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Abstract. 20 

Material properties of the diet of extant species is reflected by the microwear texture recorded 21 

on the enamel tooth surface, a signal that can be useful for estimating the diets of extinct 22 

species. Intra-specific dietary variations can occur between sexes or depend on seasonal 23 

vegetation cover changes in their habitat. However, these factors cannot, or very rarely, be 24 

incorporated within a paleontological context, especially if the fossil record of an extinct 25 

species is mainly composed of isolated teeth. In order to assess the impact of these factors on 26 

microwear texture features, we studied 42 wild-caught specimens of two sympatric extant 27 

species of caviomorph rodents, Proechimys cuvieri and P. guyannensis (Echimyidae, 28 

Octodontoidea) from the Cacao area located in French Guiana. Animals were captured 29 

between 2007 and 2012, in July and October, along a 1.5 kilometer transect ranging from an 30 

old secondary forest to a disturbed forest. We applied a Scale Sensitive Fractal Analysis 31 

(SSFA) to the first upper molars of these specimens. Differences of dental microwear textures 32 

were found between sexes, between months, and between habitat, leading to one species 33 

overlapping in microwear texture parameter space with the other in some cases. The results 34 

obtained help identifying which factors might drive intra-population variations in dental 35 

microwear texture. Its understanding is indeed a key-step to better interpret the dispersion 36 

observed within a given fossil sample set to obtain refined dietary reconstructions. 37 

 38 

Keywords: DMTA; SSFA; diet; Rodentia; Caviomorpha; South America 39 
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1. Introduction 40 

 41 

Among placental mammals, rodents are the most diverse and speciose group (e.g., Wilson and 42 

Reeder, 2005). The hystricognathous rodents from South America, or caviomorphs 43 

(Caviomorpha Wood, 1955), display great taxonomical diversity with four superfamilies and 44 

ten families (e.g., Lacher et al., 2016). Caviomorphs occupy a wide array of ecological niches, 45 

and the diversity of ecological conditions they face is associated with an equally wide array of 46 

morphological adaptations. Indeed, they show a large range of body-sizes, from about 100 g 47 

to 65 kg (e.g., Alvarez et al., 2017), display different life modes (terrestrial, arboreal, semi-48 

aquatic, fossorial, etc.; e.g., Mares and Ojeda, 1982; Patton et al., 2015; Wilson et al., 2016), 49 

different activity patterns (diurnal, nocturnal, cathemeral; e.g., Wilson et al., 2016), and 50 

exhibit distinct locomotor behaviors (cursorial, scansorial, swimmers, etc.; Wilson and 51 

Geiger, 2015). This diversity of life history traits reflects a differential exploitation of the 52 

ecological resources (see Townsend and Croft, 2008; Robinet et al., 2020, and references 53 

therein).  54 

The fossil record of the group so far extends back to the end of the Eocene (Antoine et 55 

al., 2012; Boivin et al., 2017, 2019a, 2022). Caviomorphs would thus testify to an at least 35 56 

million year-long endemic evolutionary history on the South American continent, marked by 57 

several adaptive radiation events. However, any role of ecological factors in those phases of 58 

diversification remains poorly known (e.g., Boivin et al., 2019a). The Paleogene fossil record 59 

of caviomorphs consists mainly of isolated teeth, but very few well-preserved skulls or 60 

associated post-cranial remains allow for functional morphology approaches (Verzi, 2002; 61 

Candela and Picasso, 2008, Boivin et al., 2019b). Among the ecological factors that may have 62 

driven the radiations of caviomorphs, food preference is a factor that is known to be very 63 
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important in modern niche partitioning (Bowers, 1982; Castro-Arellano and Lacher, 2009; 64 

Shiels et al., 2013).  65 

Here we apply Dental Microwear Texture Analysis (DMTA), and more specifically 66 

Scale Sensitive Fractal Analysis (SSFA), to assess niche partitioning among different species 67 

of rodents as dental microwear has proven to be efficient for detecting intra- and inter-specific 68 

variations of diet for both extant (Scott, 2012; Scott et al., 2012; Kaiser et al., 2016) and 69 

extinct toothed mammals (e.g., Gill et al., 2014; Ungar et al., 2017; Merceron et al., 2018) as 70 

well as among non-mammalian vertebrates (Purnell et al., 2007, 2012; Winkler et al., 2019b). 71 

Because microwear texture reflects short-term ingesta-related wear features (Teaford and 72 

Oyen, 1989; Teaford et al., 2018; Winkler et al., this issue), it can be used to detect seasonal 73 

variations of diet (Merceron et al., 2010; Berlioz et al., 2018; Percher et al., 2018). However, 74 

very few DMTA studies have so far been conducted on rodents (murids: Burgman et al., 75 

2016; Winkler et al., 2016; voles: Calandra et al., 2016; guinea pigs, Winkler et al., 2019a, 76 

2020, 2021; wild caviomorphs: Robinet et al., 2020).  77 

If DMTA is a state-of-the-art approach of surface metrological characterization (Ungar 78 

and Evans, 2016; Arman et al., 2019), two factors challenge the robustness of dietary 79 

reconstructions based on microwear texture: the inherently low sample sizes of 80 

paleontological datasets and a tendency to overlook potential sources of intra-specific 81 

variation (Calandra and Merceron, 2016; Arman et al., 2019). Indeed, fossil data are often 82 

fragmentary and can suffer from post-mortem surface alterations during the fossilization 83 

process (Weber et al., this issue). They suffer also from a lack of information regarding many 84 

factors that can be a source of biological variations, such as sex, season of death, or 85 

characteristics of the habitat in which the individuals lived. Thus, paleoecological inferences 86 

are often made by analogy with extant taxa, at the specific or generic level, under the 87 

assumption that the chosen sample of extant specimens is sufficiently representative. As such, 88 
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a majority of DMTA studies focus on inter-specific differences, accepting a presumably 89 

minor intra-specific variability without exploring it.  90 

Here, we explore the impact of inter- and intra-specific dietary differences linked to sex, 91 

seasonality, and/or vegetation cover variations within the same forested environment through 92 

dental microwear texture. For the purpose of this study, we analyze sympatric populations of 93 

two species of spiny rats (Proechimys, Echimyidae, Octodontoidea, Caviomorpha) from 94 

