

Closing the hydrogen cycle with the couple sodium borohydride-methanol, via the formation of sodium tetramethoxyborate and sodium metaborate

Kübra Aydin, Büşra Kulakli, Bilge Coşkuner Filiz, Damien Alligier, Umit Demirci, Aysel Kantürk Figen

▶ To cite this version:

Kübra Aydin, Büşra Kulakli, Bilge Coşkuner Filiz, Damien Alligier, Umit Demirci, et al.. Closing the hydrogen cycle with the couple sodium borohydride-methanol, via the formation of sodium tetramethoxyborate and sodium metaborate. International Journal of Energy Research, 2020, 44 (14), pp.11405-11416. 10.1002/er.5761. hal-03544935

HAL Id: hal-03544935 https://hal.umontpellier.fr/hal-03544935v1

Submitted on 3 Oct 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Closing the hydrogen cycle with the couple sodium					
2	borohydride-methanol, via the formation of sodium					
3	tetramethoxyborate and sodium metaborate					
4						
5	Running title: Closing the hydrogen cycle with sodium borohydride-methanol"					
6						
7	Kübra Aydın ¹ , Büşra N. Kulaklı ¹ , Bilge Coşkuner Filiz ² , Damien Alligier ³ , Umit B. Demirci ³ , Aysel Kantürl					
8	Figen ¹ *					
9						
10	¹ Department of Chemical Engineering, Yildiz Technical University, İstanbul, Turkey					
11	² Science and Technology Application and Research Center, Yildiz Technical University, İstanbul, Turkey					
12	³ Institut Européen des Membranes, IEM – UMR 5635, ENSCM, CNRS, Univ Montpellier, Montpellier, France					
13	* Corresponding author: akanturk@yildiz.edu.tr; ayselkanturk@gmail.com; +90 212 383 47 28					
14						

...

15

16 Abstract

17 Methanolysis of sodium borohydride (NaBH₄) is one of the methods efficient enough to release, on demand, the hydrogen stored in the hydride as well as in 4 equivalents of methanol 18 19 (CH_3OH) . It is generally reported that, in methanolysis, sodium tetramethoxyborate 20 (NaB(OCH₃)₄) forms as single component of the spent fuel. It is however necessary to clearly 21 investigate some critical aspects related to it. We first focused on the methanolysis reaction 22 where NaBH₄ was reacted with 2, 4, 8, 16 or 32 equivalents of CH₃OH. With 2 equivalents of CH₃OH, the conversion of NaBH₄ is not complete. With 4 to 32 equivalents of CH₃OH, NaBH₄ 23 24 is totally methanolized (conversion of 100%). The best conditions are those involving 4 equivalents of CH₃OH as they offer the highest effective gravimetric hydrogen storage capacity 25 with 4.8 wt%, an attractive H₂ generation rate with 331 mL(H₂) min⁻¹ – a performance 26 27 achieved without any catalyst –, and the formation of NaB(OCH₃)₄ as single product as identified by XRD, FTIR and NMR. We then focused on the transformation of this product 28 29 NaB(OCH₃)₄ into sodium metaborate (NaBO₂), via the formation of sodium 30 tetrahydroxyborate (NaB(OH)₄). NaB(OCH₃)₄ is easily transformed in water, by hydrolysis, at 80 °C and for 90 min, into NaB(OH)₄ and 4 equivalents of CH₃OH. In doing so, the cycle with 31

CH₃OH is closed. Subsequently, NaB(OH)₄ is recovered and converted into NaBO₂ under heating at 500 °C. This reaction liberates 4 equivalents of H₂O, which allows to close the cycle with water. Based on these achievements, we have finally proposed a triangular recycling scheme aiming at closing the cycle with the protic reactants of the aforementioned reactions. This scheme may be used as base for implementing a closed cycle with the couple NaBH₄-CH₃OH.

38 39

40 Keywords

- 41 Methanolysis; Recycling; Sodium borohydride; Sodium metaborate; Sodium
- 42 tetramethoxyborate; Spent fuel

43 **1.** Introduction

Hydrogen, owing to its clean nature and high energy density, is clearly one of the most
attractive sustainable energy technologies [1]. Hydrogen has grown up very quickly. However,
its deployment is confronted with a number of issues touching the whole chain of the so-called
"hydrogen economy". One of the main roadblocks concerns its storage [2]. Various solutions
(physical and chemical) have been explored within the past decades [3,4] and chemical
hydrogen storage has shown to face a very positive outlook going forward [5–7].

50

As chemical hydrogen storage material, sodium borohydride (NaBH₄) has been widely investigated as it is considered as a reliable candidate for mobile applications [2], especially because it carries 10.8 wt% of (atomic) hydrogen (in hydridic form) and is able to readily release (molecular) hydrogen by reaction with water (by hydrolysis [8]) or methanol (by methanolysis [9]) at ambient conditions:

56

57 NaBH_{4 (aq)} + 4H₂O (I)
$$\rightarrow$$
 NaB(OH)_{4 (aq)} + 4H_{2 (g)} (1)

58

59 NaBH_{4 (aq)} + 4CH₃OH (I)
$$\rightarrow$$
 NaB(OCH₃)_{4 (aq)} + 4H_{2 (g)} (2)

60

The reaction, e.g. the hydrolysis one, is spontaneous ($\Delta H = -217 \text{ kJ mol}^{-1}$ at 25 °C) [10] and the solution is generally stabilized by increasing the pH beyond 11 (alkaline conditions) [11]. The use of a heterogeneous (metallic) catalyst is required to catalyze the release of hydrogen by hydrolysis [12]. The research field dedicated to NaBH₄ has mainly focused on finding the best catalyst whereas other crucial aspects (by-products, scaling up, among others) have been clearly under-investigated [13].

