to propose a solution for evaluating
edge computing node performance and energy consumption
to enable an application-architecture co-optimisation of the
node. When considering evaluating a system, the first option
is to use a simple instrumented prototype node. We can easily
measure the energy of the devices while the application is
running. It is also possible to evaluate the performance of
the microcontrollers using the monitors that some of them
integrate. However, the main drawback of this solution is
its lack of flexibility. Indeed, if this solution is suitable for
the evaluation, it is not suitable for architecture exploration.
This is where Field Programmable Gate Arrays (FPGA) come
into play. FPGA emulation allows real-time interaction with
the environment with a high degree of flexibility thanks
to its reconfigurability. In addition, this method allows for
easy evaluation of the architecture’s performance through cus-
tomised monitors. The use of programmable logic allows the
evaluation and exploration phases to be performed on the same
target architecture. In this paper, we present an FPGA-based
modular emulation platform for edge computing applications.
This platform combines FPGA emulation for microcontroller
architecture evaluation and exploration, hardware prototype for
node-level energy evaluation and a parametric energy model
for application exploration.

The rest of the paper is organised as follows. Section II
enumerates the state of the art of performance and energy
evaluation solutions. Section III describes our FPGA-based
emulation platform which is a combination of an open-source
instrumented microcontroller architecture [3], a prototype node
around an FPGA target and a parametric model for fast
energy and performance evaluation. Then, Section IV presents
an example of evaluation and explorations made with our
platform. Finally, Section V concludes this paper.

II. RELATED WORKS

Performance and energy evaluation of end nodes is
paramount when developing complex applications in edge
computing systems. We can classify existing evaluation tech-
niques into three main categories: (1) software simulation; (2)
real system (either fabricating one or using an existing one);
and (3) FPGA emulation.

Software simulators (e.g., Instruction Set Simulator (ISS)
or Cycle Accurate Model (CAM)) are cheap and flexible.
However, ISS barely consider the hardware target as they only

model instruction executions and are therefore not accurate [4].
Instead, CAM simulators allow building, configuring and
simulating a computer architecture using behavioural models
for each component which makes them a suitable solution for
architecture evaluation and exploration. Their main limitation
in our context is that they are computer architecture oriented
and do not integrate models for commonly used cores for ULP
microcontroller. Furthermore, these simulations do not allow
for real-time evaluation and usually focus on the processing
unit and memories, hardly modelling the interactions with
other components in the node and the environment.

Using a real system provides the higher accuracy. Com-
mercial ultra-low power (ULP) microcontrollers integrate
trace modules or Performance Monitoring Units (PMU). This
method allows real-time and accurate performance and power
evaluations [5] [6]. The monitor output can be used to evaluate
architecture bottlenecks during applications execution (e.g.,
miss rates). Their main limitation is the lack of flexibility,
which severely limits design space exploration.

FPGA emulation is our preferred evaluation option. Since
the microcontrollers used in IoT nodes usually operate at
low frequencies, FPGA emulation allows combining the flex-
ibility of simulation tools and the accuracy and speed of
a physical circuit. In addition, it also allows interactions
with real-life radio and sensor modules. Enabling real-time
evaluation thanks to an FPGA-based prototype. This solution
is based on a microcontroller architecture described in a
hardware description language (HDL). This makes it easy to
add components such as a monitor. In addition, the FPGA
allows complete freedom in the choice of the activity to be
monitored. We can adapt the monitoring and strategically
place the set of probes depending on the architecture parts
to be evaluated. For example, Lenormand et al. [7] propose
an FPGA implementation integrating a monitor to evaluate
and optimize a matrix multiplication accelerator. The monitor
allows them to measure the performance of an accelerator,
to find its optimal settings and to identify its bottlenecks.
However, their work focuses only on accelerator performance
and the tested architecture does not integrate peripherals
commonly used in IoT applications. In another related work,
Ho et al. [8] present an implementation of a PMU in an FPGA-
based LEON3 platform, but the presented solution focuses on
the processor performance. Their architecture is a complex
multi-core architecture that does not correspond to the ULP
SoC architecture. Moreover, their PMUs are located in each
core and their counters only focus on the core performance
(including L1 miss rates).

