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Abstract: Mycobacteria cause a variety of diseases, such as tuberculosis, leprosy, and opportunistic
diseases in immunocompromised people. The treatment of these diseases is problematic, necessitating
the development of novel treatment strategies. Recently, β-carbonic anhydrases (β-CAs) have
emerged as potential drug targets in mycobacteria. The genomes of mycobacteria encode for
three β-CAs that have been cloned and characterized from Mycobacterium tuberculosis (Mtb) and
the crystal structures of two of the enzymes have been determined. Different classes of inhibitor
molecules against Mtb β-CAs have subsequently been designed and have been shown to inhibit these
mycobacterial enzymes in vitro. The inhibition of these centrally important mycobacterial enzymes
leads to reduced growth of mycobacteria, lower virulence, and impaired biofilm formation. Thus,
the inhibition of β-CAs could be a novel approach for developing drugs against the severe diseases
caused by pathogenic mycobacteria. In the present article, we review the data related to in vitro and
in vivo inhibition studies in the field.

Keywords: mycobacterial diseases; β-carbonic anhydrases; Mycobacterium tuberculosis; drug targets;
carbonic anhydrase inhibitors; in vivo inhibition; in vitro inhibition

1. Introduction

Mycobacteria are rod-shaped, non-motile, and acid-fast bacteria that contain a high amount of G
+ C in their genome [1,2]. The genus mycobacterium includes a variety of clinically relevant human
pathogens, including Mycobacterium tuberculosis (Mtb), the main causative agent of human tuberculosis
(TB). A group of closely related bacteria referred to as the Mycobacterium tuberculosis complex (MTC)
composes of a variety of pathogens causing TB in humans and other mammals. These include M.
tuberculosis, M. bovis, M. caprae, M. africanum, M. canettii, M. microti, M. orygis, and M. pinnipedii [3].
Mtb is typically transmitted through air by a droplet contact. Mtb can affect many organs in humans,
but the main target organ is the lung, causing pulmonary TB in 80% of the patients. In 2017, 10 million
new cases were diagnosed [4]. In addition to the diagnosed active Mtb infections, the World Health
Organization (WHO) estimates that 23% of the world’s population has developed a latent TB [4], which
is asymptomatic but can become reactivated and cause a difficult-to-treat and potentially lethal disease.
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Mtb is currently one of the deadliest bacteria killing 1.3 million people every year. Multi-drug-resistant
strains of Mtb are on the rise making TB increasingly difficult to treat. This development poses an
enormous global threat necessitating immediate action to find new ways to treat this devastating
disease [4].

Leprosy is another example of a clinically relevant mycobacterial disease. Leprosy is caused by
M. leprae, which is transmitted through droplets due to close and frequent contact with untreated
patients. As the multiplication rate of M. leprae is very slow, the incubation period of disease ranges
between 1 and 20 years. The disease mainly affects the skin, peripheral nerves, mucosa of the upper
respiratory tract, and eye. If left untreated, the disease usually causes permanent tissue damage.
In many developing countries, leprosy is still a serious health problem and the people suffering from
the disease often face social problems that go hand in hand with the disease progression. The latest
WHO report shows that there were 216,108 new leprosy cases in 145 countries from the 6 WHO
regions [5].

The nontuberculous mycobacteria (NTM) group includes all mycobacteria other than MTC
and M. leprae, and about 40 species of them are pathogenic [6]. NTM are ubiquitously found in a
wide variety of environmental reservoirs [7,8]. Although they are mostly nonpathogenic, they are
important opportunistic pathogens of humans [9]. The species of NTM associated with human disease
are: M. avium, M. intracellulare, M. kansasii, M. fortuitum, M. chelonae, M. szulgai, M. paratuberculosis,
M. scrofulaceum [10] as well as bacteria belonging to the M. abscessus complex [11]. NTM can
cause pulmonary disease resembling tuberculosis, lymphadenitis, and skin disease. The pulmonary
disease represents about 80% of infections caused by NTM [12]. Recent reports suggest that the
NTM pulmonary disease is increasing in several parts of the world [13,14]. However, standardized
diagnostics and effective treatment protocols for NTM infections are lacking [15].