67

One of the main challenges with NaBH₄ is related to the by-product, i.e. sodium tetrahydroxyborate (NaB(OH)₄) in hydrolysis or sodium tetramethoxyborate (NaB(OCH₃)₄) in methanolysis. Recycling it to regenerate NaBH₄ is of importance for closing the hydrogen cycle and for the implementation of the technology. In the field of hydrolysis, a number of studies have focused on identification of the hydrolytic (intermediate and final) by-products [14–16] as well as on regeneration options [17–20], and it may be concluded that the challenge is

74 enormous. Using methanol for dehydrogenating NaBH₄ has advantages over the use of water. 75 One of them is related to the nature of the by-product. In methanolysis (Eq. 2), NaB(OCH₃)₄ forms [21]. Unlike NaB(OH)₄ [22], NaB(OCH₃)₄ does not have the propensity to readily 76 polymerize into polyborates [23,24], avoiding then their precipitation that are known to cause 77 78 blocking of pipes and catalyst poisoning [25]. Another attractive feature with NaB(OCH₃)₄ is that it is one of the intermediate products of the NaB(OH)₄ regeneration process developed 79 80 by Kemmitt et al. [26]. According to this process, NaB(OH)₄ is first dehydrated into NaBO₂, then NaBO₂ is reacted with methanol to form NaB(OCH₃)₄, and finally NaB(OCH₃)₄ is reduced 81 82 into NaBH₄ in the presence of sodium alanate NaAlH₄ in refluxing diglyme. Yet, in methanolysis, NaB(OCH₃)₄ forms directly (Eq. 2), which then allows getting a cheaper process 83 (free of the two steps of dehydration and methoxylation). To our knowledge, the open 84 literature dedicated to methanolysis of NaBH₄ mainly deals with reaction parameters [27–30], 85 86 catalysts [27,31–33], and kinetics [23,29,30]. The catalysis topic has been disproportionately investigated with a large number of possible catalysts reported so far [34]. Examples of recent 87 catalysts are as follows: supported cobalt [35–37] and nickel [38] and bimetallics [39,40], TiO₂ 88 89 [41], metallurgic sludge [42], polymer-based systems (e.g. microgels) [43-46], treated 90 microalgae [47,48] and other natural materials like spent coffee [49,50]. With respect to the 91 by-products like NaB(OCH₃)₄, very few reports focused on their identification and their solid-92 state structure. Fernandes et al., who primarily investigated the effect of methanol on the 93 kinetics of hydrolysis of NaBH₄ for methanol-water mixtures, showed that NaB(OCH₃)₄ is only 94 obtained in the absence of water [21]. Huynh et al. isolated and characterized a solid-state 95 methanolysis by-product [51]. By XRD analyses, a derivative of NaB(OCH₃)₄ was found; the 96 following structure was suggested: [Na₂(B(OCH₃)₄)₂(CH₃OH)₂]₄. Its stability in water was scrutinized; it was observed that hydrolysis takes place resulting in the formation of a hydrated 97 98 sodium tetraborate salt with the structure Na₂[B₄O₅(OH)₄].8/3H₂O. In this way, methanol 99 (CH₃OH) was recovered.

100

In such a context, our efforts have focused on methanolysis of NaBH₄, specifically on the byproducts stemming from this reaction. For a technology that has commercial objectives, implying then large volumes of spent fuel, it is necessary to better understand the by-products as well as to think about economically viable recycling processes. We performed a systematic work on spent fuel stemming from the methanolysis of NaBH₄. The reaction was performed 106 at the scale of few grams, unlike what is generally reported in the literature, in order to be 107 closer to the technological application. In addition, the reaction was proceeded at different NaBH₄/CH₃OH ratios to check the nature of the spent fuel depending on the amount of CH₃OH 108 109 and to find the suitable conditions for implementation. Our results have shown the formation 110 of NaB(OCH₃)₄ only for the ratio 4, which corresponds to the stoichiometric conditions and is the optimal one for a conversion of 100% of NaBH₄ with attractive H₂ generation rates (331 111 $mL(H_2) min^{-1}$). Otherwise, the methanolysis products obtained for the other ratios, namely 2, 112 113 8, 16 and 32, were recovered to be analyzed and identified. In a second part of the work, we analyzed the hydrolytic evolution of NaB(OCH₃)₄ at ambient conditions. It was found to evolve 114 115 into 4 equivalents of CH₃OH, for which the close is thus closed, and into NaB(OH)₄. The latter product was separated and used to highlight the experimental conditions of its transformation 116 117 into NaBO₂. In that respect, the appropriate conditions to transform NaB(OCH₃)₄ into NaBO₂ while recovering CH₃OH have been defined and are discussed in the form of a triangle 118 119 recycling scheme. This is reported herein.

120 121

. . .

122 **2. Experimental procedure**

Sodium borohydride (NaBH₄; ≥98% purity Merck) and anhydrous methanol (CH₃OH; ≥99.9%
 Sigma Aldrich) were used as received. They were stored under inert atmosphere.