French Guiana. We aim to (1) test if DMTA can detect the differences of diet between the two 95 

studied species, (2) analyze if sex, seasonality and vegetation cover have detectable and 96 

significant effects on dental microwear texture, (3) assess if intra-specific variability has an 97 

impact on the inter-specific differentiation, and finally (4) discuss the implications for 98 

paleoecological interpretations. 99 

 100 

2. Materials and Methods 101 

 102 

2.1. Locality 103 

The locality of Cacao is situated in the north-eastern part of French Guiana, along the 104 

Comté River, 45 kilometers south of Cayenne. Specimens were sampled in five loci (LI-1, 105 

LI-2, LI-4, LI-5, and LI-8; Table 1, Fig. 1) following a clear gradient of anthropization and 106 

considering the known home range of the targeted species (see below). The vegetation 107 

cover across the loci varies from nearby cultivated areas (various fruits and vegetables) and 108 

highly disturbed areas around those fields (LI-4 and LI-5) to old secondary well-drained 109 

forests (LI-1, LI-2, and LI-8) with relatively middle-height closed canopy (around 28 m) 110 

and openings from small windfalls (Guitet et al., 2015). French Guiana is dominated by a 111 

warm and wet tropical rainforest climate. Precipitation at Cacao can range from 3,500 to 112 

4,000 mm yearly, with more than 250 rainy days per year (Météo France). Two rainy and 113 
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two dry seasons can be distinguished: a short rainy season from December to February, a 114 

short dry season from March to mid April, a long rainy season from April to July, and 115 

finally a long dry season between August and November (Catzeflis et al., 2018). The 116 

lowest monthly rainfall values are recorded in September and October (Catzeflis et al., 117 

2018). 118 

 119 

2.2. Materials  120 

The species studied here are the Cuvier's spiny rat, Proechimys cuvieri Petter, 1978, and the 121 

Cayenne spiny rat, Proechimys guyannensis Geoffroy, 1803. We analyzed a total of 42 wild 122 

adult individuals (27 of P. cuvieri and 15 of P. guyannensis; detailed list in Supplementary 123 

Data SD1) from the vicinity of Cacao (municipality of Roura), in French Guiana. All 124 

specimens were collected by a team led by one of us (FC) during several fieldwork seasons 125 

conducted between 2007 and 2012, following the ethical guidelines established by the 126 

American Society of Mammalogists for the use of wild mammals in research (Gannon and 127 

Sikes, 2007). Specimens were captured during the months of July (n = 20) and October (n = 128 

22). All specimens were identified following Patton (1987), Malcom (1992), Catzeflis and 129 

Steiner (2000) and Voss et al. (2001), and are housed in the collections of the Museum of 130 

Natural History of Geneva, Switzerland (MHNG). 131 

 The number of studied specimens is the result of an extensive trapping effort made at a 132 

very small scale during five different fieldwork campaigns. Although it may appear somewhat 133 

limited, this sample is, nonetheless, equivalent in size to microwear studies on rodents 134 

captured in the wild (see Burgman et al., 2016; Calandra et al., 2016; Winkler et al., 2016). 135 

Furthermore, this is the first of its kind among wild caviomorph microwear studies, which 136 

relied on specimens captured over broad geographical and temporal ranges (2D, Townsend 137 

and Croft, 2008; 3D, Robinet et al., 2020). 138 
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 Species of Proechimys are primarily frugivorous and granivorous (Table 2; Guillotin, 139 

1982; Adler, 1995; Henry, 1997; Patton and Leite, 2015). In both species, hard exocarps of 140 

fruit are not ingested, but gnawed away with incisors to extract the nutritive seed inside.  141 

Feer et al. (2001) observed that P. cuvieri consumes pulp in higher proportion than seeds, and 142 

Guillotin (1982) listed 48 species consumed by P. cuvieri in two French Guianan forests 143 

(Annexe 1; Guillotin, 1982), with a preference for fruit of 1 to 3 cm of diameter. The diet of 144 

P. cuvieri also includes a notable proportion of insects (Table 2; Guillotin, 1982; Feer et al., 145 

2001). However, no detail is available regarding the type of insects consumed. Males of P. 146 

cuvieri are reported as more frugivorous than females, and consuming fewer insects (Henry, 147 

1997). On the other hand, the primarily frugivorous diet of P. guyannensis is supplemented by 148 

fungi (arbuscular mycorrhizal fungi, Janos et al., 1995; Mangan and Adler, 1999) and leaves. 149 

No detailed diet data is available for P. guyannensis, however, in other mycophageous species 150 

of Proechimys, it is recorded that the consumption varies along the year depending on 151 

sporocarp availability (Janos et al., 1995). All diet data were obtained through the study of 152 

stomach contents of several populations of Proechimys in French Guiana (Guillotin, 1982; 153 

Henry, 1997; Feer et al., 2001). Ecological data, including diet, for each species are 154 

summarized in Table 2. 155 

 The studied specimens were not radio-tracked because the objective of the fieldwork 156 

was to collect (trap and kill) specimens. However, Guillotin (1982) studied in detail the home 157 

range (3,145 m² for females and 8,431 m² for males, with a maximum diameter of 158 

approximately 85 m for females and 131 m for males, Table 1; Guillotin, 1982), and the 159 

cumulated distance traveled per night (297 m for females and 586 m for males) of P. cuvieri 160 

in French Guiana. Everard and Tikasingh (1973) described the home range of P. guyannensis 161 

(14,000 m² for males and 1,500 m² for females). Those values indicate that both species stay 162 

in a relatively small area and do not tend to move over large distances. 163 
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 164 

2.3. Dental Microwear Textural Analysis (DMTA) 165 

We considered the first upper molar because it is diagnostic in rodents (e.g., Gomes 166 

Rodrigues et al., 2009; Firmat et al., 2010, 2011; Oliver et al., 2014) and followed the 167 

protocol of cleaning and molding (using polyvinyl siloxane ISO 4823, President Regular 168 

Body, Coltène-Whaledent Corporation) developed by Robinet et al. (2020). Similar to 169 

several rodent microwear studies (e.g., Townsend and Croft, 2008; Burgman et al., 2016; 170 

Calandra et al., 2016; Winkler et al., 2019; Robinet et al., 2020), the mesiolingual aspect of 171 

the protocone was analyzed (Fig. 2).  172 

 Scans were performed directly on the silicon molds with the "TRIDENT" Leica 173 

DCM8 white-light scanning confocal microscope (Leica Microsystems) with a 100× long-174 

distance lens (Numerical Aperture = 0.90; working distance = 0.9 mm), housed at the 175 