Genomes of many mycobacterial species from both MTC and NTM categories have been
sequenced [16–20]. Bioinformatic and molecular analysis of mycobacterial genomes revealed that they
code for several novel proteins that are essential for the alternative pathways and critical for the life
cycle of these pathogens [21–23]. Recent progress in the structural and functional analyses of genomes
and proteomes has opened new avenues for the design of mechanism-based drugs targeting proteins
crucial for pathogenesis of mycobacteria [24]. Among many such proteins, β-carbonic anhydrases
(β-CAs) of mycobacteria could be possible targets for developing novel antimycobacterial agents with
the potential to treat even infections caused by drug-resistant mycobacteria.

M. tuberculosis genome codes for three β-CA genes Rv1284 (β-CA1), Rv3588c (β-CA2) and Rv3273
(β-CA3) as shown in Table 1 [25]. Database searches and our bioinformatic analyses showed the
presence of all the three β-CAs in both NTM and MTC bacteria [26–30]. β-CAs catalyze the reversible
hydration of CO2 to HCO3

− and H+, thus generating a buffering weak base (bicarbonate) and a strong
acid (H+) [31,32]. Mycobacterial β-CAs are zinc-containing metalloenzymes with characteristics similar
to many other bacterial β-CAs. All conserved amino acid residues typical of β-CAs and involved in
the catalytic cycle, i.e., the four zinc-binding residues, Cys42, Asp44, His97 and Cys101 are shown in
Figure 1.

Table 1. Activity and inhibition properties of Mtb β-CAs compared to human CA II.

CAs Gene ID Protein Kcat (s−1) Kcat/Km (M−1 s−1) Activity KI (nM) a Reference

Mtb β-CA1 Rv1284 163 aa 3.9 × 105 3.7 × 107 Moderate 480 [27]
Mtb β-CA2 Rv3588c 207 aa 9.8 × 105 9.3 × 107 High 9.8 [29]
Mtb β-CA3 Rv3273 b 215 aa 4.3 × 105 4.0 × 107 Moderate 104 [28]

hCAII CA2 260 aa 1.4 × 106 1.5 × 108 Very high 12 [29]
a Inhibition using acetazolamide. b CA domain of β-CA3.
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Figure 1. Crystal Structure of Rv1284 (β-CA1) from M. tuberculosis. (A) Structure of β-CA1 (1YLK) [22].
Coordination of the Zn(II) ion in the β-CA1 of Mtb. (B) Closed active site, with the Zn(II) ion (violet
sphere) coordinated by a histidine, two cysteines and one aspartate residue. (C) Open active site, with
three protein ligands coordinated to Zn(II); the aspartate makes a salt bridge with a conserved arginine
residue in all β-CAs [22,29]. The images adapted from Covarrubias et al. https://www.rcsb.org/
structure/1YLK [22]. Licensed under CC BY 4.0.

The mycobacterial β-CAs are essential during starvation for the growth and survival of the
bacteria [22,23,33,34]. Recent studies showed that the bicarbonate ion, which is a product of reversible
hydration of CO2, is essential for the transport of extracellular DNA (eDNA) and the formation of
biofilm in NTM bacteria in vitro [35]. Inhibition of β-CAs using ethoxzolamide (EZA), a CA inhibitor,
reduced the transport of eDNA and the formation of biofilm [35]. EZA also inhibited the PhoPR
regulon, a two-component regulatory system in Mtb, as well as Esx-1 protein secretion system centrally
important for the virulence of Mtb bacterium, and showed efficacy in infected macrophages and
mice [36], suggesting that β-CAs perform very important roles in mycobacterial infections. Using
M. marinum, an NTM model bacterium, we were the first to show that dithiocarbamate Fc14-584b,
a β-CA inhibitor impairs mycobacterial growth in zebrafish larvae in vivo [26]. These essential enzymes
are thus potential drug targets and are currently under investigation by several groups, including
ours [26–29,35–39]. Similarly, several in vitro studies have shown that all the Mtb β-CAs could be
efficiently (KI in nanomolar ranges) inhibited by sulfonamides/sulfamates (Table 1). In the present
review, we update the data on in vitro and in vivo studies using CA inhibitors on mycobacterial β-CAs.