125

Methanolysis by-products were prepared as follows. NaBH₄ (3 g) was transferred in a three-126 neck flask (100 mL). Hydrogen evolution (Eq. 2) was started by adding a volume of methanol. 127 128 The amount of the alcohol was varied such as x = 2, 4, 8, 16, 32, where x is the mole number 129 of CH₃OH per mole of NaBH₄. In other words, the reaction was stoichiometric for x = 4 (Eq. 2); we performed one experiment at sub-stoichiometry (x = 2), and three other ones at over-130 131 stoichiometry (x = 8, 16, 32). The reaction temperature was set at 20 \pm 2 °C. The three-neck flask was connected to an inverted burette (to measure the volume of the evolving H₂), via a 132 133 cold trap used to condensate any vapor.

134

After the H₂ evolution experiment, the methanolysis spent fuel was recovered. A white solid was obtained for x = 2, 4 and 8. For x = 16, a white viscous liquid was found to form, and the excess of CH₃OH was removed as follows. The liquid was hold at room temperature (under a hood) for 72 h, leading to the formation of white solid powder. For x = 32, a colorless liquid was obtained. After extraction of CH₃OH in excess in a similar way, a white solid powder was recovered. The powders were put under vacuum at 40 °C before they were stored in a desiccator. Their morphology was scrutinized by scanning electron microscope (SEM, Zeiss EVO[®] LS 10).

143

The crystal structure of the white solid powders was analyzed by powder X-ray diffraction 144 (XRD; Philips Panalytical X'Pert-Pro, CuKa). Pattern matching was performed using the 145 database available proposed by the PANalytical X'Pert HighScore Plus (PDF-4 2018 RDB) 146 147 software. The molecular structure was investigated by Fourier transform infrared spectroscopy (FTIR, ATR equipped Perkin Elmer Spectrum One, 4 cm⁻¹). The samples were 148 analyzed by ¹¹B nuclear magnetic resonance (NMR) spectroscopy (Bruker AVANCE-300; probe 149 head BBO10, 96.29 MHz, D_2O or CD_3CN in a capillary tube). Anhydrous N,N-150 151 dimethylformamide (HCON(CH₃)₂, Merck) was used to dissolve the solids. Some of the samples 152 were further analyzed by Raman spectroscopy (Horiba Jobin Yvon LabRAM 1B; laser Ar/Kr 100 153 mW 647.1 nm).

154

Solid NaB(OCH₃)₄ (recovered for the experiment such as x = 4) were then put in water to investigate their possible evolution into e.g. NaB(OH)₄ by hydrolysis:

(3)

157

158 NaB(OCH₃)_{4 (aq)} + 4H₂O (I) \rightarrow NaB(OH)_{4 (aq)} + 4CH₃OH (I)

159

160 Typically, NaB(OCH₃)₄ (2.46 g) and H₂O (1.25 g) were loaded in a glass batch reactor. The 161 reaction mixture was heated at 80 ± 2 °C, under stirring (500 rpm), and for 90 min. Upon hydrolysis, the slurry was isolated and dried at 60 °C under vacuum atmosphere for 4 h. The 162 163 as-obtained white solid was analyzed by XRD. Its thermal stability was analyzed by thermogravimetric (TG) analysis and differential thermal (DT) analysis (SII Nanotechnology -164 SII6000 Exstar TG/DTA 6300; aluminum crucible; temperature range of 50-700°C; heating rate 165 of 10°C min⁻¹) under either oxidative (O₂) or inert (N₂) atmosphere. These TG and DT analyses 166 167 allowed us choosing the temperatures 300 and 500 °C for calcination of the hydrolysis white

solids; alumina high temperature crucibles were used. The as-calcined solids were analyzedby XRD. The formation of NaBO₂ was actually targeted:

170

171 NaB(OH)_{4 (s)}
$$\rightarrow$$
 NaBO_{2 (s)} + 2H₂O (q) (4)

172

Based on Eq. 3, CH₃OH was predicted to form. It was identified by analyzing the slurry using gas chromatography (Perkin Elmer Clarus 580 GC apparatus with split injector and FID detector; 30 m column ID BPX5 with i.d. and film thickness of 0.25 mm and 0.25 μ m respectively). The oven temperature program was as follows: initial temperature of 40 °C; heating rate of 15 °C min⁻¹ until 70°C; 3 min at 70 °C; heating rate of 45 °C min⁻¹ until 250 °C; 5 min at 250 °C. The injector and detector temperatures were, respectively, 100 and 300 °C. The flow rate of the carrier gas (H₂) was set at 0.5 mL min⁻¹.

180

181 **3.** Result and Discussion

182 **3.1.** Towards sodium tetramethoxyborate NaB(OCH₃)₄

183 At sub-stoichiometric and stoichiometric conditions, i.e. for x = 2 and x = 4 (Eq. 2), a solid 184 formed by methanolysis of NaBH₄. In the former case, the presence of some unreacted NaBH₄ 185 is likely. A repeated experiment where the volume of H₂ was collected showed a partial conversion of NaBH₄, calculated to be as low as about 40% (Figure S1). This is also consistent 186 with the NMR, XRD and FTIR results reported hereafter. In the case of x = 4, all of the NaBH₄ 187 are ideally supposed to react with 4 equiv CH₃OH to form NaB(OCH₃)₄. This was verified by 188 measuring the volume of the generated H₂ (Figure S1); the H₂ generation rate was calculated 189 (for a conversion \leq 50%) to be 331 mL(H₂) min⁻¹. A solid was also recovered upon the 190 191 completion of the reaction involving x = 8. The three solids were observed by SEM (Figures S2 192 to S4). They consist of an irregularly-shaped matrix. The surface of the solids obtained for x = 2 is rougher, likely because of the presence of some unreacted NaBH₄. The surface of the solids 193 obtained for x = 4 and x = 8 are smoother and comparable, and they may indicate similar 194 products. A white viscous liquid was obtained for x = 16, and for the higher ratio, x = 32, a 195 colorless liquid was recovered. Actually, at over-stoichiometric conditions, the excess of 196 methanol, that is, the fraction that did not react with NaBH₄, acts as solvent. This excess of 197 198 methanol was then extracted and white solids were recovered. By SEM (Figures S5 and S6),

