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Functional diversity (FD), the diversity of organism attributes that relates to their inter-
actions with the abiotic and biotic environment, has been increasingly used for the last 
two decades in ecology, biogeography and conservation. Yet, FD has many facets and 
their estimations are not standardized nor embedded in a single tool. mFD (multifaceted 
functional diversity) is an R package that uses matrices of species assemblages and species 
trait values as building blocks to compute most FD indices. mFD is firstly based on two 
functions allowing the user to summarize trait and assemblage data. Then it calculates 
trait-based distances between species pairs, informs the user whether species have to be 
clustered into functional entities and finally computes multidimensional functional space. 
To let the user choose the most appropriate functional space for computing multidimen-
sional functional diversity indices, two mFD functions allow assessing and illustrating the 
quality of each functional space. Next, mFD provides 6 core functions to calculate 16 
existing FD indices based on trait-based distances, functional entities or species position in 
a functional space. The mFD package also provides graphical functions based on the ggplot 
library to illustrate FD values through customizable and high-resolution plots of spe-
cies distribution among functional entities or in a multidimensional space. All functions 
include internal validation processes to check for errors in data formatting which return 
detailed error messages. To facilitate the use of mFD framework, we built an associated 
website hosting five tutorials illustrating the use of all the functions step by step.

Keywords: alpha-diversity, beta-diversity, functional entities, functional space, 
functional traits, Hill numbers

Background

Functional diversity (FD) is the diversity component (Pollock et al. 2020) measur-
ing the diversity of organism characteristics that relates to their interactions with their 
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abiotic and biotic environment, i.e. functional traits (Petchey 
and Gaston 2006, Naeem et al. 2012). FD has been increas-
ingly considered for the last two decades in all fields of ecology 
such as community ecology, conservation and biogeography 
(McGill et al. 2006, Violle et al. 2014). FD indeed allows 
assessing the response of species assemblages to natural or 
anthropogenic pressures (Mouillot et al. 2013a, Trindade-
Santos et al. 2020) and unravels the effect of species on eco-
system functioning (Dı́az and Cabido 2001, McLean et al. 
2019). FD is multifaceted, embedding within (alpha-diversity) 
and between (beta-diversity) assemblages components, which 
gathers complementary features to describe the distribution of 
species trait values and hence answers various ecological ques-
tions (Mouillot et al. 2013a, Villéger et al. 2013). To measure 
those multiple FD facets, several frameworks (i.e. group-, dis-
tance-, dendrogram- or multidimensional-based) and indices 
(e.g. richness-, density-, entropy-like) have been proposed over 
the last two decades and some of them have been increasingly 
used (Villéger et al. 2008 and Laliberté and Legendre 2010 
cited > 100 times each year from 2015 to 2020).

Most of these FD indices are already computable using 
publicly available R functions that are disseminated in several 
packages. For example, the dbFD function of the FD package 
(Laliberté and Legendre 2010, Laliberté et al. 2014) com-
putes seven multidimensional FD indices based on Botta-
Dukát (2005), Petchey and Gaston (2006), Lavorel et al. 
(2008), Villéger et al. (2008), Laliberté and Legendre (2010). 
However, this package computes the multidimensional space 
(or dendrogram) and FD indices within the same function 
while they correspond to independent steps (Mouchet et al. 
2008, Maire et al. 2015), thus potentially inducing a misun-
derstanding of the outputs or limiting the reproducibility of 
analysis (Villéger et al. 2017).

The betapart package (Baselga and Orme 2012, Baselga  et  
al. 2021) contains a set of functions to compute functional 
beta-diversity indices based on the overlap of species assem-
blages in a multidimensional space, but it does not permit the 
graphical representation of indices.

Two other R packages hypervolume and BAT (Blonder et al. 
2018, Blonder and Harris 2019, Cardoso et al. 2020) propose 
a density-based FD framework using organism coordinates in 
a multidimensional space and the selection of bandwidth for 
computing kernels around observed organisms.

Lastly, some R functions have been provided as publication 
supplementary materials or on online repositories, including 
functions not only to select the best multidimensional space 
in which FD indices are computed (Maire et al. 2015) but 
also to compute group-based indices (Mouillot et al. 2014) 
or entropy-like indices (Chao and Ricotta 2019). Embedding 
these functions in a single and comprehensive R package is 
needed not only to facilitate analyses and ease interpreta-
tion and visualization of the results but also to increase their 
reproducibility.