2. In Vitro Inhibition Studies of M. tuberculosis β-CAs

2.1. Sulfonamides as Inhibitors of M. tuberculosis β-CAs

The cloning and characterization of the M. tuberculosis β-CAs were done in the 2000s and these
enzymes were identified as novel drug targets for developing anti-TB agents [27–29]. β-CA1 was
the first Mtb β-CA cloned and characterized and in the same study, the first in vitro inhibition
studies were performed using a panel of sulfonamides, sulfamates and their derivatives [27].
For in vitro inhibition studies, the CO2 hydration activity of β-CA1 was measured by applying
Applied Photophysics stopped-flow instrument using phenol red as an indicator [27]. Among
the tested sulfonamides, most of them inhibited the activity of β-CA1 in the range of 1–10 µM.
Many of the derivatives, including sulfanilyl-sulfonamides acetazolamide (ATZ) (1), methazolamide,
dichlorophenamide, dorzolamide (DZA) (2), brinzolamide, benzolamide, and the sulfamate topiramate,
exhibited sub-micromolar inhibition (KI values of 0.481–0.905 µM) [27] (Table 2). Among the tested
sulfonamides 3-bromosulfanilamide (3) and indisulam (4) inhibited the activity of β-CAs most
efficiently (KI values of 97–186 nM) (Table 2 and Figure 2). This was the first study to show that
Mtb β-CA1 is a potential target for developing anti-TB drugs that have a different mechanism of
action [27]. Several studies in vitro inhibition studies were performed using these inhibitor molecules

https://www.rcsb.org/structure/1YLK
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on Mtb β-CA1 and human CA II that showed similar inhibition profiles suggesting reliability of the
method used for the studies [29,39–45].Molecules 2018, 23, x FOR PEER REVIEW  4 of 14 
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Figure 2. Chemical structures of acetazolamide (1) (ATZ), dorzolamide (2) (DZA),
3-bromosulfanilamide (3) and indisulam (4).

Inhibition of Mtb β-CA2 was investigated using a series of diazenylbenzenesulfonamides (5) that
were derived from sulfanilamide or metanilamide (Table 2) [40]. To increase the inhibitory properties,
new molecules were synthesized by diazotization of aminosulfonamide and by coupling with phenols
or amines [29]. The molecules were subsequently incorporated with various R moieties in the molecule
such as hydroxy, amino, methylamino and dimethylamino and sulfonate that may induce water
solubility to these compounds as sodium salts. The aminomethylene sodium sulfonate derivatives and
their corresponding N-methylated analogue showed the best inhibition constants (KIs of 45–59 nM) [29].
In these compounds, the para position had bulky substituent with respect to the sulfonyl moiety,
suggesting that this strategy may be good in obtaining low nanomolar range inhibitors that are selective
against Mtb β-CA2 [29]. In addition to Mtb β-CA1 and β-CA2, the diazenylbenzenesulfonamides
(5) were also tested for the inhibition of the Mtb β-CA3, and the prontosil (6) (Table 2 and Figure 3)
was found to be the best inhibitor with inhibition constants in the range of (KIs) of 126–148 nM [39].
In another study, several compounds were studied for their inhibitory properties against Mtb β-CA3
and among them 2-amino-pyrimidin-4-yl-sulfanilamide (7) (KI 90 nM) and sulfonylated sulfonamide
(KI of 170 nM) showed that Mtb CA3 can be successfully targeted using CAIs with a potential for
developing agents targeting mycobacteria (Table 2) [28].
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Inhibition studies on Mtb β-CA1 and β-CA3 using sulfonamides prepared by reaction of
sulfanilamide with aryl/alkyl isocyanates (Ureido-sulfonamides) (8) have been carried out and the KIs
were found to be in the range of 4.8–6500 nM and of 6.4–6850 nM, respectively (Table 2) [41]. Similarly,
inhibition studies on all the three β-CAs of Mtb were performed using a number of halogenated
sulfanilamides and halogenated benzolamide (9) derivatives that showed the efficacies of inhibition in
the sub-micromolar to micromolar range (Table 2 and Figure 4). The inhibition range was dependent on
the substitution pattern at the sulfanilamide moiety/fragment of the molecule. Best inhibitors were the
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halogenated benzolamides (KIs in the range of 0.12–0.45 µM), whereas the halogenated sulfanilamides
were slightly less inhibitory (KIs in the range of 0.41–4.74 µM) [42].Molecules 2018, 23, x FOR PEER REVIEW  5 of 14 
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Figure 4. General chemical structures of ureido containing sulfonamides (8) and halogenated benzene
sulfonamides (9).