smaller structures (about 400-600 nm) were observed. They are irregularly-shaped and agglomerated. The smaller size may be a result of the solvent extraction and the related crystallization of the methanolysis product.

202

The methanolysis solid by-products were first considered for analysis by ¹¹B NMR 203 spectroscopy. D₂O as deuterated solvent was found to be inappropriate because of e.g. 204 bubbling of the solid obtained for x = 2. Note that this confirmed the presence of some 205 206 unreacted NaBH₄ (quintet at -39.2 ppm) upon hydrolysis in sub-stoichiometric conditions. 207 N,N-Dimethylformamide is a good solvent for NaBH₄, and the borates are also slightly soluble in it. It was therefore used to dissolve the methanolysis solid by-products. The ¹¹B NMR 208 209 analyses were performed using CD₃CN as deuterated solvent (Figure 1). The presence of some 210 unreacted NaBH₄ for the reaction at x = 2 (i.e. sub-stoichiometry) is confirmed. Borates ($\delta = 3$ ppm) formed when methanolysis was performed in stoichiometric and over-stoichiometric 211 212 conditions (total conversion of NaBH₄). According to Huynh et al. [51], the signal may be 213 ascribed to methanolated methoxyborate like $[Na_2(B(OCH_3)_4)_2(CH_3OH)_2]_4$.

214

215 The solids were analyzed by XRD (Figure 2). The presence of unreacted NaBH₄ (ref. 00-009-216 0386) for the reaction performed at x = 2 is confirmed. No trace of a crystalline phase of 217 NaB(OCH₃)₄ was detected, suggesting the formation of an amorphous by-product. There are 218 few peaks, of very low intensity, that have not been identified and indexed. Pattern matching 219 has not given any relevant result. They are likely to belong to one or more unidentified intermediate species or to an unidentified product; compounds with one to four B-O bonds 220 221 (for example NaBH₃(OCH₃) and NaBH₂(OCH₃)₂), including oligomeric borates made of 2 to 5 boron atoms, are possible species. The pattern of the by-product obtained at x = 4 well 222 223 matches that of the referenced structure (ref. 00-012-0863) belonging to NaB(OCH₃)₄. This is in agreement with the results reported by Fernandes et al. [21]. The XRD patterns of the other 224 225 by-products (i.e. obtained at x = 8, 16 and 32) are different. There are similar to the pattern reported by Huynh et al. [51] found for [Na₂(B(OCH₃)₄)₂(CH₃OH)₂]₄ (tetragonal, s.g. *I*₄), 226 synthesized by reacting NaBH₄ in an excess of methanol (anhydrous). To sum up our 227 observations, a minimum of 4 equiv CH_3OH is required for methanolysis completion and the 228 229 reaction results in the formation of NaB(OCH₃)₄. In an excess of CH₃OH, the by-product is a 230 complex of both $[B(OCH_3)_4]^-$ and CH_3OH , like the species $[Na_2(B(OCH_3)_4)_2(CH_3OH)_2]_4$.

The solids were analyzed by FTIR (Figure 3). The observed bands have been indexed with 232 database available in the literature [52–54]. The spectrum of the solid obtained at x = 2 shows 233 well-defined sharp bands at e.g. 2500-2100 cm⁻¹ (B–H stretching), ascribed to unreacted 234 NaBH₄ [55]. There are also bands at wavenumbers typical of O–H stretching (3600-3000 cm⁻¹) 235 and B–O stretching (1000-750 cm⁻¹) modes, indicating some conversion of NaBH₄ into a 236 237 borate intermediate (amorphous to X-ray). The spectrum of the solid obtained at x = 4 is comparable to the fingerprint of NaB(OCH₃)₄ [56]. All of the bands can be ascribed to B–O 238 stretching/deformation, C–O stretching and C–H stretching/deformation modes. The spectra 239 of the solids obtained at x = 8, 16 and 32 (Figures 3, and S7 to S9) look like that of a 240 methoxyborate by-product like NaB(OCH₃)₄. The O–H deformation mode at around 1600 cm⁻¹ 241 (as well as the bands due to O-H stretching) indicates the presence of CH₃OH [51], in 242 243 agreement with the conclusions made from the analysis of the XRD patterns.

244

The sample obtained at x = 4, i.e. NaB(OCH₃)₄, was selected for further analyses. Its thermal stability was analyzed under oxidative and inert atmospheres (Figure S10). A comparable behavior was found. The sample decomposes starting from 30 °C. It undergoes four successive weight losses up to 700 °C, with a main one between 60 and 300 °C. The total weight loss is slightly higher than 45 wt%. In other words, NaB(OCH₃)₄ is not thermally stable.