Therefore, we designed the mFD R package to provide a 
wide set of ‘user-friendly’ functions covering all the steps of 
FD-based analyses, from checking of input data (Supporting 
information), through the identification of functional groups, 

computation of trait-based distances, and building the func-
tional space required to compute 16 functional diversity 
indices, including the graphical representation of key out-
puts (Fig. 1). Graphic aesthetics can be customized by the 
user and outputs can be displayed or saved as high-resolution 
files. mFD improves diagnostics, error reporting, and data 
visualization in a standardized way, and its website (<https://
cmlmagneville.github.io/mFD/>) provides a set of tutorials 
to help newcomers in the field with their analyses. mFD is 
currently available through Github (<https://github.com/
CmlMagneville/mFD>) and is available on CRAN (<https://
cran.r-project.org/web/packages/mFD/index.html>).

In this paper, we first described the methods used and the 
features of the mFD package and then explained step by step 
the process of computing and plotting FD indices with the 
mFD package. Lastly, we illustrated the most basic workflow 
of the mFD package using a data set gathering fruits in several 
baskets (Box 1).

Methods and features

Functional diversity can be measured at various ecologi-
cal grains, from local communities (e.g. 1 m2 quadrat; (De 
Bello et al. 2009)) to continental or oceanic flora/fauna, sam-
pled through various time scales. In all cases, quantifying FD 
first requires measuring a set of functional traits on all the 
species of interest. Functional traits should be, by definition, 
measurable at the individual level (Violle et al. 2007), but in 
practice, trait values are often aggregated at the species level. 
The selection of traits depends on the goal of the study and 
has thus to be carried out by experts of the studied taxa and 
ecosystems (Violle et al. 2007).

Most of the FD indices are designed to account for the 
dominance of organisms through quantitative weights. 
Depending on the type of organisms studied and on the aim of 
the study, weighting of organisms dominance could be based 
on biomass or abundance per unit of area, or percentage of 
ground coverage (e.g. for plants or corals, (McWilliam et al. 
2020)). When only species occurrence data are available (as 
often in functional biogeography), weight-based FD indices 
are computed by considering that all species present in a given 
assemblage have the same weight (i.e. 1/number of species).

Hereafter, for simplicity, we refer to a set of ‘assemblages’ 
where ‘weights’ and ‘traits’ have been measured at the ‘spe-
cies’ level but all statements remain true for other sampling 
approaches (e.g. traits and weights measured on individuals, 
clades above the species level or trophic groups). Species pool 
refers to all the species present in the set of assemblages.

mFD package allows the user to measure FD indices using 
three different frameworks based on either 1) groups of spe-
cies; 2) pairwise trait-based distances between species; or 3) 
species coordinates in a multidimensional space (Fig. 1). It 
relies on a species-assemblages matrix with rows being assem-
blages and columns being species featuring species occur-
rence, densities, or biomass and a species-traits data frame 
with rows being species and columns being traits.
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Figure 1. Workflow of the 18 key functions of the mFD package.

The list of key functions and their connections with main 
inputs/outputs are summed up in Fig. 1 below. The names 
of the functions present on the graph reflect the terminology 
used in our GPL-2 licensed R package.

Measuring FD based on functional entities

When only categorical and ordinal traits are used to describe 
species, there is a finite number of combinations of trait val-
ues. It is hence likely that some species from the pool will 
share the same trait values and can thus be clustered into 
functional entities (FE; Mouillot et al. 2014). This clustering 
can be done by applying the sp.to.fe function to the species-
trait data frame. This function provides not only names and 
numbers of species in each FE but also the number of unique 
values per trait and the potential maximum number of FEs 
given the number and coding of traits.

Clustering species from the pool into functional enti-
ties is mandatory to compute the FD indices proposed by 
Mouillot et al. (2014) in each assemblage. First, functional 
entity richness (FEr) is simply the number of FE present. 
Second, functional redundancy (FRed) is computed as the 
ratio between species richness and FEr and represents the 
average number of species in FE present in a given assem-
blage. However, this average value could be similar in two 

contrasting cases, that is with both even and skewed distribu-
tions of species number among FE. Therefore, Mouillot et al. 
(2014) proposed to measure functional over-redundancy 
(FOR) based on the proportion of the species that are in 
the FE with more species than average redundancy. FOR is 
low, close to 0, when all FE have the same number of species 
and close to 1 when most species are packed in the richest 
functional entity. Finally, functional vulnerability (FVuln) 
is measured as the proportion of FE in a given assemblage 
that is represented by a single species. The function alpha.
fd.fe computes these four indices for each assemblage using as 
inputs the output of the sp.to.fe function and a matrix with 
species occurrences in assemblages.