PALEVOPRIM laboratory (CNRS and Université de Poitiers, France). One scan was 176 

retained by specimen. The scanning process generated 1360 × 1024 point clouds with a 177 

vertical sampling resolution lower than 0.002 μm and a lateral sampling (x, y) of 0.129 μm 178 

(175 × 132 µm) that were saved as ".plu" files by the LeicaScan software (Leica 179 

Microsystems). After applying a pre-treatment using LeicaMap software (Leica 180 

Microsystems; Mountain technology) and including notably the extraction of aberrant 181 

peaks (see supplementary data in Merceron et al. 2016) and a vertical inversion, a 50 × 50 182 

μm area was extracted, from which the 2nd order polynomial surface was subtracted 183 

(Francisco et al., 2018). Finally, the surface was leveled and saved as a Digital Elevation 184 

Model (".sur") for Scale Sensitive Fractal Analysis (SSFA; Fig. 2).  185 

The SSFA (Scott et al., 2006) on the selected enamel surface was conducted with the 186 

Toothfrax and Sfrax software programs (Surfract Corporation, Norwich, Vermont, USA). 187 

We obtained the complexity (area scale of fractal complexity: Asfc), the anisotropy (exact 188 
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proportion of length scale anisotropy of relief: epLsar), the heterogeneity of complexity 189 

(heterogeneity of the area scale of fractal complexity between sub-surfaces from a given 190 

surface: HAsfc), and the textural fill volume (Tfv; textural fill volume at 0.2 μm) of the 191 

studied surface. In this study, we calculated heterogeneity of complexity from four 192 

(HAsfc4), nine (HAsfc9) and 16 (HAsfc16) cells, respectively (Supplementary Data S1). 193 

Scott et al. (2006) have described each of these variables in detail.  194 

The most important food properties controlling the formation of microwear texture 195 

are hardness, toughness, and abrasiveness (Calandra and Merceron, 2016). When 196 

considering primates or ungulates, complex microwear texture is seen among species 197 

eating hard food items, while high anisotropy generally relates to food items requiring 198 

more shearing motion, be they tough and/or abrasive (for a review see Ungar, 2015). 199 

Heterogeneity of complexity was interpreted to be related to the diversity of food items 200 

that an individual consumes on a daily basis (Souron et al., 2015). Thus, species with a 201 

narrow spectrum of feeding resources are expected to have a lower heterogeneity than 202 

opportunistic species (see Ramdarshan et al., 2016 and Merceron et al., 2018b). 203 

 204 

2.4. Statistics 205 

All statistical analyses were performed with R (R Development Core Team, 2018). 206 

As the data were not normally distributed, we used a Box–Cox transformation (Box 207 

and Cox, 1964) from the ‘Car’ package (Fox and Weisberg, 2011)	for the data to meet the 208 

parametric test requirements. 209 

For each parameter, in order to consider all the factors and their interactions, we 210 

started with a model that can be described as: DMT parameter ~ Species x Sex x 211 

Vegetation cover x Month of capture, where the factor "species" has the modalities 212 

Proechimys cuvieri and P. guyannensis, the factor "sex" has the modalities males and 213 
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females, the factor "vegetation cover" has the modalities old secondary forest 214 

(corresponding to loci 1, 2 and 8) and disturbed forest (corresponding to loci 4 and 5), and 215 

the factor "month of capture" has the modalities July and October. We then conducted a 216 

stepwise model selection based on Akaike’s Information Criterion (AIC) values using the 217 

stepAIC function incorporated in the MASS package (detailed in Supplementary Data 218 

SD2) and retained the best model (lowest AIC's values). 219 

Specimens were captured during five different years: 2007, 2008, 2009, 2010, and 220 

2012. The factor "year" was not included in the studied model because of its overlap with 221 

other factors in our dataset. However, it seems to not have a significative effect by itself. 222 

All information and details about the factor "year" are available in Supplementary Data 223 

SD3. 224 

Analyses of variance ANOVA (Anova; "Car" package) were undertaken to assess if 225 

there was a significant difference between groups for a given texture parameter. Posthoc 226 

pairwise tests combining the Tukey's honestly significant difference test (HSD) and 227 

Fisher's least significant difference (LSD) pairwise tests were performed in order to detect 228 

whether a significant difference between the groups existed. The LSD test is incorporated 229 

in the R package agricolae (de Mendiburu, 2019). Both tests were used to balance risks of 230 

type I and type II errors (Cook and Farewell, 1996). When only Fisher’s LSD test detected 231 

significant variation, we considered results of marginal significance (Burgman et al., 2016; 232 

Hullot et al., 2019; Robinet et al., 2020). 233 

 234 

3. Results 235 

 236 

Mean, median and standard deviation of the mean for all parameters are given per group in 237 

Table 3. All final models retained for each parameter are available in Supplementary Data 238 
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SD2, and include the factors species, vegetation cover, sex (except final model for HAsfc16), 239 

and month of capture (except final model for HAsfc9), as well as combination of the factor 240 

species x vegetation cover, species x sex (except final model for HAsfc16) and species x 241 

month of capture (except final models for HAsfc4 and HAsfc9). The complete ANOVA 242 

results for the best selected model for each microwear textural parameters are available in 243 

Supplementary Data SD4. The ANOVAs detected that complexity (Asfc) and textural fill 244 

volume (Tfv) are significantly different across taxa, sexes, and months of capture (Table 4). 245 

Textural fill volume (Tfv) values are significantly different across types of vegetation cover 246 

(Table 4). Complexity (Asfc), textural fill volume (Tfv), and anisotropy (epLsar) display 247 

differences across the combination of several factors (Table 4; Figs. 3 and 4). None of the 248 

three variables of heterogeneity of complexity display significant difference.  249 

 Microwear textures of P. cuvieri are more complex (Asfc) and have higher values of 250 

textural fill volume (Tfv) than P. guyannensis (Fig. 3). Males display more complex (Asfc) 251 

microwear textures and higher values of textural fill volume (Tfv) than females (Tables 3 and 252 

4). Posthoc tests reveal significant differences in complexity (Asfc) and textural fill volume 253 

(Tfv) between females of P. guyannensis and both females and males of P. cuvieri (Table 5; 254 

Fig. 3). Males of P. guyannensis also have lower values of complexity (Asfc) and textural fill 255 

volume (Tfv) than males of P. cuvieri, but do not show significant differences with females of 256 

