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Abstract
Purpose-Prognosis of Duchenne muscular dystrophy (DMD) is related to cardiac dysfunction. Two dimensional-speckle
tracking echocardiography (2D-STE) has recently emerged as a non-invasive functional biomarker for early detection of
DMD-related cardiomyopathy. This study aimed to determine, in DMD children, the existence of a left ventricle (LV)
dyssynchrony using 2D-STE analysis.

Methods-This prospective controlled study enrolled 25 boys with DMD (mean age 11.0±3.5 years) with normal LV ejection
fraction and 50 age-matched controls. Three measures were performed to assess LV mechanical dyssynchrony: the
opposing-wall delays (longitudinal and radial analyses), the modi�ed Yu index, and the time-to-peak delays of each
segment. Feasibility and reproducibility of 2D-STE dyssynchrony were evaluated.

Results-All three mechanical dyssynchrony criteria were signi�cantly higher in the DMD group than in healthy subjects:
(1) opposing-wall delays in basal inferoseptal to basal anterolateral segments (61.4±45.3 msec vs. 18.3±50.4 msec,
P<0.001, respectively) and in mid inferoseptal to mid anterolateral segments (58.6±35.3 msec vs. 42.4±36.4 msec,
P<0.05, respectively), (2) modi�ed Yu index (33.3±10.1 msec vs. 28.5±8.1 msec, P<0.05, respectively), and (3) most of
time-to-peak values, especially in basal and mid anterolateral segments. Feasibility was excellent and reliability was
moderate to excellent, with ICC values ranging from 0.49 to 0.97.

Conclusion-Detection of LV mechanical dyssynchrony using 2D-STE analysis is an easily and reproducible method in
pediatrics. The existence of an early LV mechanical dyssynchrony visualized using 2D-STE analysis in children with DMD
before the onset of cardiomyopathy represents a perspective for future pediatric drug trials in the DMD-related
cardiomyopathy prevention.

Clinical Trial Registration-Clinicaltrials.gov NCT02418338. Post-hoc study, registered on April 16, 2015. 

Introduction
Duchenne muscular dystrophy (DMD) is an X-linked recessive myopathy leading to loss of dystrophin, a constitutive
protein of muscle architecture. First symptoms usually appear by the age of 3 and result in loss of independent walking a
few years later. Then, progressive symptoms occur, such as respiratory muscle weakness, skeletal deformations or
gastro-intestinal disorders [1].

Heart failure due to progressive dilated cardiomyopathy usually occurs at the end of adolescence, and represents the
main cause of death in this population [2]. Clinical presentation of DMD-related cardiomyopathy is often misleading, with
poor symptomatology, less marked left ventricle (LV) dilatation, and worse prognosis than other etiologies of heart failure
[3, 4].

Early identi�cation of DMD-related cardiomyopathy is crucial in order to initiate heart failure medical treatments, improve
quality of life, and try to slow down the progression of cardiomyopathy [5]. Cardiac screening is usually based on non-
invasive echocardiography standard parameters, such as left ventricle ejection fraction (LVEF) and LV diameter, which are
reliable and reproducible measures in pediatrics. However, alteration of those parameters appears at a late stage in DMD-
related cardiomyopathy natural history. Modern cardiac imaging tools, such as two-dimensional speckle tracking
echocardiography (2D-STE), have shown some interest in terms of feasibility and early assessment of alteration in DMD-
related cardiomyopathy [3, 6, 7]. Indeed, from a prospective controlled study, we recently reported the existence of 2D-STE
anomalies in children with DMD, before the onset of cardiomyopathy, especially in the longitudinal strain of basal
inferolateral and anterolateral segments [6].
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In the adult population with cardiomyopathy, such segmental myocardial alterations may be associated with cardiac
dyssynchrony, regardless of the LVEF value [8–10]. Basically, cardiac dyssynchrony corresponds to nonsynchronous
myocardial contractions, possibly related to three mechanisms: the electrical dyssynchrony, the mechanical
dyssynchrony, and the excitation-contraction coupling anomalies [11, 12]. Ultimately, cardiac dyssynchrony may lead to
hemodynamic failure [13–15].