Open-source HDL designs of ULP SoCs are more directly
related to our work. They target the development of prototypes
and applications for evaluation and design exploration. For
instance, the PULP platform [9] is an open-source low-power
RISC-V architecture. PULPissimo [10] is the microcontroller
architecture of the more recent PULP chips. This single-
core architecture is configurable and modular, it includes
peripherals and a high-performance accelerator for edge com-
puting applications. The main issue with this platform is

its complexity. It directly targets complex edge computing
devices and does not allow to build this complexity gradually.
As a result, it also requires a lot of FPGA resources for
emulation. Alternatively, Patrigeon et al. presented Flexnode, a
reconfigurable prototyping platform used for SoC architecture
exploration and real-time application evaluation [11]. The
proposed architecture is based on a Cortex-M0 and integrates
a memory-transactions dedicated monitor for memory tech-
nology exploration. The main limitation of this platform is the
simplicity of the architecture (single master bus with memories
and peripherals) and the use of a proprietary core developed
by Arm, which makes it extremely difficult to monitor the
internal events of the microarchitecture. Instead, our proposed
solution, which is presented in detail in the next section, can
be used to evaluate the edge computing node performance and
energy consumption and enable an efficient node application-
architecture co-exploration.

III. FPGA-BASED EVALUATION AND EXPLORATION

In this section, we describe our method to evaluate the
performance and energy of an edge node while running
an application. Our method includes a platform that allows
for architecture exploration using programmable logic, but
also for application-level exploration. To estimate the node’s
energy consumption, we measure the system activity at both
node and architecture level. These measurements are then
used to perform activation-based estimation estimation using
architecture and device energy models. Fig. 1 presents the
complete method from the IoT service (i.e., the application dis-
tributed over the IoT network) to the performance and energy
consumption estimation that enables node-level application-
architecture co-exploration. Based on one or a set of connected
node devices, the purpose of an IoT network is to provide a
service, whose computation is distributed over the nodes and
the cloud. Once the IoT service is defined, we first define
the node-level application constraints and then the node-level
hardware constraints (i.e., processing and storage capacity,
communication module bandwidth). These constraints guide
the design of the application and the reference architecture.
The microcontroller architecture is instrumented with an ac-
tivity monitor and emulated on an FPGA target. During
application execution, the FPGA is connected to a sensor and
radio board, the traces generated by the monitor are fed to the
linear parametric model, which evaluates the performance and
the energy consumption of the system based on precomputed
power profiles. Finally, we use these evaluations to guide the
application and architecture co-exploration.

A. ICOBS: Ibex core based system

When designing a flexible emulation platform for edge
computing node design exploration, it is important to choose
an adequate reference core architecture. There are many cores
in the IoT industry and more specifically in the embedded
systems industry. Amongst the largest manufacturers, there is
Arm, which offers the Cortex-M series, designed for ultra-
low power systems. These proprietary cores are sold as hard

EDGE COMPUTING
NODE PROTOTYPE

FPGA
MCU

ACTIVITY
MONITOR

SENSORS

RADIO

PERIPHERALS
POWER

PERIPHERALS
DATASHEET

PERIPHERALS MODELSIO
T

SE
R

V
IC

E

SW
SPECS

HW
SPECS

W
APP Soft.

ARCH
DESIGN

PARAMETRIC MODELS
CORE AND MEMORY
ACTIVITY COUNTERS

U
SE

R

C
O

U
N

TE
R

S

PERFORMANCE AND
ENERGY EVALUATIONS

C
P

U
 M

O
D

EL

ARCHITECTURE
EXPLORATIONS

TE
C

H
N

O
LO

G
Y

D

A
TA

ASIC
DESIGN

MEMORY AND
CORE POWER

Fig. 1. FPGA-based evaluation flow

macros. The core is described in a netlist optimised for power,
area or timing and silicon tested. However, when integrated
into a design, a hard macro core is not modifiable, we can
only access the I/O interface. To gain access to the internal
description of the core and to be able to reach every internal
signal, we decided to use an open-source softcore. A softcore
is an HDL processor implementation. Fortunately, there is a
large number of open-source softcores based on the RISC-V
instruction set architecture (ISA). We started using the PULP
platform to evaluate two RISC-V softcore: RISCY and Ibex.
Because of its simplicity and small size, we decided to use
the Ibex core. Ibex is a tiny production-quality open-source
32-bit RISC-V CPU core written in SystemVerilog. This core
is heavily parametrizable and well suited for embedded IoT
applications. Originally developed as part of the PULP plat-
form [9] under the name ”Zero-riscy”, Ibex is now maintained
and developed by lowRISC [12]. It is currently under active
development.