P. cuvieri. For P. cuvieri, the dental microwear texture of females shows marginally lower 257 

textural fill volume (Tfv) and complexity (Asfc) than those of males (Table 5; Fig. 3). The 258 

dental microwear textures of the individuals captured during October are significantly less 259 

complex (Asfc) and are characterized by lower values of textural fill volume (Tfv) than the 260 

individuals captured in July (Tables 3 and 4). In particular, the individuals of P. guyannensis 261 

captured during October display significantly less complex (Asfc) dental microwear textures 262 

and are characterized by lower values of textural fill volume (Tfv) than individuals of P. 263 
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cuvieri captured during both periods, and the individuals of P. guyannensis captured during 264 

July. However, they display only marginally higher values of anisotropy (epLsar) compared 265 

to individuals of P. cuvieri captured during October and individuals of P. guyannensis 266 

captured during July (Table 5; Fig. 4). Specimens captured in July in the disturbed forest 267 

display significantly more complex (Asfc) microwear textures than specimens captured 268 

during October in both disturbed and old secondary forests (Tables 3 and 4). The microwear 269 

textures of individuals captured in the old secondary forest (loci 8, 1, and 2) are characterized 270 

by lower values of textural fill volume (Tfv) than individuals captured in the disturbed forest 271 

(loci 4 and 5; Tables 3 and 4; Fig. 4).  272 

 Marginal anisotropy differences were detected through the combination of the factors 273 

species, sex, and vegetation cover (Table 4), with female specimens of P. guyannensis 274 

captured in old secondary forest having slightly more anisotropic microwear textures than any 275 

other group, except for male specimens of P. guyannensis captured in disturbed forest with 276 

which no difference was detected (Table 3).  277 

 278 

4. Discussion 279 

 280 

4.1. Ecological interpretations 281 

 Applied to these two sympatric species of Proechimys, DMTA detects inter-specific 282 

differences consistent with their respective known ecology. The analysis also indicates intra-283 

specific differences, in particular between sexes and months of capture, as well as differences 284 

between types of vegetation cover. 285 

 Although fruit pulp is the primary component of the diet of both species of 286 

Proechimys, our results show that this "soft" (Vogel et al. 2014) item is most likely not the 287 

diet component having the largest impact on the enamel surfaces, as differences in dental 288 
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microwear textures are noticed between the two species (Table 4; Fig. 3). On one hand, the 289 

inclusion of seeds and insects (Guillotin, 1982; Feer et al., 2001), many of them being hard 290 

and brittle, in the diet of P. cuvieri may generate more variable and more complex (Asfc) 291 

microwear textures, associated with more deeply scarred textures as highlighted by the higher 292 

textural fill volume (Tfv) values (Table 2; Fig. 3A). On the other hand, the diet of P. 293 

guyannensis is supplemented by leaves but also AMF (Arbuscular Mycorrhizal Fungi, Janos 294 

et al., 1995; Mangan and Adler, 1999). These AMF contain chitin-bearing spores protected by 295 

compact aggregations of spores called sporocarps (Giovannetti and Gianinazzi-Pearson, 296 

1994). One may guess that those micrometric (between 30 to 160 µm; Janos et al., 1995) 297 

spores might lead to less complex (Asfc) microwear textures and lower values of textural fill 298 

volume (Tfv) (Tables 3 and 4; Fig. 3), having a similar effect as siliceous phytoliths and other 299 

small abrasives in grazer species (Scott, 2012).  300 

 Overall, textural fill volume (Tfv) and complexity (Asfc) of females are lower than 301 

those of males (Tables 3 and 5), which may reflect differences in diet between sexes in 302 

Proechimys. Dietary differences between males and females are known among different 303 

species of mammals reflecting differences in energetic requirements and physiology (e.g., 304 

Cransac et al., 2001; Kamilar and Pokemper, 2008). Such differences in diet being reflected in 305 

dental microwear patterns has previously been recorded in other species (see Merceron et al., 306 

2010; Percher et al., 2018). The ecology of P. guyannensis is not known in details, but males 307 

of P. cuvieri seem to be more frugivorous than females, and consume fewer insects (Henry, 308 

1997). As males have a home range twice larger than females (Guillotin, 1982), they might 309 

resort to secondary components of their diet less often than females. Furthermore, insects 310 

might fulfill the increased protein requirements of gestation and lactation periods in female 311 

rodents (Zambrano et al., 2005). Thus, the slight differences in textural fill volume (Tfv) and 312 

complexity (Asfc) observed between males and females of P. cuvieri might reflect a slightly 313 
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higher proportion of seeds in the diet of males compared to females. Lower values of textural 314 

fill volume (Tfv) indicate a less deeply scarred texture. Insects (preferentially consumed by 315 

females) and seeds (preferentially consumed by males) are both hard items, but the former are 316 

more diverse mechanically speaking (e.g., beetles vs. caterpillars) and might offer less 317 

resistance to mastication than dense seeds (Strait, 1993).  318 

 Specimens captured in October have less complex (Asfc) microwear textures 319 

associated with lower values of textural fill volume (Tfv) than specimens captured in July 320 

(Tables 3-5; Fig. 4). These differences are mainly apparent in individuals of P. guyannensis 321 

captured in October, which also have lower values in complexity (Asfc) and textural fill 322 

volumes (Tfv) as well as slightly higher values of anisotropy than those of P. cuvieri captured 323 

the very same month (Table 5, Fig. 4). Besides, P. guyannensis individuals captured in 324 

October also have slightly higher values of anisotropy than individuals of the same species 325 

captured in July (Table 5). It is known that fruit availability is highly seasonal even in tropical 326 

rainforests (Leigh, 1999; Forget et al., 2002; Jansen et al., 2002), even if the amplitude of 327 

fructification seasonality is lessened in secondary forests compared to primary forests in 328 

French Guiana (Sabatier, 1985). The peak of fructification generally coincides with the start 329 

of the wet season, between March and May. Neither July nor October can be considered as 330 

high fructification seasons, however, overall availability of fruit seems higher in July than in 331 

October (Charles-Dominique et al., 1981; Guillotin, 1982). It then seems that a drop-in food 332 

availability occurring during the dry season (October) has a significant impact on the diet, 333 

particularly that of P. guyannensis. As observed for other mycophageous species of 334 

Proechimys, AMF may become especially critical when competition for primary resources 335 