A new series of fluorine containing sulfonamides (Triazinyl sulfonamides) (10) that were
incorporated with amino, amino alcohol and amino acid moieties were used for the inhibition of
all the three β-CAs of Mtb [43] (Figure 5). Among the compounds tested, some of them inhibited
β-CA2 efficiently with KI values in the nanomolar range and also with very good potency (KIs in
sub-micromolar range) against β-CA1 and β-CA3 [43] (Table 2). In a recent study, novel sulfonamides
were obtained from sulfanilamide, which was N4-alkylated with ethyl bromoacetate, followed
by reaction with hydrazine hydrate and further reacted with various aromatic aldehydes [44].
The inhibition studies using these sulfonamides showed KIs in the range of 127 nM–2.12 µM for
Mtb β-CA3 [44].

Molecules 2018, 23, x FOR PEER REVIEW  5 of 14 

 

 
Figure 4. General chemical structures of ureido containing sulfonamides (8) and halogenated benzene 
sulfonamides (9). 

A new series of fluorine containing sulfonamides (Triazinyl sulfonamides) (10) that were 
incorporated with amino, amino alcohol and amino acid moieties were used for the inhibition of all 
the three β-CAs of Mtb [43] (Figure 5). Among the compounds tested, some of them inhibited β-CA2 
efficiently with KI values in the nanomolar range and also with very good potency (KIs in sub-
micromolar range) against β-CA1 and β-CA3 [43] (Table 2). In a recent study, novel sulfonamides 
were obtained from sulfanilamide, which was N4-alkylated with ethyl bromoacetate, followed by 
reaction with hydrazine hydrate and further reacted with various aromatic aldehydes [44]. The 
inhibition studies using these sulfonamides showed KIs in the range of 127 nM–2.12 µM for Mtb β-
CA3 [44]. 

 
Figure 5. General chemical structure of triazinyl sulfonamides (10). 

2.2. Mono and Dithiocarbamates 

A series of N-mono- and N,N-disubstituted dithiocarbamates (DTCs) (11,12) have been tested 
for inhibition of β-CA1 and β-CA3 from Mtb (Table 2 and Figure 6) [45]. Both enzymes could be 
inhibited with sub-nanomolar to micromolar efficacies, depending on the substitution pattern at the 
nitrogen atom from the dithiocarbamate zinc-binding group. Aryl, arylalkyl-, heterocyclic as well as 
aliphatic and amino acyl moieties led to potent Mtb β-CA1 and β-CA3 inhibitors in both the N-mono- 
and N,N-disubstituted dithiocarbamate series [45]. 

 
Figure 6. Chemical structures of dithiocarbamates (11) and (12). 