The open-source microcontroller architecture we propose
is illustrated in Fig. 2. We connect the Ibex core and some
memories to an AXI crossbar. The Ibex core integrates two
different memory interfaces. Connected to the Instruction
Fetch (IF) stage of the core, the IF interface is responsible
for fetching instructions from memory to the Instruction-
Decode (ID) stage. Externally, the IF interface only performs
word-aligned instruction fetches. Instead, The Load-Store Unit
(LSU) interface of the core is responsible for accessing
the data memory. Loads and stores of words (32 bit), half
words (16 bit) and bytes (8 bit) are supported. The IF and
LSU interfaces are connected via dedicated bridges to the
AXI crossbar as masters. The use of a crossbar allows the
integration of multiple masters on the bus, enabling them to
potentially access two different memories simultaneously. Of
course, the data flow through the crossbar causes latency,
but this solution has the advantage of being very flexible
and allows easy integration of memories and peripherals. For
memory-intensive applications such as machine learning, the
size of the memory required by the application and the model
can represent several hundred kB. On the FPGA, memories
will be implemented with block RAM (BRAM). We used a
Nexys video board, this board integrates a Xilinx XC7A200T

FPGA

IBEX CORE

AXI CROSSBAR

P
ER

IP
H

ER
A

L
B

U
S

RCC

GPIOs

TIMERs

UARTs

SPIs

I2Cs
RAM2
512kB

RAM1
512kB

ROM1
8kB

ACTIVITY
MONITOR

Sensor and
radio
board

Fig. 2. ICOBS architecture

FPGA which contains 1,625 kB of BRAM. We chose to use an
8 kB memory that contains the startup code and two 512 kB
memories that will incorporate the application code and data
section. Note, however, that the memory distribution can easily
be changed depending on the target application. The 1024 kB
are normally sufficient to store both code and data section of
tiny machine learning applications. Still, our platform could
easily be ported to a larger FPGA if necessary. To interact
with other components to build a fully functional IoT node,
we connect the AXI crossbar to a single master peripheral bus
based on the AHB-Lite protocol. Connected via a bridge, this
bus integrates a set of peripherals commonly used in IoT nodes
(UART, SPI, I2C, TIMER). We also integrate a reset and clock
control module (RCC), this device controls the clock and reset
signals of other peripherals and can also perform a soft reset.
Finally, we include an activity monitor which is described in
more detail in Section III.

Fig. 3 shows our node infrastructure. The Nexys video
FPGA board is connected to our sensor and radio board via
its PMOD connectors. The sensor and radio board integrates a
power management unit for battery voltage regulation, several
sensors (inertial measurement unit, microphone, temperature,
humidity, and camera) and two radio modules (Bluetooth low
energy and LoRa).

Fig. 3. FPGA-based node prototype

B. Application prototyping

Our node platform runs applications in bare metal (i.e.,
applications execute instructions directly on logic hardware
without an intervening operating system). This is a quite
common practice in embedded systems, indeed, for a given
application, in most cases, a bare-metal implementation will
be faster, use less memory and therefore be more energy
efficient. To facilitate application development, our platform
includes a firmware with all the drivers and macros that
ensure a convenient interface between hardware architecture
and application software. Thanks to a custom linker script and
startup file, we define the memory areas that will contain the
application code and those that will contain data. By default,
the code is located in RAM1, and the data is in RAM2.
ROM1 contains the boot code (bootloader). At boot time, the
bootloader will load the application binary from the UART
to RAM1. Once the entire binary is retrieved and copied
into the memory, the RCC module will perform a soft reset.
Thus, the system restarts from the beginning of RAM1. In
that way, the bootloader conveniently allows the application
to be modified without generating a bitstream each time. This
technique allows fast application development and debugging.

Once the system was fully operational, we developed a ma-
chine learning based benchmark for our architecture. For this
purpose, we adapted a TensorFlow LITE image classification
application based on the MobileNet model for our system.
In conclusion, we have a functional reference architecture
capable of running wide range of IoT applications from
basic sensor node applications to complex machine learning
algorithms.