(fruit) is elevated due to scarcity of fruit (Mangan and Adler, 1999). No difference of 336 

microwear texture is detected between individuals of P. cuvieri captured in both months, 337 

which could indicate either that P. cuvieri does not modify its diet much across the months or 338 
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that their potential fallback food –mostly consumed in October– either have similar material 339 

properties as their preferred food resources, or have few effects on enamel surface. On the 340 

contrary, the seasonal differences in dental microwear texture in P. guyannensis support that 341 

in October when fruit are less abundant, the new component in diet, mostly leaves and fungi 342 

(AMF), have different properties than the primary dietary components (fruit and seeds). Our 343 

results also confirm that when fruit are abundant, during the wet season in July, both species 344 

seem to have more similar diets. 345 

With regards to the vegetation cover, individuals from the disturbed forest display 346 

higher values of textural fill volume (Tfv) than their counterparts from the old secondary 347 

forest (Table 4; Fig. 4). These results reflect differences in material properties of available 348 

food in the disturbed forest. Disturbed forests are generally less diverse from a vegetation 349 

cover and faunal diversity point of view (Weibull et al., 2003; de Thoisy et al., 2010; Mitchell 350 

et al., 2014). Arbuscular mycorrhizal fungi (AMF) are particularly sensible to disturbance of 351 

the soil, which would be the case around cultivated areas, which can reduce or even eliminate 352 

their presence (Mangan and Adler, 1999). Both species of Proechimys studied here are known 353 

to maintain their presence when they are constrained by anthropogenic disturbances. 354 

However, it is worth mentioning that only three specimens of P. guyannensis were captured in 355 

the disturbed forest (Table 3). Winkler et al. (2016) obtained similar results on Rattus rattus, 356 

comparing populations from disturbed and natural habitats. They found that specimens in 357 

disturbed environment were showing rougher microwear textures, to the extent that it could 358 

belong to different species, indicating higher diet abrasiveness (Winkler et al., 2016). 359 

Furthermore, the specimens captured in July in the disturbed forest have more complex (Asfc) 360 

microwear textures than those captured in October in both type of vegetation cover (Tables 3 361 

and 4). This could show that, even if July is not the high period of fructification (Catzeflis et 362 

al., 2018), fruit and seeds are consumed in the disturbed forest.   363 
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 364 

4.2. Intra-specific variation versus inter-specific variation 365 

Here, we do not only detect differences between two sympatric species from the same genus, 366 

but we also observed differences in dental microwear textures between seasons, types of 367 

vegetation cover, even at the small 1.5-km-transect scale of our study, and sexes (Table 4; 368 

Figs 3 and 4). These are related to seasonal variations in fruit and seed availability, as well as 369 

differences in feeding requirements between males and females. Such intra-specific 370 

differences were highlighted in other groups of mammals (e.g., Merceron et al., 2010; 371 

Bignon-Lau et al., 2017). In some cases, the intra-specific variability of both species overlaps, 372 

thereby partially obscuring inter-specific differences. For example, if inter-specific 373 

differences are obvious when all specimens of P. cuvieri and P. guyannensis are compared, 374 

no significant difference is found when the microwear texture of only P. cuvieri females and 375 

P. guyannensis males are compared (Table 5; Fig. 3).  376 

 However, other sources can contribute to increased inter-individual differences. The 377 

scanned surface was set to 50 µm × 50 µm to make sure it would fit with the dental facet for 378 

these small species. Such dimensions might seem small as the effects of a small hard or 379 

abrasive element impact a larger portion of the scanned area compared to larger surfaces 380 

usually considered for studies on other larger-bodied species of mammals (200 µm × 200 µm; 381 

Martin et al., 2018; Merceron et al., 2018a). This means that analyses on small surfaces (here 382 

for rodents but still true for any other mammals) would increase intra-specific variability (see 383 

Ramdarshan et al., 2017). Anisotropy (epLsar) is known to be particularly sensible to the 384 

effect of scanned surface area size (Ramdarshan et al., 2017). The intra-specific variations 385 

being high, it would partly explain why few inter-specific differences were found to be 386 

significant, especially on this very texture parameter  387 

 388 
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4.3. Implications for paleoecology 389 

Although composed of wild individuals belonging to present-day species, the characteristics 390 

of the present dataset (wild specimens, moderate sample size, multi-year and multi-season 391 

trapping, and variations in habitat) reflect what could be the properties of a fossil sample. 392 

Indeed, by nature, a fossil sample might be rather homogenous in its dental wear properties if 393 

it records a single catastrophic depositional event (i.e. mortality due to flooding or a volcanic 394 

eruption), or rather heterogeneous if it records successive embedding or reworking events, 395 

distinct in duration (from a few years to a few thousands of years). Comparing the intra-396 

sample variability of a fossil sample with the ones of different wild extant samples with 397 

different mortality curves allows the estimation of modality and timing of deposition for the 398 

fossil samples (Rivals et al., 2015).  399 

 An important point to keep in mind, when estimating the diet of extinct species, is that 400 

similar dental microwear textures can be the result of different ingested dietary items sharing 401 

similar material properties (Calandra and Merceron, 2016). Conversely, significant 402 

differences in dental microwear textures on homologous dental facets of different species are 403 

indeed evidence for difference in dietary habits. The primary component of diet does not 404 

always have the strongest impact on dental microwear texture. Marshall and Wrangham 405 

(2007) suggested that dental adaptations might reflect fallback foods (such as fungi, leaves, 406 

and insects) rather than preferred foods (such as fruit). For many species, preferred foods 407 

require little specialization and can be processed relatively easily, whereas fallback foods are 408 

less easily processed, and require more specialization (Robinson and Wilson, 1998). 409 

Experimental settings (Merceron et al., 2016b; Ramdarshan et al., 2016; Teaford et al., 2018; 410 

Winkler et al., 2019a) and applied studies (Merceron et al., 2010; Berlioz et al., 2018) have 411 

shown that fallback foods and secondary components of the diet may considerably affect 412 

dental microwear textures. Our results on a wild population of caviomorph rodents confirm 413 
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that this possibility applies also to this group. Indeed, they show differences in dental 414 

microwear between the two time periods (July and October), particularly highlighted in P. 415 

guyannensis. The differences might be either driven by a drop or change in fruit composition 416 

or the inclusion of fungi (AMF) and insects in diet. Among those fallback foods, the former 417 

contains high concentration of spores covered by resistant and protective tissues likely acting 418 

as abrasive agents on dental tissue, while insects display diverse mechanical properties from 419 

soft caterpillars to hard and brittle beetles. These fallback foods might be responsible for the 420 

seasonal differences in dental microwear textures (Ungar et al., 2008; Strani et al., 2019).  421 