250

251 3.2. Towards sodium metaborate NaBO₂

NaB(OCH₃)₄ (i.e. the solid obtained at x = 4) readily reacts with water. Total conversion was found to occur for a H₂O/NaB(OCH₃)₄ molar ratio $n \ge 4$. The formation of CH₃OH was verified by GC–FID (Figure S11). The hydrolytic boron product was heated at 60°C, under vacuum, to remove water. A white solid was recovered.

256

The hydrolysis solid was analyzed by XRD (Figure 4). Monoclinic NaB(OH)₄ (ref. 04-011-2875) was found to be the main crystallographic phase. The presence of another hydrated borate (e.g. Na₂B₄O₇·5H₂O, ref. 00-007-0277) is likely. The FTIR spectrum (Figure 5) is consistent with the formation of such hydrated borates [57–59]. The ¹¹B NMR spectrum (Figure 6) of the solid dissolved in deuterated water shows two signals at positive chemical shifts suggesting two borate species [60], which might be due to equilibrium between the BO_3 (due to e.g. H₃BO₃) and BO_4 environments (i.e. B(OH)₄⁻) [61].

264

The hydrolysis solid was heated, up to 300°C. The XRD pattern (Figure 4) indicates a lightly crystalline solid. The few peaks of small intensity were found to indicate the formation of NaBO₂ (ref. 00-037-0115). However, the presence of crystalline Na₂B₄O₁₀ (ref. 00-022-1347) cannot be discarded as suggested by the pattern matching. The FTIR spectrum (Figure 5) shows an evolution towards dehydration, which is featured by O–H bands with decreased intensity. The ¹¹B NMR spectrum (Figure 6) is comparable to that of the sample heated at 60 °C.

272

A last heat-treatment was performed at 500°C. Only the rhombohedral NaBO₂ phase (ref. 01-076-0750) was identified (Figure 4), consistently with ref. [62]. NaB(OH)₄ is known to lose structural water from about 150 °C [57], resulting in the formation of NaBO₂. Temperatures of NaBO₂ formation of 300 and 400 °C were reported [57,62]. This is quite consistent with our XRD observations. The FTIR spectrum is also consistent with this observation (Figure 5). The ¹¹B NMR spectrum (Figure 6) of NaBO₂ dissolved in deuterated water shows one signal at 4.5 ppm, ascribed to a *BO*₄ environments such as for B(OD)₄⁻.

280

The solids heated at 60, 300 and 500 °C were analyzed by Raman spectroscopy (Figure 7). The first two solids show bands due to symmetric (700-950 cm⁻¹) and asymmetric (350-1100 cm⁻¹) stretching of B–O bonds. The bands at about 750 cm⁻¹ may be attributed to B(OH)₃ species, and that at 942 cm⁻¹ to B(OH)₄⁻ [63]. The band peaking at 1076 cm⁻¹, which is the only one observed for the sample heated at 500 °C, is assigned to NaBO₂. These results confirm the XRD, FTIR, and NMR data discussed above, that is, the complete transformation of NaB(OCH₃)₄ into NaBO₂ via NaB(OH)₄.

288

289 **3.3.** Towards a neutral cycle with NaBH₄

What emerges from the patterns and spectra reported above is that the hydrogen cycle with NaBH₄ can be neutral. In other words, the methanolysis by-product could be recycled through a stepwise process to form NaBH₄ back. This is illustrated in Figure 8.

Methanolysis of NaBH₄ is an efficient process for H₂ release, resulting in formation of 294 NaB(OCH₃)₄ as main by-product when the reaction is realized in stoichiometric conditions (Eq. 295 2). Typically, 1 equiv NaBH₄ reacts with 4 equiv CH₃OH and transforms into 1 equiv NaB(OCH₃)₄ 296 297 while liberating 4 equiv H₂. Such a reaction is very interesting for two reasons. First, all of the atoms are effectively used resulting in an "atom economy" in good agreement with one of the 298 299 green chemistry principles. Second, the aforementioned stoichiometry implies an effective gravimetric hydrogen capacity of 4.8 wt% for the couple NaBH₄-CH₃OH, and this is a clearly 300 promising capacity. In addition, the H_2 generation rate was calculated to be 331 mL(H_2) min⁻¹ 301 302 (without catalyst), which is one of the best performance for an uncatalyzed solvolysis reaction 303 involving a hydride and a protonic solvent; some examples are shown in Table 1 [21,22,30,64– 304 74].

305

The as-formed NaB(OCH₃)₄ can be readily hydrolyzed into NaB(OH)₄, and 4 equiv CH₃OH are generated. The cycle is then neutral in CH₃OH. With respect to NaB(OH)₄, it is easily converted, under heating up to 500 °C in our conditions, into NaBO₂ while releasing 2 equiv H₂O. The other 2 equiv H₂O are generated during reduction of NaBO₂ into NaBH₄. Hence, the cycle is neutral in H₂O.