2.3. Phenolic Natural Products and Phenolic Acids 

Several studies have shown that sulfonamides inhibit the Mtb β-CAs efficiently as discussed 
above. Similarly, in an effort to discover novel inhibitors that could selectively inhibit β-CAs through 
novel mechanism of action, Supuran’s group screened a series of phenolic-based natural products 
(NPs) against the Mtb β-CAs [46]. Enzyme inhibition properties of 21 NP compounds were 

Figure 5. General chemical structure of triazinyl sulfonamides (10).

2.2. Mono and Dithiocarbamates

A series of N-mono- and N,N-disubstituted dithiocarbamates (DTCs) (11,12) have been tested for
inhibition of β-CA1 and β-CA3 from Mtb (Table 2 and Figure 6) [45]. Both enzymes could be inhibited
with sub-nanomolar to micromolar efficacies, depending on the substitution pattern at the nitrogen
atom from the dithiocarbamate zinc-binding group. Aryl, arylalkyl-, heterocyclic as well as aliphatic
and amino acyl moieties led to potent Mtb β-CA1 and β-CA3 inhibitors in both the N-mono- and
N,N-disubstituted dithiocarbamate series [45].
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2.3. Phenolic Natural Products and Phenolic Acids

Several studies have shown that sulfonamides inhibit the Mtb β-CAs efficiently as discussed
above. Similarly, in an effort to discover novel inhibitors that could selectively inhibit β-CAs through
novel mechanism of action, Supuran’s group screened a series of phenolic-based natural products (NPs)
against the Mtb β-CAs [46]. Enzyme inhibition properties of 21 NP compounds were investigated
against β-CAs of Mtb as well as against human α-CAs I and II for comparison. Sulfonamides that are
used clinically inhibited human CAs efficiently (at nM range), whereas β-CAs required micromolar
concentrations. In contrast, 8 and 7 of the 21 phenolic compounds had sub-micromolar affinity for
β-CA1 and β-CA3, respectively. The selectivity of some compounds was significantly higher against
β-CAs than human α-CAs (the inhibition range being 8 µM to 430 µM) [46]. These NPs are the first
nonclassical CA inhibitors that are more potent against mycobacteria β-CAs compared to host CA
enzymes, suggesting usefulness of NPs for targeting β-CA of Mtb [46]. In addition to natural phenolic
products, a series of phenolic acids and their esters, derivatives of caffeic, ferulic, and p-coumaric acids
were tested against all the β-CAs of Mtb [47]. Among the screened compounds, esters 6–9 showed
good inhibitory activity against all the Mtb β-CAs (KIs 1.87 Mm–7.05 µM), whereas they showed no
inhibitory activity against human CAI and CAII, suggesting that they could be potentially developed
as anti-mycobacterial compounds [47]. Computational analysis of binding mode of the compounds
suggested that the inhibitors anchor to the zinc-coordinated water molecule from the CA active site
interfering with the nucleophilic attack of the zinc hydroxide on the substrate CO2 [47]. These results
provided insights into mechanism of inhibition of β-CAs, which may be valuable for developing new
mycobacterial agents with a novel mechanism of action [47].

Table 2. Compounds that inhibit M. tuberculosis β-CAs at nM concentrations compared to inhibition of
human CAII enzyme in vitro.

CAIs hCAII β-CA1 β-CA2 β-CA3 Reference

3-bromosulfanilamide 40 186 NS NS [27]
Diazenylbenzenesulfonamides 105 - 45–955 - [29]

2-amino-pyrimidin-4-yl-sulfanilamide 33 - NA 91 [28]
Sulfonylated sulfonamide NS - - 170 [28]

prontosil NS 126 148 [39]
Halogenated benzolamides NS 120–580 410–450 170–340 [42]

N-mono- and N,N-dithiocarbamates 0.7–325 0.9–481 NA 0.91–431 [45]
Ureido-sulfonamides 2.1–226 5–560 NA 6.4–533 [41]
Cinnamoyl glycosides NS 140 130–640 - [48]
Triazinyl Sulfonamides 4.9–5.5 42–580 8.1–10 2.1–210 [43]
a Acetazolamide (ATZ) 12 481 9 104 [29]
a Ethoxzolamide (EZA) 8 - 594 27 [29]
a Dorzolamide (DZA) 9 744 99 137 [29]

a Indisulam 15 97 NS NS [27]
a Clinically, the most relevant or promising compounds that inhibit human CAs efficiently. NA—not
assayed, NS–non-significant.