To our knowledge, the existence of a cardiac dyssynchrony in children with DMD, before the onset of cardiomyopathy, has
not been reported. Yet, in the modern era, pediatric DMD drug trials require reliable and non-invasive cardiac biomarkers.
Identifying a pre-symptomatic cardiac biomarker would be of great interest in this population.

Therefore, this study aimed to identify cardiac dyssynchrony in children with DMD, before the onset of cardiomyopathy, in
comparison with healthy age-matched control subjects.

Methods

Study design and patients
The patients included in this post-hoc study were screened from our recently published pediatric cohort [6]. We
prospectively enrolled 0 to 18-year-old male with DMD and healthy age-matched controls recruited in three pediatric
cardiology centers (Montpellier University Hospital, Montpellier, France; Saint-Pierre Institute, Palavas-Les-Flots, France;
Cliniques Universitaires St-Luc, UCL University, Brussels, Belgium). Children with DMD were screened during their routine
annual follow-up. For the present study, we included only patients with a normal left ventricular systolic function (LVEF ≥ 
55% by the Simpson biplane method) from the previously reported cohort [6]. In the control group, we included age-
matched boys referred to the outpatient pediatric cardiology consultation for minor symptoms (e.g., innocent murmur,
chest pain, palpitations, or sports certi�cate) and with normal physical examination, electrocardiogram, and conventional
echocardiography. Children with any chronic disease, or under any treatment, were not included in the control group.
Demographic and clinical data were collected in both groups. In the DMD group, cardiac treatment was noted and
muscular stage was de�ned as follows: presymptomatic, early ambulatory, late ambulatory, early non-ambulatory, and
late non-ambulatory [16].

Conventional and 2D-strain echocardiography
A single sonographer who traveled to the recruiting sites performed all echocardiographic examinations using the Vivid
E9 ultrasound system (General Electric Healthcare, Little Chalfont, United Kingdom) and following the current
echocardiographic guidelines [17]. Image acquisition procedures were harmonized using similar setting for each site:
global gain, lateral gain, contrast, frame rates of 60 to 80 frames/sec to optimize myocardial deformation analysis,
harmonic imaging, image colorizing, and probes adapted to the size and weight of the child (8 or 5 MHz). Three cardiac-
cycle loops were systematically recorded in the following views: apical four-, three-, and two-chamber views, and
parasternal short-axis view focused on the papillary muscles. Whenever that was not possible, patient was excluded but
reported as missing data in feasibility analysis.

Systolic and diastolic LV and right ventricle (RV) standard echocardiography parameters were measured.

Longitudinal LV 2D-strain analyses were performed off-line by a single investigator blinded of patient information, using
the EchoPAC software (General Electric, version 203). Longitudinal LV 2D-strain analyses were carried out according to
the consensus document of the EACVI/ASE/Industry Task Force [18]. The LV longitudinal and radial global and regional
2D-strain, and strain rate, were automatically calculated by the software after analysis of the 3 longitudinal and the
parasternal short-axis views.
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Assessment of LV dyssynchrony

Electrical LV dyssynchrony

From a 12-lead electrocardiogram (ECG), a single operator measured the duration of QRS intervals expressed in
milliseconds (msec) on the V5 lead. For each subject, three measures were taken and averaged. To assess electrical
dyssynchrony, QRS duration Z-scores were calculated using Chubb et al. formula [19], and we compared Z-scores values
between DMD and control groups. Indeed, no evidence-based criteria have been described for electrical dyssynchrony in
pediatrics. Based on epidemiological studies, cut-off values for prolonged QRS duration in pediatrics have been
previously reported (90 msec in children < 4 years, and 100 msec in 4–16 year-old children) [20]. More recently, Chubb et
al. have determined pediatric Z-scores, and de�ned a cut-off value of 2.1 for prolonged QRS duration [19].