311

312 As mentioned just above, NaBO₂ has to be reduced into NaBH₄. This may be done by using 4 equiv H₂ or a reducing agent carrying H⁻ such as MgH₂ [18,75,76]. Another original procedure, 313 314 recently reported [77], could be to make react NaBO₂ with CO₂ in aqueous solution, the as-315 forming Na₂B₄O₇·10H₂O and Na₂CO₃ being afterwards ball-milled with Mg under ambient 316 conditions to form NaBH₄ in a yield close to 80 %. In any case, the cycle is then neutral in H₂. It is worth mentioning that regeneration of NaBH₄ starting from NaBO₂ has been 317 318 demonstrated, but the processes developed so far need to be further improved to make one/few of them cost-effective [78]. Another challenge, with these processes, will be to 319 develop them while the cycle of each reactant and product is neutral. Otherwise, the scheme 320 321 of the recycling process could be considered differently for the third part, namely transformation of NaB(OH)₄ into NaBH₄ via NaBO₂. In the recent years, Ouyang and co-workers 322 reported few regeneration routes using NaBO₂· xH_2O (with x = 2 or 4) as starting borate. Ball-323 milling NaBO₂·xH₂O with MgH₂ at room temperature and atmospheric pressure was found to 324

lead to NaBH₄ back with a yield as high as 90% [79]. In another work, Mg was used instead of
 MgH₂ and NaBH₄ was regenerated with yields of 64-68% [80]. The formation of NaBH₄ was
 explained by the involvement of reaction intermediates like MgH₂ and NaBH₃(OH).

328

329 **4.** Conclusion

In the present work, we have proposed a neutral cycle for the hydrogen storage system based 330 331 on the couple NaBH₄-4CH₃OH. Upon methanolysis, this couple releases 4 equiv H_2 in such a 332 way that the effective gravimetric hydrogen capacity is as high as 4.8 wt%, which is quite 333 attractive from an implementation point of view. It is worth mentioning the H₂ generation rate that has been achieved without any catalyst, namely, 331 mL(H₂) min⁻¹. The methanolysis by-334 335 product is NaB(OCH₃)₄. By using 4 equiv H_2O , NaB(OCH₃)₄ can be readily hydrolyzed to NaB(OH)₄. The process generates 4 equiv CH₃OH, making the cycle neutral in CH₃OH. Then, 336 NaB(OH)₄ can be converted, under heating up to 500 °C, into NaBO₂ which is the most 337 common starting material for regenerating NaBH₄. In a further step, NaBO₂ could be reduced 338 339 into NaBH₄ while using 4 equiv H₂ or e.g. 4 equiv MgH₂. The cycle would be neutral in H₂. Each 340 of the NaB(OH)₄ heating and NaBO₂ reduction processes generates 2 equiv H₂O, making the 341 cycle neutral in H_2O also. The cycle summarized above is thus also neutral in the B element; indeed the starting NaBH₄ is targeted to be regenerated by recovering all of the formed 342 $NaB(OH)_4$ via its total conversion into $NaB(OH)_4$ and then $NaBO_2$. In that respect, all of the 343 atoms involved in this cycle are used and re-used, resulting in an "atom economy" in good 344 agreement with one of the green chemistry principles. In conclusion, the strategy we propose 345 will help us in building a closed pathway from NaBH₄ to its spent fuel without disturbing the 346 347 environmental balance.

348

349 Acknowledgements

This work was supported by TUBITAK (Project no: 218M181) and CAMPUS FRANCE – PHC BOSPHORUS (Project no: 42161TB). UBD and DA thank the Agence Nationale de la Recherche (Project MOBIDIC; ANR-16-CE05-0009).

- 353
- 354
- 355

356 **References**

- Saeedmanesh A, Mac Kinnon MA, Brouwer J. Hydrogen is essential for sustainability.
 Curr Opin Electrochem 2018;12:166–81. https://doi.org/10.1016/j.coelec.2018.11.009.
- Abe JO, Popoola API, Ajenifuja E, Popoola OM. Hydrogen energy, economy and storage:
 review and recommendation. Int J Hydrogen Energy 2019;44:15072–86.
 https://doi.org/10.1016/j.ijhydene.2019.04.068.
- 362 [3] Müller K, Arlt W. Status and development in hydrogen transport and storage for energy
 363 applications. Energy Technol 2013;1:501–11.
 364 https://doi.org/10.1002/ente.201300055.
- 365[4]Abdalla AM, Hossain S, Nisfindy OB, Azad AT, Dawood M, Azad AK. Hydrogen366production, storage, transportation and key challenges with applications: a review.367EnergyConversManag2018;165:602–27.
- 368 https://doi.org/10.1016/j.enconman.2018.03.088.
- 369 [5] Hirscher M, Yartys VA, Baricco M, Bellosta von Colbe J, Blanchard D, Bowman RC, et al.
 370 Materials for hydrogen-based energy storage past, recent progress and future
 371 outlook. J Alloys Compd 2020;827:153548.
 372 https://doi.org/10.1016/j.jallcom.2019.153548.
- Kojima Y. Hydrogen storage materials for hydrogen and energy carriers. Int J Hydrogen
 Energy 2019;44:18179–92. https://doi.org/10.1016/j.ijhydene.2019.05.119.
- Wang K, Pan Z, Yu X. Metal B-N-H hydrogen-storage compound: development and
 perspectives. J Alloys Compd 2019;794:303–24.
 https://doi.org/10.1016/j.jallcom.2019.04.240.
- 378 [8] Davis RE, Bromels E, Kibby CL. Boron hydrides III. hydrolysis of sodium borohydride in
 379 aqueous solution. J Am Chem Soc 1962;84:885–92.
 380 https://doi.org/10.1021/ja00865a001.
- 381 [9] Davis RE, Gottbrath JA. Boron hydrides V. methanolysis of sodium borohydride. J Am
 382 Chem Soc 1962;84:895–8. https://doi.org/10.1021/ja00865a003.
- Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, et al. Hydrogen
 generation using sodium borohydride solution and metal catalyst coated on metal
 oxide. Int J Hydrogen Energy 2002;27:1029–34. https://doi.org/10.1016/S03603199(02)00014-9.