C. Activity monitor

To evaluate our IoT applications, we instrumented our
architecture with an activity monitor. As in Patrigeon et al.
[11], we first integrated a set of counters that keep count of
the events in targeted modules, such as the memories, to make
estimations based on the activation (i.e., each activation has a
corresponding energy consumption associated; thus, we can
evaluate the total energy by counting the activations [13]). We
choose to position a probe at each master interface of the
crossbar. As all transactions are initiated by the masters, we
can see all transactions regardless of the number of slaves in

our system. With a basic decoder, we can differentiate each
type of access in each component of our architecture. This way
we can easily monitor the overall activity of each memory. The
activity of a memory is defined by the number of reads and
writes on 8, 16 and 32 bits. In the edge computing context,
the applications apply high constraints on the CPU and the
memories, so we decided to add the core activity monitoring
in our solution. To measure the activity of the core, we simply
use an output signal from the core indicating its operating
mode (run or sleep) so we can easily measure the number of
cycles spent in each mode.

Additionally, our solution allows us to evaluate the applica-
tion by tracking the different phases of the application in order
to estimate the energy sharing between the microcontroller
and the possible radio modules and sensors. For this purpose,
the monitor integrates eight user counters, which count the
cycles when they are enabled. This enables us to know how
long each module in the system has been in use. The use of
these counters has negligible impact on the execution of the
application (one single instruction for start and stop) unlike the
use of basic timers. For example, to evaluate the consumption
of the radio in our application, we can use the user counter
to know the duration of use of the communication module
in each of its operating modes. Thus, it is enough to know
the consumption of our radio in each application phase to
estimate the energy consumed by this component.

The activity monitor is integrated in our peripheral bus and
contains a set of basic counter registers connected to our
probes. The monitoring infrastructure is accessible from the
application code. We developed a simple library for reading
and writing the monitor registers. Fig. 4 shows how the
monitor is integrated into a sample application. Once the boot
procedure is finished, the startup phase of the application
starts. When the content of the memories is ready, the monitor
can be launched. To do this, we simply start the monitor, reset
its counters to make sure they are empty and enable them. To
measure the duration of each phase of the application, it is
easy to use the user counters. Finally, once the application is
finished, the first thing to do is to stop the counters by disabling
them, then the register values are sent to the computer via the
UART.

D. Parametric model
To evaluate the energy consumption of the node, we es-

tablished a linear parametric model that allows us to model
the total energy consumption of the system while executing
a particular application. Thus, for each module, we define a
succession of operating phases with a duration and a power
consumption based on reference documents of the device or
on basic energy models (see Fig. 5).

We define the energy of a particular module as:

E =

n∑
i=1

Ti × Pi, (1)

where Ti and Pi are the average power and the duration
time of phase i.

Hardware
reset

Software
reset

Remap boot
address to RAM1

Bootload code
execution

Startup code

Start monitor

Run application
code

Stop monitor

App phase 0

Application code
loaded in RAM

App phase 1

App phase N

Send result

Start UC0

Stop UC0 / Start UC1

Stop UC1 / Start UC2

Stop UCN-1 / Start UCN

Stop UCN

Fig. 4. Monitor utilisation procedure

Time

Po
w

er

T1 T3

P1

P2

T2

A
ct

iv
e

1

A
ct

iv
e

2

P3

St
an

d
b

y
3

Fig. 5. Example of component power profile

To implement the parametric model, we build a dedicated
python application. Fig. 6 shows a simplified view of the
model’s behaviour. The model takes as input the output of
the activity monitor which corresponds to the activation of
the core and memories and to the duration of each phase.
The parametric model integrates the power profile of the
peripherals and the core. In addition, it integrates the energy
of each type of memory activation. The parametric model
can compute the energy of each component during application
execution. Based on their power profiles, the energy of each
module during each phase is defined by the corresponding user
counter and the corresponding power.

The main advantage of this model is that it allows real-
time evaluation and rapid exploration at the application level.
Indeed, we can proceed to post-execution explorations by
modifying application-specific parameters. For example, in
the case of a periodic application, the parameters can be the
standby time or the duty cycle; for sensors and communication
modules, it can be the amount of data to be collected from the
sensor and the amount of data to be sent to the radio. We study
the share of each module in the total consumption at node-level
and at architecture-level (i.e., we can study the energy of each
memory and the core). We can then identify critical modules
and phases at the energetic level for each application.