Mechanical LV dyssynchrony

After performing 2D-strain analyses, the software generates deformation curves for each LV wall segment as a function
of time, using a color code for each segment. Two sliders were manually positioned by a single investigator at the
beginning of two consecutive QRS complexes, corresponding to the onset of ventricular depolarization, to mark the
beginning and the end of the cardiac cycle on the curves graph. Then, the electrosystolic delay, e.g. the « time-to-peak »
delay, was recorded. The time-to-peak delay was de�ned as the time between the beginning of the QRS complex and the
systolic strain peak (Fig. 1). The systolic strain peak was de�ned as the maximum strain value during ventricular systole
(occurring before aortic valve closure). The software provided an automatic calculation of time-to-peak delay for each
segment, as represented in the shape of a 16-segment bull’s eye model [18]. Due to known signi�cant heart rate variability
in children [21], all time-to-peak values were corrected using Bazett’s formula, as recommended by Thomas et al [22].

To measure LV longitudinal mechanical dyssynchrony, three measures were performed: (1) the opposing-wall delay,
corresponding to the delay between the systolic strain peak of two opposite walls, on basal and mid-levels[23, 24]; (2) the
modi�ed Yu index, corresponding to the standard-deviation of time-to-peak values in the 12 basal and midwall segments
[25], and measured using 2D-STE analysis in this study; and (3) the comparison of time-to-peak delays for each segment
between DMD and control groups [26].

To assess LV radial dyssynchrony, we measured the anteroseptal-posterior opposing-wall delay, corresponding to the
delay between the systolic strain peak of the mid posterior and the anteroseptal segments in parasternal short axis view
[27–30]. This parameter was manually calculated by the same investigator: the systolic strain peak was identi�ed on the
curves graph, then the software automatically calculated the respective time-to-peak delay, and �nally we deduced the
anteroseptal-posterior opposing-wall delay.

Feasibility and reproducibility analysis
Patients with a poor acoustic window or a poor-quality ECG pattern (illegible or containing less than one complete cardiac
cycle) were excluded from dyssynchrony analysis and collected as feasibility data.

To assess interobserver and intraobserver reproducibility, a second analysis of time-to-peak delays in the 16 LV segments
was performed by the same investigator and by a second investigator (AA), with no access to the results of �rst analysis,
on a subset of 20 patients randomly selected from the two groups.

Statistical analysis
Each child with DMD was matched with 2 control subjects according to four age groups (0–4 years, 5–8 years, 9–12
years, and 13–17 years). The characteristics of the children enrolled in the study were described with proportions for
categorical variables and with means and standard deviation values for continuous variables. The comparisons of
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echocardiographic parameters (conventional, 2D-strain and dyssynchrony analyses) between children with DMD and
control subjects were performed using linear mixed models. These models included a random intercept speci�c to
matched triads. DMD and age were entered as �xed effects in models.

In accordance with recommendations published in Shrout and Fleiss [31], we evaluated the reproducibility of the
performed measurements by calculating intraclass correlation coe�cients (ICC) of type (2,1) for interobserver and
intraobserver reliability, as only one investigator was responsible for the double analysis to assess intraobserver reliability,
and a single pair of investigators produced the two analyses to assess interobserver reliability. As de�ned by Koo et al.,
ICC values less than 0.5, between 0.5 and 0.75, between 0.75 and 0.9, and greater than 0.90 were indicative of poor,
moderate, good, and excellent reliability, respectively [32]. Analyses were performed using SAS version 9 (SAS Institute,
Cary, NC, USA). The statistical signi�cance was set at 0.05.

Results

Population
A total of 75 children were enrolled in the study, including 25 patients with DMD (mean age, 11.0 ± 3.5 years) and 50 age-
matched healthy male controls (mean age, 10.0 ± 3.3 years). The heart rate was signi�cantly higher in the DMD group
than in healthy subjects (95 ± 13 bpm vs. 74 ± 12 bpm, P < 0.01, respectively). Cardiovascular symptoms were reported in
only one child with DMD (exercise-induced dyspnea). The main muscular stage was “early non-ambulatory”. Combination
therapy with corticosteroids and angiotensin converting enzyme (ACE) inhibitors was the most common drug treatment.
Demographic and clinical data are summarized in Table 1.
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Table 1
Population characteristics