In another study, inhibition profiles of series of C-cinnamoyl glycosides (13) containing the phenol
moiety were investigated against the three β-CAs of Mtb [48] (Table 2 and Figure 7). Among the
compounds investigated, most of them (compounds 1–3 and 5–7) inhibited Mtb β-CA2 at nanomolar
concentrations (KI 130-640 nM), and for Mtb β-CA1 (compounds 5 and 6) the KI range was between
140–930 nM and showed preference for β-CA1 over human CAII. Only one compound inhibited Mtb
β-CA1 at nanomolar quantities (KI 140 nM) over human CAII [48].
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2.4. Carboxylic Acids

Weak acids are known to inhibit the growth of mycobacterium but the mechanism of action of
these compounds is not known. Carboxylic acids (14) that contain scaffolds such as benzoic acids,
nipecotic acid, ortho and para coumaric acid and ferulic acid were investigated for the inhibition of all
the three β-CAs of Mtb (Figure 8). These compounds inhibited all the three β-CA enzymes of Mtb at
sub-micromolar to micromolar concentration range (KIs in the range of 0.11–0.97 µM). The KIs for the
inhibition of β-CA2 was in the range of 0.59–8.10 µM, whereas against β-CA1, the carboxylic acids
showed inhibition constants in the range of 2.25–7.13 µM [49]. This class of relatively underexplored
β-CA inhibitors warrant further in vivo studies, as they may have the potential for developing
antimycobacterial agents.
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3. In Vitro Inhibition of Mycobacterial strains Using CA Inhibitors

A new class of compounds prepared by reaction of 6-mercaptopurine with sulfony/sulfenyl
halides known as 9-sulfonylated/sulfenylated-6-mercaptopurines inhibit growth of Mtb H37Rv, a wild
type bacilli in the range of 0.39–3.39 µg/mL [50] (Table 3). In addition, one of the derivatives showed an
appreciable (minimal inhibitory concentration (MIC) under 1 µg/mL) inhibitory activity against several
drug resistant strains of Mtb [50]. The compounds that exhibit MIC of less than 1 µg/mL are considered
as excellent leads and were the first CAIs with anti-tubercular activity. Thus, these compounds may
indeed constitute interesting leads for discovering more efficient antimycobacterial drugs. Similarly,
C-cinnamoyl glycosides containing the phenol moiety that inhibit Mtb β-CA1 and β-CA2 in nanomolar
quantities were tested for inhibition of the Mtb H37Rv strain, leading to the identification of compounds
having anti-tubercular activity (Table 3) [48]. The MIC of the C-cinnamoyl glycosides was 100 µg/mL;
though high, the compounds inhibited the growth of the bacterium completely. Interestingly, one of
the C-cinnamoyl glycosides, (E)-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-4-(3-hydroxyphenyl)
but-3-en-2-one inhibited the growth of the bacterium efficiently (3.125–6.25 µg/mL) on a solid medium
(Table 3) [48].
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Table 3. Studies on minimal inhibitory concentrations (MICs) of the CA inhibitors in
mycobacterial cultures.

Inhibitor Bacilli Concentration Reference

(E)-1-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-
4-(3-hydroxyphenyl) but-3-en-2-one Mtb H37Rv

b 3.125–6.25 µg/mL [48]
100 µg/mL [48]

DTCs (Fc14-584b and Fc14-594a) M. marinum 17–18 µg/mL [26]
9-sulfonylated/sulfenylated-6-mercaptopurines Mtb H37Rv 0.39–3.39 µg/mL [50]
9-sulfonylated/sulfenylated-6-mercaptopurines a Mtb 1 µg/mL [50]

a Drug resistant Mtb strains. b Antimycobacterial activity on solid medium.