The function alpha.fd.fe.plot is designed to illustrate how 
species are clustered in functional entities. Using the outputs 
of the alpha.fd.fe function, this function returns a barplot 
with FE ranked in decreasing order of species richness for 
each assemblage. Moreover, the user can select which of the 
indices described above could then be illustrated on this bar-
plot, with FRed shown as a horizontal line, FVuln depicted as 
a horizontal double-arrow over the vulnerable entities (i.e. FE 
with a single species) which are further identified using col-
ors, and FOR depicted by coloring the top of the bars corre-
sponding to FE with more species than average (Supporting 
information).
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Computing trait-based distance between species

The first step for computing the functional diversity indices 
that are not based on functional entities is to calculate the 
functional distance for each pair of species. Here, we pro-
vide the function funct.dist which computes pairwise trait-
based distances for all sets of trait types (i.e. categorical and 
continuous traits can be mixed). In addition to the species-
traits data frame, funct.dist requires a table describing the 
type of each trait and the chosen distance metric. Three dis-
tance metrics can be computed through the mFD package: 
the Euclidean distance, the Gower distance, and the Gower 
distance applied to fuzzy traits (Gower 1971, De Bello et al. 
2021). The Euclidean distance should be used only when 
all traits are continuous. In this case, all traits must be stan-
dardized beforehand, either to a null mean and/or a stan-
dard deviation of one, or to the same range (Legendre and 
Legendre 2012). For matrices containing only categorical 
traits or several types of traits, the funct.dist computes Gower 
distance with the function gawdis() from the package gawdis. 
funct.dist can also be applied to functional traits coded as 
fuzzy groups (e.g. diet described with a proportion of several 
resources), and it allows the user to give different weights to 
each trait (e.g. to ensure that biological functions described 
with varying numbers of traits have eventually equal contri-
bution to the distance metric). The Gower distance is able to 
deal with missing trait values (coded as NA in R objects) by 
accounting only for traits measured on both species of each 
pair. However, this feature could lead to situations where 
two species are identical (Gower = 0) while having different 
Gower distances to a third species, thus influencing FD indi-
ces values. Hence, if the species-traits data frame contains NA, 
funct.dist returns a warning (this check could be overridden 
by the user), and it is recommended to infer missing traits 
values (Johnson et al. 2020) or delete species with missing 
trait values. For more information about distances, the user 
can refer to the mFD general workflow tutorial (<https:// 
cmlmagneville.github.io/mFD/articles/mFD_general_work-
flow.html>).

Distance-based functional diversity indices

The first index describing the diversity of functional trait val-
ues within an assemblage was based on the pairwise trait-based 
distance between species present in an assemblage (functional 
attribute diversity, FAD (Walker et al. 1999)). The Rao’s 
quadratic index (Q) went one step further by accounting 
for both species distance as well as species weight (i.e. rela-
tive biomass or abundance (Rao 1982, Botta-Dukát 2005)) 
and was later adapted by Ricotta and Szeidl (2009) to match 
the Hill’s number framework (i.e. diversity expressed as an 
equivalent number of species) as proposed by Jost (2006) for 
taxonomic diversity. However, the standardization of Rao’s 
Q by the maximum distance between two species from the 
regional pool makes the index poorly sensitive to differences 
in the functional structure of given assemblages, i.e. most 
assemblages have very low diversity values (Chao et al. 2019).

This weakness has been overcome by Chao et al. (2019), 
who proposed a general framework for measuring FD using 
the Hill numbers approach with two parameters: q defines 
the relative importance given to species weights compared to 
species distances, and tau defines the threshold level applied 
to functional distances between species to identify function-
ally indistinct sets of species. The alpha.fd.hill function uses 
species distances and assemblage data to compute indices for 
varying values of tau, and q. tau could be set to minimum, 
mean (default value), or maximum computed over all pair-
wise distances in the species pool. q could be set to 0, 1, 
or 2, to give increasing importance to species weights com-
pared to trait-based distances. Setting q = 2 and tau = ‘max-
imum’ computes Rao’s Q from Ricotta and Szeidl (2009) 
while setting tau = ‘minimum’ yields taxonomic diversity 
indices (i.e. q = 0 is species richness, q = 1 is exponential of 
Shannon index) that could be compared to functional diver-
sity (Chao et al. 2019).