MONITOR
OUTPUT

MICROCONTROLLER
POWER

CORE
COUNTERS

RAM1
COUNTERS

RAM2
COUNTERS

TOTAL NODE
ENERGY

MICROCONTROLLER
RUN ENERGY

MICROCONTROLLER
SLEEP ENERGY

USER
COUNTERS

COMPONENT 1
ENERGY

COMPONENT N
ENERGY

CORE POWER
MODEL

RAM1 POWER
MODEL

RAM2 POWER
MODEL

COMPONENT 1
POWER MODEL

COMPONENT N
POWER MODEL

SYSTEM
PERFORMANCE

Fig. 6. Parametric model evaluation flow

IV. EXPERIMENTAL RESULTS

To illustrate our method, we propose an example based on
an edge computing oriented IoT service for intrusion detection.
In concrete, the application follows this sequence: the system
will capture an image, execute a classification algorithm based
on a machine learning model (MobileNet) and send the result
on the network. The sequence is activated periodically or based
on an event interruption. The application uses a camera to
capture images and a Bluetooth module for communications
with the network. We use a Nexys video card to emulate the
microcontroller architecture described in Section III-A clocked
at 42 MHz. The architecture is implemented on the Xilinx
XC7A200T FPGA target and uses approximately 6% of the
look up tables an 71% of the Block RAM. Table I shows the
energy model used in our parametric model. Concerning the
power of the microcontroller, we used as energy model of the
core, an old version of Ibex (Zero-riscy) [14] and concerning
the memories we used a basic SRAM model [15]. The energy
model of the SRAM comes from a memory implementation
in 28-nm FD-SOI from STMicroelectronics.

Table II shows the output of the activity monitor after an
iteration of the application code execution. The first counter
represents the number of cycles in which our core was in sleep
mode during the monitor listening window. In this case, the
monitor only focuses on the main sequence of the application.
Therefore, it is normal for this counter to be equal to 0.
However, it can be useful to characterise the average duty cycle
of an application where the active sequences are unpredictable.
The second counter shows us the number of cycles the core has
been in run mode. We can see that the execution took about
4.37 billion cycles or about 104.16 seconds. Regarding the
memories, the monitor reports the number of reads and writes
in RAM1 and RAM2. RAM1 is used as a read-only memory
(no writes) and stores the application code section during

TABLE I
POWER MODELS

Microcontroller (ICOBS)

Core Run [µW/MHz] 2.08
Sleep [µW/MHz] 0.73

Memory

Idle [µW] 49.2
8 bits read [mJ] 7.65e-9

16 bits read [mJ] 1.53e-8
32 bits read [mJ] 3.06e-8
8 bits write [mJ] 5.85e-9
16 bits write [mJ] 1.17e-8
32 bits write [mJ] 2.34e-8

Camera (OV2640)
Shutdown [mW] 0
Capture [mW] 125

Bluetooth (RN4871U)
Standby [µW] 9.57

TX [mW] 30

TABLE II
MONITOR OUTPUT

Counter Value
CSCNT 0
CRCNT 4374703489
RAM1RBCR 7072803
RAM1RHCR 62
RAM1RWCR 503581082
RAM2RBCR 7084297
RAM2RHCR 694
RAM2RWCR 123259328
RAM2WBCR 259627
RAM2WHCR 184
RAM2WWCR 6184311
ML SETUP 24102792
GET IMAGE 3963645
INFERENCE RUN 4336268541
SEND RESULT 24897

application execution. RAM2 contains the data section of the
application including the stack. Concerning the user counters,
the first one (ML SETUP in Table II) is configured to report
the application initialisation time, while the second one (GET
IMAGE) is configured to report the time to fetch the image
from the camera. Once the image is stored in memory, the
inference process starts. The third user counter (INFERENCE
RUN) indicates the execution time of the inference. This
phase represents more than 99% of a sequence run of the
application. Finally, the fourth counter describes the time
needed to send the results via the Bluetooth module. This
time is short because in our case, the result is the label and
the probability for both ’person’ and ’not person’ categories
which only represents a few dozen bytes. Once these counters
have been integrated into our parametric model, we can start
evaluating the node. The estimated energy for the execution
of a sequence run of the application is 51.6 mJ. Fig. 7
shows how this energy is distributed between the three main

Bluetooth
2,0%
Camera
22,9%

Microcontroller
75,2%

Fig. 7. Energy share in the node after application execution

components (microcontroller, camera and Bluetooth module).
This information allows us to identify the critical components
of the system. In our case, we observe that more than three
quarters of the energy is consumed by the microcontroller.
This result is consistent with the CPU and memory intensive
nature of most edge applications.

