1	SUPPLEMENTARY MATERIAL
2	
3	
4 5	
5 6	
7	Closing the hydrogen cycle with the couple sodium
8	borohydride-methanol, via the formation of sodium
9	tetramethoxyborate and sodium metaborate
10	
11	Running title: Closing the hydrogen cycle with sodium borohydride-methanol
12	
13	Kübra Aydın ¹ , Büşra Nur Kulaklı ¹ , Bilge Coşkuner Filiz ² , Damien Alligier ³ , Umit B. Demirci ³ , Aysel Kantürk
14	Figen 1*
15	
16	
17	¹ Department of Chemical Engineering, Yildiz Technical University, İstanbul, Turkey
18	² Science and Technology Application and Research Center, Yildiz Technical University, İstanbul, Turkey
19	³ Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France
20	
21	* Corresponding author: akanturk@yildiz.edu.tr; ayselkanturk@gmail.com; +90 212 383 47 28;

Figure S1. Hydrogen evolution curves for methanolysis of NaBH₄ such as x = 2 and x = 4. Because of the slow kinetics in the second part of the H₂ evolution curve with x = 2, the data collection

- was limited to 1 hour (and the reaction was left for completion).
- 28
- 29

SEM images of the solids recovered after methanolysis of NaBH₄ such as x = 2 to 32

- Figure S2. SEM image of the solids recovered after methanolysis of NaBH₄ such as x = 2.

Figure S3. SEM image of the solids recovered after methanolysis of NaBH₄ such as x = 4.

42
43 Figure S4. SEM image of the solids recovered after methanolysis of NaBH₄ such as x = 8.

47
48 Figure S5. SEM image of the solids recovered after methanolysis of NaBH₄ such as x = 16.

53 **Figure S6**. SEM image of the solids recovered after methanolysis of NaBH₄ such as x = 32.

55 FTIR spectra of the solids recovered after methanolysis of NaBH₄ such as x = 8, 16 and 32

56

Figure S7. FTIR spectra of the solid recovered after methanolysis of NaBH₄ such as x = 8, to show

- 59 the bands due to C–H stretching that are overlapped by the large and strong bond of O–H
- 60 stretching. The other bands are ascribed in Figure 3 of the main text.

Figure S8. FTIR spectra of the solid recovered after methanolysis of NaBH₄ such as x = 16, to

63 show the bands due to C–H stretching that are overlapped by the large and strong bond of O–H

64 stretching. The other bands are ascribed in Figure 3 of the main text.

Figure S9. FTIR spectra of the solid recovered after methanolysis of NaBH₄ such as x = 32, to show the bands due to C–H stretching that are overlapped by the large and strong bond of O–H

- 69 stretching. The other bands are ascribed in Figure 3 of the main text.
- 70

71 Thermal and calorimetric analysis of NaB(OCH₃)₄, under neutral and oxidative atmosphere

- //

performed under O₂ and N₂ atmosphere.

Figure S11. (a) GC-FID chromatogram of the liquid phase hydrolysis product. (b) GC-FID chromatogram of the standard CH₃OH solution. The retention time of 8 min is to that of a standard CH₃OH solution. Regions 1 and 2 are discussed hereafter.

- the use of a flame ionization detector. The GC-FID chromatogram of the standard CH₃OH solution
 can be divided into two regions:
- **Region 1**: The peaks that are observed up to 5 min are typical of ghost peaks. They are
 related with the chromatograph system as reported in refs. [1,2,3].
- **Region 2**: There is one peak at about 7 min. It could be related to an impurity generally
 found in technical grade CH₃OH solution, as reported elsewhere [4].
- 93 The regions 1 and 2 can be seen also in the chromatogram of the liquid phase hydrolysis product
- 94 (Figure S11b), thereby confirming the presence of CH_3OH .

¹ Fialkov, A.B., Steiner, U., Lehotay, S.J., Amirav, A.. Sensitivity and noise in GC–MS: Achieving low limits of detection for difficult analytes. International Journal of Mass Spectrometry 2007, 260, 31.

² Sparkman, O.D. GC/MS: A practical user's guide, Marvin McMaster. Journal of the American Society for Mass Spectrometry, 2008, 19(8), R1.

³ Troubleshooting Chromatographic Contamination Ghost Peaks/Carryover, Agilent Technologies, https://www.agilent.com/cs/library/Support/Documents/a16039.pdf

⁴ Lorenz, S., Bosma, M., Kemperman, A., Mohan, V., Przybytek, J., Characterization and evaluation of technical Grade dolvents and comparison to their purified counterparts. Honeywell Burdick & Jackson. Available at: http://pages2.honeywell.com/rs/honeywell2/images/Honeywell-B%26J-poster-v2b.pdf (accessed the 31st of May, 2020)