The Hill numbers framework has the advantage of remain-
ing valid with all distance metrics, including the Gower dis-
tance computed on mixed trait values as well as the Euclidean 
distance computed on continuous trait values or on species 
coordinates in a multidimensional functional space (see next 
sections below).

This framework also allows a multiplicative partition-
ing of diversity into gamma, alpha, and beta-components 
(Chao et al. 2019) following either Sorensen- or Jaccard-like 
formulas. The beta.fd.hill function uses the same inputs as 
alpha.fd.hill and allows computing Hill number-based func-
tional beta-diversity indices with varying values of q and tau 
for all pairs of species assemblages.

Building functional space from continuous traits

Most FD indices assessments have been based on the multi-
variate indices proposed by Villéger et al. (2008, 2013) and 
Laliberté and Legendre (2010) that account for the distri-
bution of species in a Euclidean space. When all functional 
traits are continuous, it is possible to build such a space where 
each axis is a trait (Villéger et al. 2008). When traits have 
different units, or contrasted distributions, it is necessary to 
scale their values to ensure they have similar range, mean, 
and/or variance. The tr.cont.fspace function performs this 
trait scaling according to a user-defined scaling method and if 
required, computes a principal component analysis (PCA) on 
the Euclidean distance between species (internally computed 
using funct.dist).

The main output of the tr.cont.fspace function is a matrix 
of species coordinates along a set of axes (PCs or traits), and if 
required by the user, Pearson correlation coefficients between 
traits, trait-based distance between species, and eigenvalues of 
PCA axes are also returned.

Assessing the quality of functional space

When at least one trait is not continuous, building a 
Euclidean space requires computing a principal coordinates 
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analysis (PCoA) based on distances between species pairs 
and using its principal components to build the Euclidean 
space. Several studies have demonstrated that the number of 
axes selected markedly influences FD patterns (Villéger et al. 
2011, 2017, Maire et al. 2015). More specifically, Maire et al. 
(2015) proposed a framework to measure the quality of all 
possible functional spaces. It is based on the lowest devia-
tion between the original trait-based distances and the final 
Euclidean distances in the functional space.

Here, we provide the function quality.fspaces that extends 
this framework by allowing the user to measure the quality 
of spaces with a combination of two criteria. The first crite-
rion determines whether distances in the functional space are 
scaled or not so that their maximum value equals the one for 
trait-based distance. This procedure (applied in Maire et al. 
2015) hypothesizes that since most FD indices are unitless, 
these are the ratios between distances, not the distances them-
selves, that have to be faithfully represented.

The second criterion determines how to weigh a deviation 
of distance. Maire et al. (2015) proposed to square transform 
the values to strongly penalize large deviations. However, this 
mean squared-deviation index does not have the same unit as 
initial distances, so we suggest using the square-root of mean 
squared deviations (RMSD) to have the same unit as initial 
distances thus getting a metric easier to interpret. In addition, 
the function allows the user to measure the mean of absolute 
deviations (MAD) that better reflects the inaccuracy of spe-
cies distances in the Euclidean space that will then affect the 
FD computation.

The quality.fspaces function thus computes up to four 
quality metrics based on the combination of the two criteria 
(absolute or squared deviation computed on raw or scaled 
distances) for all spaces built using increasing numbers of 
PCoA axes. The maximum number of PCoA axes to consider 
is set a priori by the user, but it is eventually constrained by 
the number of PCoA axes that present positive eigenvalues. 
Indeed, we recommend not applying square-root transfor-
mation before computing PCoA because distances in the 
Euclidean space will end up reflecting transformed trait-
based distances that are not linearly related to the ones mea-
sured (see the ‘Compute and Interpret Quality of Functional 
Spaces’ tutorial on mFD website (<https://cmlmagneville.
github.io/mFD/articles/Compute_and_interpret_quality_
of_functional_spaces.html>)).