Clinical parameters   DMD group (N = 
25)

Control group (N = 
50)

P-
value

Age (year)   11.0 ± 3.5 10.0 ± 3.25 NA

Weight (kg)   37.7 ± 15.3 37.5 ± 15.5 0.14

Height (cm)   136.5 ± 16.0 143.1 ± 19.6 < 
0.001

BMI (kg/m²)   19.1 ± 5.6 17.5 ± 3.0 0.14

Systolic blood pressure
(mmHg)

  107.8 ± 10.1 107.1 ± 13.2 0.75

Diastolic blood pressure
(mmHg)

  61.6 ± 7.9 56.1 ± 8.0 0.01

Heart rate (bpm)   95.4 ± 12.9 73.8 ± 11.7 < 
0.001

Muscular stage Pre-symptomatic

Early ambulatory

Late ambulatory

Early non-ambulatory

Late non-ambulatory

3 (12%)

5 (20%)

3 (12%)

13 (52%)

1 (4%)

-

-

-

-

-

-

-

-

-

-

Cardiac treatment None 2 (8%) - -

Corticosteroids 2 (8%) - -

ACE inhibitors 5 (20%) - -

Corticosteroids + ACE
inhibitors

14 (56%) - -

Others 2 (8%) - -

Cardiovascular symptoms   1 (4%) - -

Legend: BMI, body mass index; ACE, angiotensin conversion enzyme; NA, non applicable (age-matched controls).
Results are presented in mean ± standard deviation (SD) or N (%).

Conventional and 2D-strain echocardiography variables
Mean LVEF was normal and similar between groups (63% ± 5% in the DMD group vs. 64% ± 5% in the control group, P = 
0.8). No signi�cant LV dilatation was observed in the DMD group. RV conventional variables were normal and similar
between the two groups. Conventional echocardiography variables are reported in Table 2.
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Table 2
Conventional echocardiography variables

Conventional echocardiography
variables

DMD group (N = 
25)

Mean ± SD

Controls (N = 
50)

Mean ± SD

  Adjusted difference between
groups*

      Coe�cient [95% CI] P-
value

Left
ventricle

LVEF (%) 63.5 ± 5.1 63.8 ± 5.0   -0.25 [-2.5; 2.0] 0.8

  LVIDd (mm) 39.3 ± 4.2 42.3 ± 4.2   -3.83 [-5.5;
-2.1]

< 
0.001

  E/A ratio 1.8 ± 0.4 2.2 ± 0.6   -0.39 [-0.7;
-0.1]

0.01

  E deceleration time
(msec)

144.4 ± 25.7 175.8 ± 37.0   -35.02 [-52.5;
-17.6]

< 
0.001

  E/E’ 5.8 ± 1.9 5.7 ± 1.1   0.15 [-0.5; 0.8] 0.7

  Wall stress (g/cm2) 49.9 ± 14.9 42.7 ± 10.8   7.69 [1.2;
14.2]

0.02

  VCFc (s− 1) 1.4 ± 0.4 1.3 ± 0.2   0.15 [0.0; 0.3] 0.03

Right
ventricle

TAPSE (mm) 19.5 ± 2.5 20.8 ± 3.4   -1.42 [-2.9; 0.1] 0.06

  S wave (TDI) (cm/s) 13.0 ± 2.4 12.9 ± 1.9   0.08 [-0.9; 1.1] 0.9

  TEI index (TDI) 0.4 ± 0.1 0.4 ± 0.1   -0.02 [-0.1; 0.1] 0.6

  IVC % 62.3 ± 19.4 69.3 ± 17.1   -7.05 [-16.9;
2.8]

0.2

Legend: LVEF, left ventricle ejection fraction (Simpson biplane); LVIDd, left ventricle internal diastolic diameter; TDI,
tissue Doppler imaging; VCFc, contraction velocity corrected by cardiac frequency; TAPSE, tricuspid annular plane
systolic excursion; TEI, myocardial performance index; IVC %, inferior vena cava collapse index.

*Difference between groups adjusted for age.