- [11] Kim JH, Kim KT, Kang YM, Kim HS, Song MS, Lee YJ, et al. Study on degradation of
 filamentary Ni catalyst on hydrolysis of sodium borohydride. J Alloys Compd
 2004;379:222–7. https://doi.org/10.1016/j.jallcom.2004.02.009.
- Brack P, Dann SE, Wijayantha KGU. Heterogeneous and homogenous catalysts for
 hydrogen generation by hydrolysis of aqueous sodium borohydride (NaBH₄) solutions.
 Energy Sci Eng 2015;3:174–88. https://doi.org/10.1002/ese3.67.
- Intersection 13 Lang C, Jia Y, Yao X. Recent advances in liquid-phase chemical hydrogen storage. Energy
 Storage Mater 2020;26:290–312. https://doi.org/10.1016/j.ensm.2020.01.010.
- 395 [14] Kantürk Figen A, Öztürk A, Pişkin S. Process for the conversion of highly caustic spent
 396 sodium borohydride fuel. Res Chem Intermed 2012;38:2343–54.
 397 https://doi.org/10.1007/s11164-012-0550-9.
- Int J Hsueh CL, Liu CH, Chen BH, Chen CY, Kuo YC, Hwang KJ, et al. Regeneration of spentNaBH4 back to NaBH4 by using high-energy ball milling. Int J Hydrogen Energy
 2009;34:1717–25. https://doi.org/10.1016/j.ijhydene.2008.12.036.
- 401 [16] Stepanov N, Uvarov V, Popov I, Sasson Y. Study of by-product of NaBH₄ hydrolysis and
 402 its behavior at a room temperature. Int J Hydrogen Energy 2008;33:7378–84.
 403 https://doi.org/10.1016/j.ijhydene.2008.09.052.
- 404 [17] Qin C, Ouyang L, Wang H, Liu J, Shao H, Zhu M. Regulation of high-efficient regeneration
 405 of sodium borohydride by magnesium-aluminum alloy. Int J Hydrogen Energy
 406 2019;44:29108–15. https://doi.org/10.1016/j.ijhydene.2019.05.010.
- 407 [18] Çakanyıldırım Ç, Gürü M. Processing of NaBH4 from NaBO₂ with MgH₂ by ball milling
 408 and usage as hydrogen carrier. Renew Energy 2010;35:1895–9.
 409 https://doi.org/10.1016/j.renene.2010.01.001.
- 410 [19] Kojima Y, Haga T. Recycling process of sodium metaborate to sodium borohydride. Int
 411 J Hydrogen Energy 2003;28:989–93. https://doi.org/10.1016/S0360-3199(02)00173-8.
- 412 [20] Li ZP, Morigazaki N, Liu BH, Suda S. Preparation of sodium borohydride by the reaction
- of MgH2 with dehydrated borax through ball milling at room temperature. J Alloys
 Compd 2003;349:232–6. https://doi.org/10.1016/S0925-8388(02)00872-1.
- 415 [21] Fernandes VR, Pinto AMFR, Rangel CM. Hydrogen production from sodium borohydride
 416 in methanol-water mixtures. Int J Hydrogen Energy 2010;35:9862–8.
 417 https://doi.org/10.1016/j.ijhydene.2009.11.064.
- 418 [22] Yu L, Matthews MA. Hydrolysis of sodium borohydride in concentrated aqueous

- 419 solution. Int J Hydrogen Energy 2011;36:7416–22.
 420 https://doi.org/10.1016/j.ijhydene.2011.03.089.
- 421 [23] Lo CTF, Karan K, Davis BR. Kinetic assessment of catalysts for the methanolysis of
 422 sodium borohydride for hydrogen generation. Ind Eng Chem Res 2009;48:5177–84.
 423 https://doi.org/10.1021/ie8009186.
- 424 [24] Ocon JD, Tuan TN, Yi Y, de Leon RL, Lee JK, Lee J. Ultrafast and stable hydrogen
 425 generation from sodium borohydride in methanol and water over Fe–B nanoparticles.
 426 J Power Sources 2013;243:444–50. https://doi.org/10.1016/j.jpowsour.2013.06.019.
- 427 [25] Lapeña-Rey N, Blanco JA, Ferreyra E, Lemus JL, Pereira S, Serrot E. A fuel cell powered
 428 unmanned aerial vehicle for low altitude surveillance missions. Int J Hydrogen Energy
 429 2017;42:6926–40. https://doi.org/10.1016/j.ijhydene.2017.01.137.
- 430 [26] Kemmitt T, Gainsford GJ. Regeneration of sodium borohydride from sodium
 431 metaborate, and isolation of intermediate compounds. Int J Hydrogen Energy
 432 2009;34:5726–31. https://doi.org/10.1016/j.ijhydene.2009.05.108.
- 433 [27] Xu D, Lai X, Guo W, Zhang X, Wang C, Dai P. Efficient catalytic properties of SO4²⁻/MxOy
 434 (M=Cu, Co, Fe) catalysts for hydrogen generation by methanolysis of sodium
 435 borohydride. Int J Hydrogen Energy 2018;43:6594–602.
 436 https://doi.org/10.1016/j.ijhydene.2018.02.074.
- 437 [28] Su CC, Lu MC, Wang SL, Huang YH. Ruthenium immobilized on Al₂O₃ pellets as a catalyst
 438 for hydrogen generation from hydrolysis and methanolysis of sodium borohydride. RSC
 439 Adv 2012;2:2073. https://doi.org/10.1039/c2ra01233b.
- Lo CTF, Karan K, Davis BR. Kinetic studies of reaction between sodium borohydride and
 methanol, water, and their mixtures. Ind Eng Chem Res 2007;46:5478–84.
 https://doi.org/10.1021/ie0608861.
- [30] Ramya K, Dhathathreyan KS, Sreenivas J, Kumar S, Narasimhan S. Hydrogen production
 by alcoholysis of sodium borohydride. Int J Energy Res 2013;37:1889–95.
 https://doi.org/10.1002/er.3006.
- 446 [31] Ali F, Khan SB, Asiri AM. Enhanced H₂ generation from NaBH₄ hydrolysis and
 447 methanolysis by cellulose micro-fibrous cottons as metal templated catalyst. Int J
 448 Hydrogen Energy 2018;43:6539–50. https://doi.org/10.1016/j.ijhydene.2018.02.008.
- [32] Demirci S, Yildiz M, Inger E, Sahiner N. Porous carbon particles as metal-free superior
 catalyst for hydrogen release from methanolysis of sodium borohydride. Renew Energy