Besides multidimensional spaces, the quality.fspaces func-
tion allows the user to compute the quality of a dendrogram 
(clustering algorithm being specified by user). However, most 
often dendrograms are biased representations of the trait-
based distance between species with some pairs of species with 
close trait values being distantly related in the dendrogram 
(see ‘Compute and Interpret Quality of Functional Spaces’ 
tutorial on mFD website (<https://cmlmagneville.github.
io/mFD/articles/Compute_and_interpret_quality_of_func-
tional_spaces.html>)). Thus, dendrogram-based FD indices 
(Petchey and Gaston 2002, Cardoso et al. 2014), available in 
other R packages such as FD (Laliberté and Legendre 2010, 
Laliberté et al. 2014), BAT (Cardoso et al. 2020), and adiv 

(Pavoine 2020, 2021), could lead to erroneous ecological con-
clusions (Loiseau et al. 2017, Villéger et al. 2017) and should 
be used after cautionary checking of dendrogram quality.

Quality of functional spaces can be illustrated using the 
quality.fspaces.plot function that takes as input the output 
of quality.fspaces and returns a figure where for each space, 
three panels show 1) the relation between trait-based dis-
tances and distances in the space; 2) difference between the 
former and latter distances; and 3) deviation between those 
distances as accounted for in the select quality metrics (i.e. 
raw or scaled distance in the functional space and absolute 
or squared deviation). Plot panels are produced with ggplot2 
library and arranged into a single figure with the patchwork 
library, and colours used to highlight gradients in deviation 
are customizable by users.

These two functions allow the user to make a parsimo-
nious selection of the axes number keeping enough axes to 
have a space that faithfully represents the original trait-based 
distance while allowing computation of FD indices and 
an easier graphical interpretation of their patterns. Indeed, 
convex hull-based indices require a space with less axes than 
the number of species number, and their computation time 
increases with the number of axes (to the point that func-
tional beta-diversity indices are hardly computable in more 
than five dimensions). So if, for example, the best space is 
the one with six axes while the quality index of the 4D and 
5D spaces are close, keeping the 4D space will be a pragmatic 
choice.

Illustrating the distribution of species and traits 
values in the functional space

Once the ‘best’ functional space has been selected, and spe-
cies coordinates along each axis are extracted as an output of 
quality.fspaces, mFD package provides two dedicated func-
tions for further analyses.

The funct.space.plot function is designed to illustrate the 
position of all species from the pool along functional axes (all 
pairs or a subset). The user selects the colors and shapes of 
points to represent species as well as to display additional fea-
tures, such as the convex hull shaping all species and names 
of (some) species.

In addition, the traits.faxes.cor function is designed 
to test relationships between values of each trait and posi-
tions along each functional axis using r2 and p-value from 
linear regression and eta2 and p-value from Kruskall–Wallis 
test for continuous and non-continuous traits, respectively. 
An option of the function allows the user to illustrate those 
relationships in a multi-panel plot (trait × axes) with scatter-
plots and boxplots for continuous and non-continuous traits, 
respectively.

Computing multidimensional functional alpha-
diversity

The alpha.fd.multidim function computes nine multi-
dimensional functional alpha-diversity indices (Table 1). 



6

Required inputs are the matrix of species coordinates in the 
multidimensional space built using quality.fspaces or tr.
cont.fspace functions and the matrix with species weights 
in studied assemblages. Users can select a subset of the nine 
FD indices to be computed (see package functions help for 
details).

An optional logical argument allows the user to scale a 
posteriori the values of all FD indices but FEve and FDiv 
(whose ranges are already constrained to 0–1) by dividing 
raw values by the maximum value possible given coordinates 
of species present in the pool of all assemblages.

The user alpha.fd.multidim returns a table with val-
ues of FD indices (columns) for all assemblages (rows). If 
required by the user, details about indices computation are 
also returned as a list of objects (e.g. distances to centroid/
nearest neighbor, names of species being vertices). These 
outputs could help interpret FD indices and are required for 
illustrating them.

The multidimensional framework described above could 
be applied to functional entities using their traits values and 
their occurrences (or weight computed as a sum of weights of 
species belonging to each FE) in assemblages.

Illustrating multidimensional functional diversity

The alpha.multidim.plot function is designed to illustrate 
FD indices for one or two assemblages, using the distribution 
of species (and of their weights) along axes of the functional 

space with key geometric features accounted for by each 
index. For example, functional richness (FRic) is illustrated 
by a projected convex hull filled by the species assemblage, 
functional evenness (FEve) is illustrated as the minimum 
spanning tree linking species of the assemblage, and func-
tional divergence (FDiv) is illustrated through the gravity 
center of the vertices of the convex hull.