Several studies recently shed light on the intra-specific variability of dental microwear 422 

textures depending on the composition of diet (for instance in ungulates, Ramdarshan et al., 423 

2016; Bignon-lau et al., 2017), or even the water content of the consumed items (i.e., dry 424 

versus wet grass in guinea pigs; Winkler et al., 2019a). Other studies even aimed further and 425 

looked into the variability at the individual level (Arman et al., 2019), often relying on 426 

experimental controlled feeding settings in order to identify the factors involved in intra-427 

individual variability and quantify it (Ramdarshan et al., 2017; Winkler et al., 2021). The 428 

intraspecific variability has to be explored from the individual level, comparing teeth and 429 

wear facets from the same individual to improve data acquisition and reproducibility 430 

(Ramdarshan et al., 2017; Arman et al., 2019; Winkler et al., 2021), to a larger scale, 431 

comparing between- and within-population variations of the same taxa across different 432 

ecoregions (Burgman et al., 2016; Arman et al., 2019). This work does not address the intra-433 

individual variability but focuses on factors of variability at the population level. Our results 434 

show that the dental microwear textures reflect differences in habitat structure at a small 435 

spatial scale (1.5 km transect) emphasizing the benefit of tooth wear analysis in general and 436 

especially DMTA to track variations of food availability at the micro-habitat scale (Belmaker, 437 

2018). Microwear textures from both species of Proechimys overlap when factors such as sex, 438 
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seasonality, and types of vegetation cover are considered, but interspecific differences are 439 

detected when both species are compared regardless of the other factors. These results 440 

illustrate particularly well the variability and flexibility of diets and feeding behaviors of 441 

caviomorph rodents and their potential impact on diet estimations of fossil taxa (Robinet et 442 

al., 2018). It also highlights the importance of having a well-known sample as detailed as 443 

possible rather than numerous specimens with low traceability (i.e., geographic provenance 444 

and date of capture). Indeed, one limiting factor in interpreting the DMTA results obtained for 445 

caviomorphs is the critical lack of detailed published ethological reports and ecological data 446 

for the majority of groups, as well as the little experimental data on dental microwear texture 447 

among caviomorph taxa (but see Winkler et al., 2019a, 2020, 2021). Indeed, while P. cuvieri 448 

is well studied and observations were made for both sexes, in both seasons (Guillotin, 1982; 449 

Feer et al., 2001), this is not the case for P. guyannensis. 450 

 This underscores that exploring the variability characterizing extant species at various 451 

scales is adding more layers of complexity to  paleoecological interpretations (Catz et al., 452 

2020; Ungar et al., 2020). Indeed, questions such as seasonality, or depositional timing are 453 

important issues in paleontology but also in archaeology (Milner and Bailey, 2005; Sánchez-454 

Hernández et al. 2014). Analysis of dental microwear and its intra-sample variation can 455 

complement other approaches to assess these aspects at a site scale (Kohn et al. 1998; Berlioz 456 

et al. 2017; Green et al. 2018; Blumenthal et al. 2019; Merceron et al. 2021). 457 

 458 

Conclusion 459 

This work, focused on two sympatric species of spiny rats (Proechimys) from French 460 

Guiana, applying DMTA, is the first to explore intra- and inter-specific variations of wild 461 

caviomorph rodents. In our case, DMTA detected differences of diet between the two species. 462 

Seasonal variations in fruit and seeds availability, as well as distinct feeding strategies 463 
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between males and females might explain the differences detected by DMTA. Microwear 464 

textures from both species overlap when factors such as sex, seasonality and types of 465 

vegetation cover are considered, reflecting a dietary overlap between P. guyannensis and P. 466 

cuvieri.  467 

Our results highlight that several points should be considered when applying DMTA 468 

to interpret diet of fossil taxa. The primary component of a diet does not always have the 469 

strongest impact on dental microwear texture. Indeed, microwear texture reflects the physical 470 

properties of food rather than its proportions in the diet. Given our results, it can be expected 471 

that the secondary components of the diet are dominant in the dental microwear texture 472 

formation in some cases. Our observations on living species also highlight how different 473 

factors might result in overlapping values of microwear texture parameters for species with 474 

different diets. While these results do not call into question the power of the DMTA to 475 

explore the paleoecology of extinct taxa in terms of diet, they do emphasize the necessity to 476 

recognize the high sensitivity and limitations of the method. DMTA reflects mechanical wear 477 

properties of diet but not all components of its full spectrum equally. The fragmentary nature 478 

of fossil samples only allows for a limited estimation of the diet variation of extinct taxa. 479 

However, this same intra-sample variability can be used to better identify the modalities of 480 

deposition events through non-destructive sampling.  481 
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Supplementary Data 514 

Supplementary Data SD1. - Detailed list of studied specimens and individual microwear 515 

textural parameters. The file name indicates the fact that the scan was realized on a mold 516 

(Zinv for inverted), the species (Pc for P. cuvieri; Pg for P. guyannensis), the collection 517 

number of the specimen, the scanned tooth (UM1 for first upper molar; l for left, r for 518 

right), the scanned area (pct for protocone; ml for the mesio-lingual portion of the 519 

protocone). The suffix -bis appears when a scan was retaken after a first failed attempt. 520 

The vegetation cover factor modalities are old secondary forest (corresponding to 1) and 521 

disturbed forest (corresponding to 2). The microwear texture parameters are the complexity 522 

(Asfc), the anisotropy (epLsar), the heterogeneity of complexity (HAsfc4, 9 and 16), and 523 

the textural fill volume (Tfv). 524 

 525 

Supplementary Data SD2. - Detailed stepwise model selection by AIC criterion for each 526 

microwear textural parameters. The factors included into the starting model are: "species" 527 

with the modalities Proechimys cuvieri and Proechimys guyannensis, "sex" with the 528 

modalities males and females, "vegetation cover" with the modalities old secondary forest 529 

(corresponding to loci 1, 2 and 8) and disturbed forest (corresponding to loci 4 and 5), 530 

"month of capture" with the modalities July and October, and all the interactions between 531 

those factors. 532 

 533 

Supplementary Data SD3. - Detailed description, structure of the distribution, and 534 

potential effect of the factor "year of capture". 535 

 536 

Supplementary Data SD4. - Complete analyses of variances (ANOVA) results for the 537 

best selected model for each microwear textural parameters following a Box-Cox 538 
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transformation. The modalities are Proechimys cuvieri and Proechimys guyannensis for the 539 

factor "species", males and females for "sex", old secondary forest (corresponding to loci 540 