We should then focus our optimisations on the microcon-
troller architecture. As mentioned before, for the moment
being our method only distinguishes between the energy
consumption of the memories and the core. We notice that
the memory consumption is about 76% of the microcontroller
consumption, consequently we decided to perform memory
technology explorations. In the same way we used the SRAM
model, we can use models based on other memory technolo-
gies. In their work, Patrigeon et al. [15] use a similar model
for STT-MRAM technology (see Table III). Fig. 8 presents
two different options concerning STT-MRAM integration in
our system. We study the integration of STT-MRAM for code
section only, then for both code and data section. We observe
an important increase in memory consumption when using
STT-MRAM. This can be explained by its higher idle power
and write energy. This consumption overhead comes from the
larger size of its drivers and the properties of the magnetic

TABLE III
STT-MRAM MODEL [15]

Leakage 352 µW
1 bit read energy 0.9 pJ
1 bit write energy 3.0 pJ

RAM1
CODE
20.59

RAM1
CODE
51.32

RAM1
CODE
51.32

RAM2
DATA
9.10

RAM2
DATA
9.10

RAM2
DATA
40.89

0

10

20

30

40

50

60

70

80

90

100

RAM2 - SRAM
RAM1 - SRAM

RAM2 - SRAM
RAM1 - STT-MRAM

RAM2 - STT-MRAM
RAM1 - STT-MRAM

En
er

gy
 [

m
J]

Fig. 8. Memory technology exploration (T=104s)

Duty cycle

E
ne

rg
y

[J
]

0,05

0,10

0,50

1,00

5,00

10,00

0,010,11

RAM1 - SRAM | RAM2 - SRAM RAM1 - STT-MRAM | RAM2 - SRAM
RAM1 - STT-MRAM | RAM2 - STT-MRAM

Fig. 9. Example of post-run application exploration: memory consumption
as a function of the application duty cycle

tunnel junction. Using STT-MRAM for the code section results
in a 2× increase in energy while using STT-MRAM for both
the code and data sections results in a 3.1× increase. However,
the STT-MRAM technology has the advantage of being non-
volatile, so it can be completely powered off and still maintain
the data. Now let us consider that our application periodically
repeats the sequence presented earlier. Since the duration of
the sequence is constant, if the period is longer than the
duration of the sequence, then the system can enter in sleep
mode until the next sequence begins. With the parametric
model, we can easily vary the duration of sleep to model
any wake-up period and explore the impact of any duty
cycle between run and sleep phases. Fig. 9 presents the total
energy of the three memory configurations presented in the
Fig. 8 according to the duty cycle between the execution and
the sleep phases. The energy consumption of the pure STT-
MRAM solution is constant. In fact, since the consumption
of these memories during the sleep phase is virtually zero,
the duration of the sleep phase has no influence. In the case
of SRAM-based solutions, in order not to lose stored data,
the memory needs to remain powered even during the sleep
phase. Thus, increasing the period with a constant active phase
leads to a lower duty cycle. In other words, the duration and
thus the proportion of energy consumed by the sleep phase
increases due to the consumption of volatile memory for data
retention. We can identify that for a duty cycle lower than 10%
the STT-MRAM based solutions are more energy-efficient.

V. CONCLUSION AND PERSPECTIVES

We presented an FPGA-emulated platform of a complete
edge computing node based on an open-source RISC-V mi-
crocontroller architecture [3]. We also introduced an activity
monitoring infrastructure designed to estimate node energy
consumption while executing the application in real time.
This method allows node-level evaluation but also an energy
analysis of the energy bottlenecks to guide future exploration
of edge computing nodes. Indeed, the parametric model used
allows for post-run explorations at the architecture level (e.g.,

memory technology exploration) but also at the application
level (e.g., wake-up period parameter sweep).