The function requires output from the alpha.fd.multidim 
function in addition to matrices containing species coordi-
nates and species weights in assemblages. The user can cus-
tomize classic graphical parameters such as point or line sizes 
and point or line colours. A list of ggplot figures is returned 
for each index and each (pair of ) assemblage(s), and as with 
other graphical functions, figures can be locally saved as jpeg 
files.

The mFD package also features graphical functions return-
ing ggplot layers for each of these indexes allowing users to 
draw more complex graphs, for example, with more than 
two assemblages or with several indices on the same plot 
(Supporting information).

Computing and illustrating multidimensional 
functional beta-diversity

The beta.fd.multidim function computes the pairwise func-
tional beta-diversity indices proposed by Villéger et al. (2013) 
following the framework proposed by Baselga (2012) for 
decomposing Jaccard and Sorensen taxonomic beta-diversity 

Table 1. Multidimensional functional alpha-diversity indices computed by the alpha.fd.mutidim function.

Name Acronym Definition Details

Functional richness 
(Cornwell et al. 2006, 
Villéger et al. 2008)

FRic The volume of the convex hull shaping the 
species present in the assemblage

Computed using the ‘convhulln’ function of the 
‘geometry’ package. Computed only if the 
number of species (i.e. points) is strictly higher 
than the number of functional axes. If points 
are coplanar, the convex hull can not be 
computed and the function returns NA.

Functional identity 
(Garnier et al. 2004, 
Mouillot et al. 2013a)

FIde The weighted average position of species of 
the assemblage along each axis

None

Functional dispersion 
(Laliberté and Legendre 
2010)

FDis The weighted deviation to center of gravity 
(i.e. defined by the FIde values) of species 
in the assemblage 

FIde is always computed with FDis.

Functional divergence 
(Villéger et al. 2008)

FDiv The deviation of biomass-density to the 
center of gravity of the vertices shaping the 
convex hull of the studied assemblage

FDiv requires computing first vertices of the 
convex hull so it has the same constraints as 
FRic (see above).

Functional evenness 
(Villéger et al. 2008)

FEve The regularity of biomass-density distribution 
along the minimum spanning tree (i.e. the 
tree linking all species of the assemblage 
with the lowest cumulative branch length) 
for the studied assemblage 

There must be at least three species to compute 
the FEve index. The minimum spanning tree is 
computed using the ‘mst’ function of the ‘ape’ 
package.

Functional originality 
(Mouillot et al. 2013a)

FOri The weighted mean distance to the nearest 
species from the global species pool

None

Functional specialisation 
(Bellwood et al. 2006, 
Mouillot et al. 2013a)

FSpe The weighted mean distance to the centroid 
of the global species pool (i.e. center of the 
functional space)

None

Functional mean pairwise 
distance (Weiher et al. 
1998)

FMPD The mean weighted distance between all 
pairs of species

None

Functional mean nearest 
neighbor distance 
(Weiher et al. 1998)

FNND The weighted distance to the nearest 
neighbor within the assemblage

None
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indices into their respective ‘turnover’ and ‘nestedness-resultant’ 
additive components. More precisely, functional beta-diversity 
indices are computed for a pair of assemblages based on the 
overlap between the convex hulls shaping their respective spe-
cies. Functional beta-diversity decreases when the volume of the 
intersection between the two convex-hulls increases relative to 
the volume of the union. The functional turnover component 
accounts for the proportion of functional richness represented 
by the functionally poorest assemblage that is not shared, and 
it is thus independent of the difference in functional richness 
between assemblages (Villéger et al. 2013).

The beta.fd.multidim function takes as inputs the matrix 
of species coordinates, the matrix of species occurrences in 
assemblages, and a character string referring to the fam-
ily of indices to compute (Jaccard and/or Sorensen). beta.
fd.multidim uses functions from the betapart package (ver. 
1.2) which allows internal parallel computing.

The beta.fd.multidim function returns a list of distance 
objects with values for all pairs of assemblages. The function 
also returns a list containing a vector with the volume of the 
convex hull shaping each assemblage (i.e. FRic) and a list of 
vectors with names of species being vertices of the convex 
hull per assemblage.