Global LV 2D-strain values were signi�cantly lower in the DMD group than in the control group, for both longitudinal
analysis (-16.8% ± 3.9% vs. -20.6% ± 2.6%, P < 0.0001, respectively) and radial analysis (22.7% ± 11.3% vs. 31.7% ± 14.0%,
P < 0.002, respectively). Regional 2D-strain values were signi�cantly lower in the DMD group for LV inferolateral,
anterolateral, anterior and inferior regions, with a greatest difference for the inferior and anterolateral segments. No
differences were observed in terms of strain rate (for both longitudinal and radial analyses) and regional 2D-strain for LV
basal anteroseptal, inferoseptal and apical anterior segments. Global and regional LV 2D-strain and strain rate analyses
are reported in supplementary Table S1 (longitudinal strain) and supplementary Table S2 (radial strain).

Left ventricular dyssynchrony analysis
Electrical LV dyssynchrony

No QRS widening was observed in the DMD group. Mean QRS complex measures were not signi�cantly different between
DMD and control groups (83 ± 10 msec vs. 85 ± 11 msec, P = 0.07, respectively). Z-scores of QRS width were normal and
similar between the two groups (-0.2 ± 0.8 vs. 0.2 ± 0.9, P = 0.08, respectively).

Mechanical LV dyssynchrony
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The basal inferoseptal to basal anterolateral opposing-wall delay was signi�cantly higher in the DMD group than in
healthy subjects (61.4 ± 45.3 msec vs. 18.3 ± 50.4 msec, P < 0.001, respectively). Similarly, the mid inferoseptal to mid
anterolateral opposing-wall delay was signi�cantly higher in the DMD group than in healthy controls (58.6 ± 35.3 msec vs.
42.4 ± 36.4 msec, P < 0.05, respectively). There was a trend for a higher difference between the basal anteroseptal and
basal inferolateral segments in the DMD group than in healthy controls (-47.6 ± -63.8 msec vs. -30.2 ± -41.1 msec, P = 
0.11, respectively). No other difference was observed in the longitudinal analysis, as well as in the radial analysis.

The modi�ed Yu index was signi�cantly higher in the DMD group than in healthy subjects (33.3 ± 10.1 msec vs. 28.5 ± 8.1
msec, P < 0.05, respectively).

Time-to-peak delays in the DMD group were signi�cantly increased in basal and mid anterior and anterolateral segments,
as well as in the apical lateral segment (Fig. 2, Table 3).
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Table 3
Opposing-wall delays in longitudinal and radial 2D-strain analyses

    DMD group     Controls     Adjusted difference between
groups*

    N Mean 
± SD

    N Mean 
± SD

    Coe�cient [95%
CI]

P-
value

LV
longitudinal
opposing-
wall delay

Basal
segments1

4-
chamber
view

25 61.4 
± 45.3

    50 18.3 
± 50.4

    46.8 [23.1;
70.5]

< 
0.001

    3-
chamber
view

25 -47.6 
± 63.8

    50 -30.2 
± 41.1

    -19.7 [-44.3;
4.8]

0.11

    2-
chamber
view

25 9.9 ± 
50.6

    50 5.2 ± 
45.4

    0.2 [-0.5;
0.9]

0.64

  Mid
segments2

4-
chamber
view

25 58.6 
± 35.3

    50 42.4 
± 36.4

    18.0 [0.2;
35.8]

< 
0.05

    3-
chamber
view

25 -20.4 
± 51.7

    50 -12.6 
± 40.1

    -9.5 [-31.1;
12.1]

0.38

    2-
chamber
view

25 18.1 
± 45.6

    50 14.3 
± 38.3

    2.4 [-17.9;
22.8]

0.81

LV radial
mechanical
opposing-
wall delay

    23 -17.3 
± 29.3

    49 -24.2 
± 33.5

    8.2 [-8.6;
25.1]

0.33

Legend: LV, left ventricle.

*Difference between groups adjusted for age; corrected by heart rate (using Bazett's formula); signi�cant p-values are
marked in bold.