Inhibition studies on M. marinum, an NTM and a close relative of Mtb, were carried out in liquid
cultures using DTCs Fc14-584b and Fc14-594a. These drugs were prepared by reaction of corresponding
amine with carbon disulfide in the presence of a base and shown to be specific inhibitors of Mtb β-CA1
and β-CA3 [45]. In vitro inhibition studies showed that the concentration required for the inhibition of
the M. marinum was 17–18 µg/mL for both compounds after six days of exposure to the inhibitors.
Further studies to find if the compounds were bacteriostatic or bactericidal showed that there was no
growth resumption of M. marinum with inhibitor concentration below MIC after inhibitor dilution by
1:4, suggesting that these compounds were bactericidal [26] (Table 3).

Similar to other bacteria that contain extracellular DNA (eDNA) in the matrix of the bacterial
biofilms, NTM bacteria also contain significant amounts of eDNA in their biofilms and are responsible
for phenotypic resistance of the bacteria to antibiotics, in addition to other biological functions [51].
A recent study showed that bicarbonate ion positively influences eDNA export in NTM and it is
well established that bicarbonate is generated by the hydration of carbon dioxide via CA [31,35].
Screening of a mutant library for eDNA export in NTM bacteria M. avium identified mutants that
were inactivated for CA gene and these mutants when complemented with the CA gene restored
the transport of eDNA, suggesting that CAs play important roles in the transport of eDNA and
formation of biofilms in NTM [35]. The surface exposed proteome of M. avium in eDNA containing
biofilms showed presence of abundant CAs and inhibition studies exposing these bacteria to
6-ethoxy-1,3-benzathiazole-2-sulfonamide/ethoxzolamide (15) (EZA) showed reduction in eDNA
transport significantly (Table 4 and Figure 9) [35]. Thus, in addition to having an effect on mycobacterial
growth, CA-inhibition may also be a potential strategy to inhibit biofilm formation of mycobacteria.

Table 4. Details of in vivo inhibition studies on different mycobacterial species.

Inhibitor Bacterium Inhibitory Effect References

EZA M. tuberculosis a Attenuates virulence, inhibits PhoPR [36]
EZA M. avium b Transport of eDNA and biofilm formation [35]

Dithiocarbamate 12 M. marinum b c Impairs grow of bacterium in the larvae [26]
a Mycobacterium tuberculosis complex. b Nontuberculous mycobacteria. c In zebrafish larval model.
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4. CA Inhibitors and In Vivo Inhibition of Mycobacteria

The first in vivo study to show the effect of CA inhibitor on Mtb was published in 2015 by Johnson
et al. [36]. The authors showed that EZA (Figure 10) inhibits the signaling of PhoPR in Mtb [36,52].
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EZA is a sulfonamide compound (Figure 10) that is a general inhibitor of CA enzyme activity and is an
FDA approved drug used in the treatment of glaucoma, epilepsy and duodenal ulcers and is a diuretic.Molecules 2018, 23, x FOR PEER REVIEW  9 of 14 
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Figure 10. Novel compounds that inhibit M. tuberculosis β-CAs at nanomolar quantities. (Upper panel;
A): structures of the compounds with a potential to be developed as anti-mycobacterial agents for
treating the mycobacterial diseases caused by MTC and NTM bacteria that are resistant to clinically
used drugs. (Lower panel; B): compounds that efficiently inhibit the M. tuberculosis β-CAs in addition
to human CAII and are in clinical use or testing to treat human diseases.