The beta.multidim.plot function is designed to illus-
trate functional beta-diversity indices by plotting the overlap 
between the convex hulls shaping two given species assem-
blages projected along pairs of functional space axes. It takes 
as inputs the list returned by the beta.fd.multidim function, 
a vector containing the name of the two assemblages to rep-
resent, a vector with names of axes to plot, and a character 
string referring to the values of beta-diversity indices to print 
(i.e. Jaccard or Sorensen family). The names and range of 
functional axes as well as shapes, colours, and sizes of points 
could be customized by the user.

Computing the functionally unique, specialized, and 
endangered indices

Beyond FD indices estimated at the scale of species assem-
blages, the field of functional ecology also has a long history 
of assessing species-specific indices in relation to their trait 
values (Olden et al. 2006, Violle et al. 2017).

Recently, Pimiento et al. (2020) introduced the FUSE 
(functionally unique, specialized, and endangered) index 
that combines functional uniqueness, specialization, and 
global endangerment to identify threatened species of 
particular importance for functional diversity. The mFD 
package provides for the first time a function to calcu-
late this index. The fuse function allows calculating the 
FUSE index as well as several metrics at the species level 
describing their functional specialization and uniqueness 
(Mouillot et al. 2013b). It takes as inputs 1) the functional 
distance between each pair of species (dist object) provided 
by the funct.dist  function; 2) a data frame with the coor-
dinates of the species on a multidimensional space based 
on a selected number of axes derived from a principal coor-
dinate analysis (PCoA) that can be retrieved through qual-
ity.fspaces or tr.cont.fspace functions; and 3) the level of 
endangerment expressed as either ranking values or IUCN 
extinction probabilities in a numerical vector. The num-
ber of neighbouring species considered to calculate spe-
cies functional uniqueness (or originality) is fixed to five 
by default, as in Pimiento et al. (2020), but the user can 
define different numbers of nearest neighbours to consider 
with a minimum of one species. The fuse function returns a 
data frame with species in rows and the five metrics used to 
characterize species’ contributions to functional diversity 
and its combination with the level of global endangerment 
in columns.

Box 1. Example

We illustrate the most common workflow of the mFD package using a data set gathering 10 baskets made of 8 types 
of fruits (from a pool of 25) with varying biomass (‘fruits_baskets’ data frame, Supporting information). Each fruit is 
characterized by 5 traits (fruits_traits data frame) whose types are described in the ‘fruits_traits_cat’ data frame (Table 2).

The mFD package is based on three main objects: a matrix describing the distribution of species into assemblages, the 
fruits_baskets matrix in this example, a first data frame containing the traits values for each species, the fruits_traits data 
frame here, and a second data frame with details about each trait, the fruits_traits_cat data frame.

The first step after importing these three objects in R is to check their content using the summary functions:
sp.tr.summary function summarizes the fruits_traits data frame and asb.sp.summary function summarizes the fruits_

baskets matrix, which returns, among others, the species richness per baskets.

Table 2. Table ‘fruits_traits_cat’ summarizing traits used in the example.

Trait name Trait measurement Trait type Number of classes Classes code Unit

Size Maximal diameter Ordinal 5 0–1; 1–3; 3–5; 5–10; 10–20 cm
Plant Growth form Categorial 4 Tree; schrub; vine; forb NA
Climate Climatic niche Ordinal 3 Temperate; subtropical; tropical NA
Seed Seed type Ordinal 3 None; pip; pit NA
Sugar Sugar Continuous NA NA g kg−1
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Functional distance between all species from the 10 baskets is computed using the funct.dist function. Here, we applied 
the Gower distance since traits were not all continuous, and we scaled center continuous traits according to their mean.

Then, we assessed the quality of PCoA-based functional spaces with up to 10 dimensions and of the UPGMA dendro-
gram. For that, we used the quality.fspaces function and computed the mad index (mean absolute deviation):

Here, according to the mad index, the best functional space is the one with four dimensions as it has the lowest index value:

The quality of functional spaces built with up to six PC axes and UPGMA dendrogram are illustrated using the qual-
ity.fspaces.plot function (Fig. 2):

This figure illustrates the distortion of distances on the dendrogram and in 2D spaces. As the 4D space has the best 
quality, we hereafter consider the coordinates of species along these four axes for computing FD indices. The matrix 
sp_faxes_coord is one of the outputs of the quality.fspaces function:

Positions of species in the 4D multidimensional functional spaces are plotted using the funct.space.plot function.
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In this plot (Fig. 3), fruits are represented either in purple if they are vertices of the convex hull shaping the pool of 25 
fruits or in green if they are not vertices.