1LV mechanical dyssynchrony was assessed as the difference between the time-to-peak value of the basal
inferoseptal and the basal anterolateral segments (4-chambers view), between the basal inferolateral and the basal
anteroseptal segments (3-chamber view), and between the basal inferior and the basal anterior segments (2-chamber
view).

2LV mechanical dyssynchrony was assessed as the difference between the time-to-peak value of the mid inferoseptal
and the mid anterolateral segments (4-chamber view), between the mid inferolateral and the mid anteroseptal
segments (3-chamber view), and between the mid inferior and the basal anterior segments (2-chamber view).

Feasibility and reproducibility analysis
From our previously reported database [6], 30 children with DMD and 72 healthy control subjects were eligible for the
study. The proportion of patients excluded from dyssynchrony analysis was similar in the two groups (5 out of 30
patients, i.e. 16.7% in the DMD group, and 13 out of 72 patients, i.e. 18.0% in the control group). In the DMD group, one
subject (3.3%) was excluded due to poor acoustic window, making LV dyssynchrony analysis impossible, and four
subjects (13.3%) had a poor-quality ECG pattern. In two patients (6.7%), 2D-strain analysis was only possible in apical
views.
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In the control group, one subject (1.4%) was excluded from analysis due to poor acoustic window, making LV
dyssynchrony analysis impossible, and 12 subjects (16.7%) had a poor-quality ECG pattern. In one patient (3.4%), 2D-
strain analysis was only possible in apical views. Therefore, LV dyssynchrony analysis was feasible in a total of 59
healthy subjects. As 25 children with DMD were enrolled in the study, 50 age-matched healthy subjects were selected in
order to respect the 1:2 case-control study design.

Intra-observer and inter-observer reliability analyses of time-to-peak delays in the 16 LV segments were reported in
Table 4. We found moderate to excellent levels of reliability with ICC values ranging from 0.60 to 0.97 for intraobserver
variability and from 0.49 to 0.94 for interobserver variability.

Table 4
Intra- and interobserver variability of time-to-peak delays

LV segments   Intraobserver variability

(N = 20)

Interobserver variability

(N = 20)

  ICC [95% CI] ICC [95% CI]

Basal anterior   0.78 [0.53; 0.91] 0.81 [0.58; 0.92]

Basal anteroseptal   0.82 [0.62; 0.93] 0.85 [0.99; 0.94]

Basal inferoseptal   0.89 [0.74; 0.95] 0.77 [0.51; 0.90]

Basal inferior   0.60 [0.24; 0.82] 0.49 [0.08; 0.76]

Basal inferolateral   0.89 [0.75; 0.96] 0.74 [0.44; 0.89]

Basal anterolateral   0.91 [0.79; 0.96] 0.73 [0.44; 0.88]

Mid anterior   0.62 [0.27; 0.83] 0.72 [0.42; 0.88]

Mid anteroseptal   0.74 [0.45; 0.88] 0.72 [0.42; 0.88]

Mid inferoseptal   0.91 [0.79; 0.96] 0.84 [0.65; 0.93]

Mid inferior   0.87 [0.71; 0.95] 0.71 [0.41; 0.87]

Mid inferolateral   0.91 [0.78; 0.94] 0.66 [0.32; 0.85]

Mid anterolateral   0.96 [0.88; 0.98] 0.92 [0.81; 0.96]

Apical anterior   0.85 [0.67; 0.94] 0.94 [0.86; 0.98]

Apical septal   0.97 [0.94; 0.99] 0.94 [0.85; 0.98]

Apical inferior   0.96 [0.90; 0.98] 0.79 [0.52; 0.91]

Apical lateral   0.94 [0.86; 0.98] 0.87 [0.69; 0.94]

Legend: CI, con�dence interval; ICC, intraclass correlation coe�cient.

Discussion
This prospective controlled study reported, for the �rst time, the existence of a left ventricular regionalized mechanical
dyssynchrony in children with DMD with a normal LV systolic function. Indeed, using 2D-STE analysis, all three
mechanical dyssynchrony criteria evaluated in this study were signi�cantly higher in the DMD group than in healthy
matched subjects: (1) basal inferoseptal to basal anterolateral opposing-wall delay and mid inferoseptal to mid
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anterolateral opposing-wall delay, (2) modi�ed Yu index, and (3) most of time-to-peak delays, especially in basal and mid
anterolateral segments.