The study showed that Mtb treated with EZA induces phenotypes similar to the mutants of the
PhoPR, downregulating PhoPR regulon, reducing the production of virulence-associated lipids, and
inhibiting Esx-1 protein secretion (Table 4) [36]. In addition, quantitative single cell imaging of a PhoPR
dependent fluorescent reporter strain showed that EZA inhibits PhoPR regulated genes in infected
macrophages and mouse lungs [36]. Similarly, the efficacy assessment in Mtb-infected mice, orally
treated with EZA, showed a significant reduction in bacterial growth in the lungs compared to the
mock-treated control group [36].
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Dithiocarbamates, another class of compounds that strongly inhibit β-CAs of Mtb in vitro have
been recently used by our group to show in vivo inhibition of M. marinum [26,45]. Among the two
DTCs 11 and 12 that were first evaluated for toxicity in the zebrafish larval model, 12 was found to be
less toxic and was taken further to study the inhibition of M. marinum in vivo. The zebrafish larvae
infected with green fluorescent M. marinum strain with an infection dose of 471 ± 143 bacteria treated
with 300 µM concentration of 12 showed significant reduction (p > 0.0096) in bacterial load compared
to the larvae not treated with the inhibitor (Figure 11C). The study suggested that the inhibitors of CAs
could be useful as a new class of antimycobacterial compounds that can potentially treat MDR-TB.
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5. Future Prospects

In this review, we discussed the progress made on the discovery and development of
antimycobacterial agents that target mycobacterial β-CAs. The chemical inhibitors that selectively
bind to the mycobacterial β-CAs could be developed as antimycobacterial agents for treating not
only drug-resistant tuberculosis, but also other diseases caused by pathogenic mycobacteria that are
resistant to clinically used drugs. The M. tuberculosis contains three β-CAs, among them, β-CA1 and
β-CA 2 are cytoplasmic, and β-CA3 is membrane associated. Many of the inhibitors reported so far
have been shown to inhibit β-CA1 and β-CA2 in vitro efficiently, however it is not known if these
inhibitors are permeable through the mycobacterial membrane. Similarly, many of the inhibitors that
have been shown to inhibit mycobacterial β-CAs efficiently have also been shown to inhibit human
α-CAs though in higher concentrations.

The current strategy of developing inhibitors against the mycobacterial β-CAs for treating
mycobacterial diseases can be more successful in the future by designing inhibitors that bind Mtb
β-CAs selectively and specifically. For designing such inhibitors, information regarding the active
site residues of the enzymes that interact with inhibitor molecules need to be obtained. Resolving
crystal structures in complex with potential inhibitors of β-CAs is one way of getting insights into
such residues that will help in the design and synthesis of β-CA specific inhibitors.

Studies have shown that these enzymes can be inhibited in vivo using CAIs exhibiting
antimycobacterial effect showing proof-of-concept. However, only very few studies have shown
antimycobacterial effects of the inhibitors possibly through the inhibition of β-CA3 of the bacterium.
In future, to achieve more success for in vivo inhibition of these enzymes, there is a need to design and
synthesize inhibitors that are not only selective for β-CAs but also permeable through the membrane.
It will also be useful to design inhibitor molecules with a tag that will help in tracking the fate of the
molecule once it is inside the bacterium.

Zebrafish represents an excellent vertebrate model for tuberculosis research, because it is a natural
host for M. marinum that causes a TB-like disease in the fish. Safety and toxicity of the potential β-CA
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inhibitors can be first evaluated using zebrafish larvae. Subsequently, preclinical in vivo inhibition
studies can be done in a zebrafish larval model after causing an active TB by M. marinum infection.
The recent developments of the in vivo zebrafish models that mimic the human TB disease, coupled
with new imaging technologies, provide much better predictive preclinical models to produce new
combinations of treatments/drugs that are more effective against the hard-to-treat mycobacterial
diseases. Unlike the drugs that are in clinical use, the β-CA inhibitors have a different mechanism
of action. These drugs will probably have minimal off-target effects due to the absence of β-CAs in
humans and other vertebrates in whom mycobacteria cause infections.
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