Using the traits.faxes.cor function, correlations between traits and axes of the functional space are computed:

We can thus see on the table below that PC1 is mostly driven by climate, plant type, and size with the weaker influence 
of seed (eta2 < 0.25). PC2 is mostly driven by seed and plant type. PC3 is driven by only one trait, size. And finally, PC4 
is driven by sugar with a weaker influence of plant type.

Figure 2. Illustrating the quality of functional spaces and UPGMA dendrogram with a single plot with three panels per space. Each 
column represents a functional space and the x-axis of all panels represents trait-based distances. The y-axis is different for each row: 
on the first row, it represents species functional distances in the multidimensional space; on the second row, it shows the raw deviation 
of species distances in the functional space compared to trait-based distances; and on the third row, it shows the absolute or squared 
deviation of the (‘scaled’) distance in the functional space.
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Relation between traits and PCoA axes can then be plotted using the same function (Supporting information).
Then three functional diversity indices are computed in the 4D functional space for all fruits baskets using the alpha.

fd.multidim function:

Figure 3. Distribution of species in four-dimensional space.
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Species richness, functional richness, functional evenness, and functional divergence values per fruits baskets are sum-
marized in the table below:

All computed indices are then plotted using the alpha.multidim.plot function for the basket 1 and basket 5:

In Fig. 4, functional richness is plotted along the six pairs of functional axes making the 4D space. The white polygon 
reflects the global pool of fruits, the grey crosses represent distribution of the fruits in the functional space, green points 
are fruits from basket 1, and yellow points are fruits from basket 5. The green and yellow surfaces respectively show a 
two-dimensional projection of the multidimensional convex hull shaped by the fruits from basket 1 and basket 5.

Beta-diversity indices are computed using the beta.fd.multidim function with Jaccard family indices here:

Turnover and nestedness-resultant components of dissimilarity indices are shown below only for pairs involving basket 1.

Beta indices are then plotted using the beta.multidim.plot function for the basket 1 and basket 5:
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Figure 4. Output of the alpha.multidim.plot function for the FRic index.

In Fig. 5, the convex hulls filled by species belonging to basket 1 and basket 5 are plotted respectively in green and yellow.
Further illustrations of the use of the functions listed above as well as of the functions for working with continuous 

traits and computing distance-based indices or entities-based indices of the mFD package are available as tutorials in the 
package vignette (<https://cmlmagneville.github.io/mFD/index.html>).
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Figure 5. Output of the beta.multidim.plot function.

Conclusion

The mFD package allows assessing all FD indices available 
to date with all types of traits in an integrated, standardized, 
and comprehensive manner. Importantly, all methodological 
choices to be made by the user are included as parameters 
of the functions to ensure reproducibility. The functions use 

common formatting and terminology for inputs and out-
puts which ease computing the successive steps within and 
between the three main approaches (entities-, distance-, and 
coordinates-based indices).

In addition, all functions include internal checks of inputs 
(e.g. match of species names between traits and assemblages 
matrix, absence of missing values) that return detailed error 
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messages if needed. All graphical functions can produce 
ready-to-publish figures with customizable parameters (e.g. 
shape, size, colors of points, and convex hulls). mFD pack-
age was developed in R.4.0, works for R ≥ 3.5, and depends 
directly on 16 packages (Supporting information). It can be 
cited using the output of citation (package = ‘mFD’) and by 
citing this article.

The website associated with the package (<https://cml-
magneville.github.io/mFD/index.html>) presents five repro-
ducible tutorials as R markdown files.

The unique features of mFD functions and associated 
online materials will thus make it easier for students and 
researchers in functional ecology to compute FD in a repro-
ducible way.

The functions from mFD could even be applied for 
researches outside functional ecology, such as to measure 
phenotypic variability within populations or between spe-
cies, for example trophic position based on variables such as 
stable isotope ratios of carbon and nitrogen (Cucherousset 
and Villéger 2015) or to map vegetation status using telem-
etry data (Feret and de Boissieu 2019).

To cite mFD or acknowledge its use, cite this software 
note as follows, substituting the version of the application 
that you used for ‘version 1.0’:
Magneville, C. et al. 2022. mFD: an R package to compute and 

illustrate the multiple facets of functional diversity. – Ecography 
2022: e05904 (ver. 1.0).
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