Interestingly, this study found a segmental LV mechanical dyssynchrony before the onset of DMD-related
cardiomyopathy or any clinical symptoms, as no patient with LV systolic dysfunction or LV dilatation was enrolled. LV
mechanical dyssynchrony was more pronounced in the basal and mid anterolateral segments, which is concordant with
LV 2D-strain anomalies previously observed in similar segments [6, 7].

Indeed, selective damage in those segments may be related to regional myocardial scar, which has been found to be
higher in lateral than in septal segments, even with a preserved LV systolic function. Hor et al. have previously reported
that LV mechanical dyssynchrony in DMD with end-stage cardiac dysfunction was associated with extensive infero- and
anterolateral �brosis [33]. Using cardiac magnetic resonance imaging, Bilchick et al. have also shown that myocardial
scar affected the LV anterolateral segment eight times more than the septal wall, regardless of LV systolic function [34].
Furthermore, analyses on anatomopathology, electrocardiograms, and vectorcardiograms in DMD patients have
suggested that �brosis would start from the epimyocardial portion of the LV lateral wall, then reach the septal wall, and
�nally extent to the entire thickness of the myocardial wall [35]. DMD-related �brosis has been associated with
myocardial stiffness, reduced myocyte compliance and increased susceptibility to stretch-mediated calcium overload,
inducing cell necrosis [36]. Moreover, LV mechanical dyssynchrony could modify myocardial gene expression and
aggravate heart failure, as described in mouse models of cardiac remodeling [37]. However, the reason why �brosis �rst
involves this speci�c ventricular region remains unknown.

In this pediatric cohort, 2D-STE dyssynchrony analyses have shown good feasibility and reproducibility, as previously
reported in children without any cardiac disease [38]. Indeed, in our study, analyses were technically possible in more than
80% of children in both DMD and healthy subjects, which is the line with the STAR study in adult heart failure [23]. Overall,
reproducibility was good to excellent, especially in segments where mechanical LV dyssynchrony was observed.

Other ultrasound methods have been used to measure mechanical LV dyssynchrony [39]. However, M-mode and tissue
Doppler imaging (TDI) do not provide simultaneous sampling in multiple segments. Color-coded tissue Doppler, tissue
synchronization imaging and 3D-echocardiography provide simultaneous sampling of multiple segments, but require
high-end ultrasound equipment and are di�cult to use in current practice [40]. 2D-STE analysis is little affected by
translational and tethering motions [41, 42], and is not angle dependent. Moreover, 2D-STE semi-automated processing
improves reproducibility and provides a global assessment of LV wall deformations, with easier use than other methods
[40].

In this study, no electrical dyssynchrony was observed in children with DMD. Indeed, QRS intervals were similar between
DMD and healthy subjects, using both raw values and pediatric Z-scores. This result is in line with the study from Hor et
al., using cardiac magnetic resonance imaging in children with DMD and �nding that the existence of a LV mechanical
dyssynchrony did not involve electrical dyssynchrony in the DMD population [33]. Therefore, measuring QRS intervals
remains insu�cient for assessing cardiac damage in patients with DMD.