1, 2 and 8) and disturbed forest (corresponding to loci 4 and 5) for "vegetation cover", July 541 

and October for "month of capture". 542 
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Figure captions 892 

 893 

Figure 1. Geographic map of the region of interest. A: Geographical location of French 894 

Guiana in South America (left) and of the little village of Cacao (red cross), south of Cayenne 895 

on the Comté River (right). B: Aerial photograph (Geoportail; www.geoportail.gouv.fr) of the 896 

Cacao area with the location of the five sites of capture from the anthropized region (left) 897 

toward old secondary forest (right). The numbered (1, 2, 4, 5, 8) white circles correspond to 898 

the five loci of capture (respectively LI-1, LI-2, LI-4, LI-5, and LI-8). See Table 1 for exact 899 

GPS coordinates. [2 columns width] 900 

 901 

Figure 2. Graphical representation of the acquisition process of dental microwear parameters 902 

from the studied specimens (A) to the studied areas of molar microwear (B). A, (left) position 903 

of the studied left first upper molar (M1) on the cranium of Proechimys cuvieri 904 

(MHNG1975.046) in occlusal view (scale bar = 1 cm) and (right) measurement position of 905 

the chewing facet on the same tooth (scale bar = 1 mm). The light gray filling indicates the 906 

enamel layer. The black rectangle indicates the 175 x 132 µm 3D scan acquired on the 907 

LeicaDCM "Trident". The surface generated was treated using the LeicaMap software 908 

(Mountain technology, Leica Microsystems). An area of study of 50 x 50 µm was cut out 909 

manually. Arrow indicates mesio-lingual direction. B, (left) topographic representations and 910 

(right) photosimulations of the 50 × 50 µm studied surface of Proechimys cuvieri 911 

(MHNG1975.046, top) and Proechimys guyannensis (MHNG1984.001, bottom) with the 912 

values of their associated Asfc (no unit) and Tfv (in µm3) parameters. [1.5 column width] 913 

 914 

Figure 3. Boxplots of significant microwear texture variables. A, by species; B, by species 915 

and sex. Females are in black, and males are in light gray. Pc, Proechimys cuvieri; Pg, 916 
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Proechimys guyannensis; Asfc, complexity; epLsar, anisotropy; Tfv, textural fill volume. 917 

Solid lines indicate when Tukey's HSD tests were significant (p< 0.05). [single column 918 

width] 919 

 920 

Figure 4. Boxplots of significant microwear texture variables. A, by species and month of 921 

capture; B, by species and vegetation cover. Specimen captured in July are in black, and in 922 

October in light gray. The old secondary forest vegetation cover (1) is in light blue filling, and 923 

the disturbed forest vegetation cover (2) is in blue filling. Pc, Proechimys cuvieri; Pg, 924 

Proechimys guyannensis; Asfc, complexity; epLsar, anisotropy; Tfv, textural fill volume. 925 

Solid lines indicate when Tukey's HSD tests were significant (p< 0.05). [single column 926 

width] 927 
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Tables 928 

 929 

Table 1. GPS coordinates and elevation of the five loci of capture in French Guiana. 930 

Locus Latitude Longitude Elevation 

LI-1 N 4°33.935’ W52°26.640’ 165 m 

LI-2 N 4°34.010’ W52°26.940’ 140 m 

LI-4 N 4°33.950’ W52°27.130’ 82 m 

LI-5 N 4°34.150’ W52°27.315’ 103 m 

LI-8 N 4°33.708’ W52°26.590’ 197 m 
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Table 2. Ecological data of species considered in this study. Body masses following Alvarez et al. (2017; supplementary data). 931 

Species N 
Mean 

mass 

Activity 

patterns 
Breeding pattern Diet Referencesa 

Proechimys cuvieri 27 323 g 
terrestrial 

nocturnal 

year-round 

(in French Guiana) 

fruit pulp (53%) and 

seeds (13%), insect 

(32%), leaves and fiber 

(2%) 

1; 2; 5; 6; 8 

Proechimys guyannensis 15 263 g 
terrestrial 

nocturnal 

seasonal 

(reportedly) 

mainly frugivorous (pulp) 

but also seeds and 

arbuscular mycorrhizal 

fungi 

2; 3; 4; 7; 8 

a References: 1) Guillotin, 1982; 2) Emmons and Feer, 1997; 3) Eisenberg and Redford, 1999; 4) Mangan and Adler, 1999; 5) Feer et al., 2001; 932 

6) Catzeflis and Patton, 2016a; 7) Catzeflis and Patton, 2016b; 8) Fabre et al., 2016. 933 

  934 
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Table 3. Descriptive statistics of dental microwear texture parametersa for each species by sex, by month of capture, and by type of vegetation 935 

cover. Abbreviations: m, mean; med, median; sd, standard deviation. 936 

 N Asfc     epLsar x103   HAsfc4   HAsfc9   HAsfc16   Tfv     

   m med sd m med sd m med sd m med sd m med sd m med sd 

By species                    

P. cuvieri 27 1.98 1.09 2.06 3.68 3.68 1.35 0.36 0.31 0.20 0.49 0.39 0.37 0.51 0.39 0.30 330.27 137.97 438.74 

M 10 2.48 1.83 1.97 3.51 3.27 1.32 0.31 0.25 0.18 0.39 0.29 0.24 0.47 0.32 0.30 500.30 256.25 564.74 

F 17 1.68 0.98 2.12 3.77 3.76 1.39 0.39 0.37 0.21 0.55 0.40 0.42 0.53 0.45 0.31 230.25 50.81 323.57 

P. guyannensis 15 0.64 0.45 0.49 4.54 4.64 2.14 0.39 0.36 0.13 0.44 0.39 0.19 0.48 0.44 0.16 188.60 1.00 418.70 

M 10 0.73 0.51 0.55 3.90 4.48 1.82 0.42 0.38 0.14 0.45 0.39 0.20 0.49 0.44 0.16 274.52 13.45 497.60 

F 5 0.44 0.28 0.29 5.82 6.34 2.34 0.34 0.32 0.11 0.41 0.39 0.16 0.44 0.44 0.17 16.77 1.00 33.00 

By month of capture                    

July 20                   

P. cuvieri 16 2.23 0.92 2.54 3.83 3.65 1.34 0.35 0.27 0.22 0.54 0.39 0.44 0.52 0.39 0.33 219.42 61.18 302.57 

P. guyannensis 4 1.16 0.99 0.66 3.37 2.54 2.69 0.31 0.29 0.09 0.34 0.33 0.11 0.36 0.36 0.11 378.69 125.51 590.74 

October 22                   

P. cuvieri 11 1.61 1.10 1.07 3.46 4.11 1.39 0.37 0.34 0.17 0.43 0.38 0.22 0.49 0.39 0.28 491.51 287.38 561.15 

P. guyannensis 11 0.45 0.36 0.22 4.96 4.87 1.87 0.42 0.37 0.13 0.47 0.40 0.20 0.52 0.45 0.16 119.48 1.00 347.89 
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By vegetation cover                    