In future work, we plan to include domain-specific (e.g.,
machine learning) accelerators to improve node computational
energy efficiency. We also plan to integrate the activity of
the architecture’s internal peripherals (i.e., UART, SPI, I2C,
accelerator) in our monitor and in the parametric model.
Currently, the estimation of memory and core consumption is
done on the whole monitor window. We would like to extend
the monitor to count the memory accesses for each phase of the
application. The energy models used will have to be completed
and more precise. Finally, we plan to develop further machine
learning based applications and benchmarks.

ACKNOWLEDGMENT

The authors acknowledge the support of the French National
Research Agency (ANR), under grant ANR-19-CE24-0017
(NV-APROC project).

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and
its role in the internet of things,” in Proceedings of the Workshop on
Mobile Cloud Computing (MCC), 2012.

[2] M. Peng, S. Yan, K. Zhang, and C. Wang, “Fog-computing-based radio
access networks: issues and challenges,” IEEE Network, 2016.

[3] ICOBS, https://gite.lirmm.fr/adac/icobs/hardware/icobs mk5 project,
[Accessed October-2021].

[4] S. Fontaine, L. Filion, and G. Bois, “Exploring iss abstractions for
embedded software design,” in Proceedings of the EUROMICRO Con-
ference on Digital System Design Architectures, Methods and Tools,
2008.

[5] J. Bauer and F. Freiling, “Towards cycle-accurate emulation of Cortex-M
code to detect timing side channels,” in Proceedings of the International
Conference on Availability, Reliability and Security (ARES), 2016.

[6] M. El Ahmad, M. Najem, P. Benoit, G. Sassatelli, and L. Torres,
“Adaptive power monitoring for self-aware embedded systems,” in
Proceedings of the Nordic Circuits and Systems Conference (NorCAS),
2015.

[7] E. Lenormand, T. Goubier, L. Cudennec, and H.-P. Charles, “A com-
bined fast/cycle accurate simulation tool for reconfigurable accelerator
evaluation: application to distributed data management,” in Proceedings
of the International Workshop on Rapid System Prototyping (RSP), 2020.

[8] N. Ho, P. Kaufmann, and M. Platzner, “A hardware/software infras-
tructure for performance monitoring on leon3 multicore platforms,” in
Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL), 2014.

[9] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “PULP: A
parallel ultra low power platform for next generation IoT applications,”
in Proceedings of the IEEE Hot Chips Symposium (HCS), 2015.

[10] PULPissimo, https://github.com/pulp-platform/pulpissimo, [Accessed
July-2021].

[11] G. Patrigeon, P. Leloup, P. Benoit, and L. Torres, “Flexnode: a recon-
figurable internet of things node for design evaluation,” in Proceedings
of the IEEE Sensors Applications Symposium (SAS), 2019.

[12] LowRISC, https://github.com/lowRISC/ibex, [Accessed July-2021].
[13] G. Contreras and M. Martonosi, “Power prediction for intel XScale

processors using performance monitoring unit events,” in Proceedings
of the International Symposium on Low Power Electronics and Design
(ISLPED), 2005.

[14] P. Davide Schiavone, F. Conti, D. Rossi, M. Gautschi, A. Pullini, E. Fla-
mand, and L. Benini, “Slow and steady wins the race? a comparison
of ultra-low-power RISC-V cores for internet-of-things applications,”
in Proceedings of the International Symposium on Power and Timing
Modeling, Optimization and Simulation (PATMOS), 2017.

[15] G. Patrigeon, P. Benoit, L. Torres, S. Senni, G. Prenat, and G. Di Pend-
ina, “Design and evaluation of a 28-nm FD-SOI STT-MRAM for ultra-
low power microcontrollers,” IEEE Access, 2019.

https://gite.lirmm.fr/adac/icobs/hardware/icobs_mk5_project
https://github.com/pulp-platform/pulpissimo
https://github.com/lowRISC/ibex

	Introduction
	Related works
	FPGA-based evaluation and exploration
	ICOBS: Ibex core based system
	Application prototyping
	Activity monitor
	Parametric model

	Experimental results
	Conclusion and perspectives
	References