Currently, cardiomyopathy prevention represents one of the most challenging clinical research issues in children with
DMD [43]. Conventional echocardiography parameters have failed to determine drugs’ e�cacy (angiotensin-converting
enzyme inhibitors, β-blockers, corticosteroids) on DMD cardiomyopathy onset and progression rate [5, 44–47]. Moreover,
available tools to evaluate cardiac function may not be very speci�c (biological blood tests), di�cult to perform in
pediatric patients (cardiac magnetic resonance imaging), or too invasive (myocardial biopsy). Therefore, using
mechanical dyssynchrony as a novel non-invasive cardiac biomarker in current (phosphodiesterase-5 inhibitors, COX-
inhibiting nitric oxide donators, poloxamer 188) or future pediatric DMD drug trials would be of great interest.
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The results of this study evidently question the interest of cardiac resynchronization therapy (CRT) in the DMD
population. In adult symptomatic heart failure with impaired systolic LV function and LV mechanical dyssynchrony, CRT
may improve symptoms and LV reverse remodeling, regardless of QRS width [48, 49]. However, in adult ischemic heart
disease, the existence of inferior �brosis reaching more than 50% wall thickness is associated with a nonresponse to CRT
[50]. LV pacing may reduce the progression of DMD-related cardiomyopathy, by decreasing ventricular work at each
heartbeat, and therefore reducing damage to the myocyte membrane [34, 36]. By analogy, we may hypothesize that CRT
could prevent LV mechanical dyssynchrony at an early stage of the cardiomyopathy, inducing a clinical bene�t for the
patient. Nevertheless, more evidence is necessary to support that CRT is useful in the DMD population free from heart
failure.

Study limitations

The original study was not designed to use mechanical dyssynchrony as a primary outcome [6]. As a result, the
population from this post-hoc study included a small number of patients and controls. No subgroup analyses could be
performed, however all three mechanical dyssynchrony criteria reached statistical signi�cance.

No cut-off values to de�ne LV electrical or mechanical dyssynchrony have been established in the pediatric population.
As a result, we used a case-control study design to compare DMD patients to age-matched healthy subjects. Further
studies are needed to de�ne LV dyssynchrony thresholds in pediatrics.

The cross-sectional design of this study limits the use of LV mechanical dyssynchrony as a prognostic marker of LV
dysfunction. Indeed, further longitudinal cohort studies will need to determine whether LV mechanical dyssynchrony can
be used as a surrogate outcome for heart failure in the DMD population.

Conclusion
LV mechanical dyssynchrony involving the basal and mid anterolateral segments seemed to affect children with DMD
before the onset of relevant patterns of cardiomyopathy. Detection of LV mechanical dyssynchrony using the 2D-STE
analysis is an easily and reproducible method, which may be of interest in clinical practice.

The existence of 2D-STE mechanical dyssynchrony despite normal LV size and function represents an important
perspective for future pediatric drug trials in DMD-related cardiomyopathy prevention. Further prospective studies will be
necessary to con�rm that cardiac dyssynchrony parameters may be used as reliable surrogate outcomes for heart failure
in patients with DMD.
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Figure 1

LV longitudinal mechanical dyssynchrony analysis using 2D-STE Legend: On the left side, the LV apical 4-chamber view
is automatically divided into 6 segments. On the right side, six color curves represent the 2D-strain deformation
corresponding to those segments during a cardiac cycle (simultaneous electrocardiogram is seen at the bottom): yellow
(basal inferoseptal segment), light blue (mid inferoseptal segment), green (apical septal segment), purple (apical lateral
segment), dark blue (mid anterolateral segment), and red (basal anterolateral segment). Here, the time-to-peak delay of
the apical lateral segment (purple curve) is measured between the beginning of the QRS interval (a) and the systolic strain
peak (b); and the opposing-wall delay between the two mid segments is measured between the systolic strain peak of the
mid inferoseptal segment (light blue curve) and the systolic strain peak of the mid anterolateral segment (dark blue
curve).
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Figure 2

Comparison of LV longitudinal time-to-peak delays between DMD and control groups Legend: The two �gures represent,
for each group, the time-to-peak delay of each LV segment, corrected by heart rate (using Bazett's formula, expressed in
msec), using the 16-segment bull’s eye model of myocardial segmentation. The boxes in red represent the segments for
which time-to-peak delays were signi�cantly different (P<0.05) between the two groups with a magnitude of the
difference ≥20 msec (basal anterolateral, mid anterolateral, and basal anterior segments). The boxes in orange represent
the segments for which time-to-peak delays were signi�cantly different (P<0.05) between the two groups with a
magnitude of the difference <20 msec (mid anterior and apical lateral segments). The boxes in blue represent the
segments for which time-to-peak delays were not signi�cantly different between the two groups (NS, non-signi�cant).
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