Old secondary forest 28                   

P. cuvieri 16 1.68 1.10 1.35 3.54 3.27 1.14 0.34 0.29 0.21 0.52 0.37 0.44 0.49 0.35 0.31 190.62 54.96 300.02 

P. guyannensis 12 0.58 0.41 0.53 4.67 4.57 2.29 0.42 0.38 0.13 0.47 0.41 0.19 0.50 0.46 0.16 122.75 1.00 361.15 

Disturbed forest 14                   

P. cuvieri 11 2.41 1.04 2.83 3.87 4.24 1.64 0.38 0.37 0.20 0.46 0.40 0.24 0.53 0.45 0.30 533.39 333.04 537.47 

P. guyannensis 3 0.86 0.87 0.04 4.01 4.87 1.57 0.30 0.29 0.07 0.29 0.26 0.10 0.36 0.40 0.10 452.02 117.21 616.19 
a Asfc: complexity; epLsar: anisotropy; HAsfc: heterogeneity of complexity calculated from 4, 9 and 16 cells, respectively; Tfv: textural fill 937 

volume.938 
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Table 4. Significant analyses of variance (ANOVA) on Box-Cox transformed data for 939 

species, sex, type of vegetation cover, and month of capture on all dental microwear texture 940 

parametersa.  941 

Parameter Treatment F value p value 

Asfc species 24.06 <0.001 

 sex 8.79 0.005 

 month of capture 8.42 0.007 

 species x month of capture 8.07 0.008 

 vegetation cover x month of capture 4.96 0.033 

epLsar species x month of capture 5.47 0.026 

 species x sex x vegetation cover 4.73 0.037 

Tfv species 14.26 <0.001 

 sex 9.34 0.004 

 vegetation cover 12.28 0.001 

 month of capture 6.42 0.016 

 species x month of capture 5.08 0.031 
a Asfc: complexity; epLsar: anisotropy; Tfv: textural fill volume. 942 
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Table 5. Posthoc pairwise comparisons A, between sexes (F, females; M, males); B, between 943 

month of capture (Oct, October; Jul, July). Significance at p< 0.05 is indicated in regular font 944 

for Fischer’s LSD tests (marginal), and in bold for both Tukey’s HSD and Fisher’s LSD tests. 945 

A P. guyannensis F P. guyannensis M P. cuvieri F 

P. guyannensis M    

P. cuvieri F Asfc, Tfv   

P. cuvieri M Asfc, Tfv Asfc, Tfv Asfc, Tfv 

B P. guyannensis Oct P. guyannensis Jul P. cuvieri Oct 

P. guyannensis Jul Asfc, Tfv, epLsar   

P. cuvieri Oct Asfc, Tfv, epLsar   

P. cuvieri Jul Asfc, Tfv   

 946 
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 947 

Figure 1. Geographic map of the region of interest. A: Geographical location of French 948 

Guiana in South America (left) and of the little village of Cacao (red cross), south of Cayenne 949 

on the Comté River (right). B: Aerial photograph (Geoportail; www.geoportail.gouv.fr) of the 950 

Cacao area with the location of the five sites of capture from the anthropized region (left) 951 

toward old secondary forest (right). The numbered (1, 2, 4, 5, 8) white circles correspond to 952 

the five loci of capture (respectively LI-1, LI-2, LI-4, LI-5, and LI-8). See Table 1 for exact 953 

GPS coordinates. [2 columns width] 954 
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 955 

Figure 2. Graphical representation of the acquisition process of dental microwear parameters 956 

from the studied specimens (A) to the studied areas of molar microwear (B). A, (left) position 957 

of the studied left first upper molar (M1) on the cranium of Proechimys cuvieri 958 

(MHNG1975.046) in occlusal view (scale bar = 1 cm) and (right) measurement position of 959 

the chewing facet on the same tooth (scale bar = 1 mm). The light gray filling indicates the 960 

enamel layer. The black rectangle indicates the 175 x 132 µm 3D scan acquired on the 961 

LeicaDCM "Trident". The surface generated was treated using the LeicaMap software 962 

(Mountain technology, Leica Microsystems). An area of study of 50 x 50 µm was cut out 963 

manually. Arrow indicates mesio-lingual direction. B, (left) topographic representations and 964 

(right) photosimulations of the 50 × 50 µm studied surface of Proechimys cuvieri 965 

(MHNG1975.046, top) and Proechimys guyannensis (MHNG1984.001, bottom) with the 966 

values of their associated Asfc (no unit) and Tfv (in µm3) parameters. [1.5 column width] 967 
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 968 

Figure 3. Boxplots of significant microwear texture variables. A, by species; B, by species 969 

and sex. Females are in black, and males are in light gray. Pc, Proechimys cuvieri; Pg, 970 

Proechimys guyannensis; Asfc, complexity; epLsar, anisotropy; Tfv, textural fill volume. 971 

Solid lines indicate when Tukey's HSD tests were significant (p< 0.05). [single column 972 

width]973 



49 
 

 974 

Figure 4. Boxplots of significant microwear texture variables. A, by species and month of 975 

capture; B, by species and vegetation cover. Specimen captured in July are in black, and in 976 

October in light gray. The old secondary forest vegetation cover (1) is in light blue filling, and 977 

the disturbed forest vegetation cover (2) is in blue filling. Pc, Proechimys cuvieri; Pg, 978 

Proechimys guyannensis; Asfc, complexity; epLsar, anisotropy; Tfv, textural fill volume. 979 

Solid lines indicate when Tukey's HSD tests were significant (p< 0.05). [single column 980 

width] 981 