- 451 2020;147:69–76. https://doi.org/10.1016/j.renene.2019.08.131.
- 452 [33] Xu D, Zhang Y, Cheng F, Zhao L. Enhanced hydrogen generation by methanolysis of
 453 sodium borohydride in the presence of phosphorus modified boehmite. Fuel
 454 2014;134:257–62. https://doi.org/10.1016/j.fuel.2014.05.071.
- 455 [34] Özkar S. Transition metal nanoparticle catalysts in releasing hydrogen from the
 456 methanolysis of ammonia borane. Int J Hydrogen Energy 2020;45:7881–91.
 457 https://doi.org/10.1016/j.ijhydene.2019.04.125.
- [35] Xu D, Zhang X, Zhao X, Dai P, Wang C, Gao J, et al. Stability and kinetic studies of MOF derived carbon-confined ultrafine Co catalyst for sodium borohydride hydrolysis. Int J
 Energy Res 2019;43:3702–10. https://doi.org/10.1002/er.4524.
- 461 [36] Kaya M, Bekiroğullari M, Saka C. Highly efficient CoB catalyst using a support material
 462 based on Spirulina microalgal strain treated with ZnCl₂ for hydrogen generation via
 463 sodium borohydride methanolysis. Int J Energy Res 2019;43:4243–52.
 464 https://doi.org/10.1002/er.4548.
- 465 [37] Bekiroğullari M, Kaya M, Saka C. Highly efficient Co-B catalysts with Chlorella Vulgaris
 466 microalgal strain modified using hydrochloric acid as a new support material for
 467 hydrogen production from methanolysis of sodium borohydride. Int J Hydrogen Energy
 468 2019;44:7262–75. https://doi.org/10.1016/j.ijhydene.2019.01.246.
- 469 [38] Wang F, Luo Y, Wang Y, Zhu H. The preparation and performance of a novel spherical
 470 spider web-like structure Ru-Ni/Ni foam catalyst for NaBH₄ methanolysis. Int J
 471 Hydrogen Energy 2019;44:13185–94. https://doi.org/10.1016/j.ijhydene.2019.01.123.
- Zhang Y, Zou J, Luo Y, Wang F. Study on preparation and performance of Ru-Fe/GO
 catalyst for sodium borohydride alcoholysis to produce hydrogen. Fullerenes, Nanotub
 Carbon Nanostructures 2020:1–8. https://doi.org/10.1080/1536383X.2020.1760849.
- 475 [40] Tunç N, Rakap M. Preparation and characterization of Ni-M (M: Ru, Rh, Pd) nanoclusters
 476 as efficient catalysts for hydrogen evolution from ammonia borane methanolysis.
 477 Renew Energy 2020;155:1222–30. https://doi.org/10.1016/j.renene.2020.04.079.
- 478 [41] Demirci S, Sunol AK, Sahiner N. Catalytic activity of amine functionalized titanium
 479 dioxide nanoparticles in methanolysis of sodium borohydride for hydrogen generation.
- 480 Appl Catal B Environ 2020;261:118242. https://doi.org/10.1016/j.apcatb.2019.118242.
- 481 [42] Fangaj E, Ali AA, Güngör F, Bektaş S, Ceyhan AA. The use of metallurgical waste sludge
 482 as a catalyst in hydrogen production from sodium borohydride. Int J Hydrogen Energy

- 483 2020;45:13322–9. https://doi.org/10.1016/j.ijhydene.2020.03.043.
- [43] Sahiner N, Demirci S. Very fast H₂ production from the methanolysis of NaBH₄ by metalfree poly(ethylene imine) microgel catalysts. Int J Energy Res 2017;41:736–46.
 https://doi.org/10.1002/er.3679.

Ari B, Ay M, Sunol AK, Sahiner N. Surface-modified carbon black derived from used car 487 [44] tires as alternative, reusable, and regenerable catalysts for H₂ release studies from 488 489 sodium borohydride methanolysis. Int J Energy Res 2019;43:7159-72. https://doi.org/10.1002/er.4742. 490

- [45] Inger E, Sunol AK, Sahiner N. Catalytic activity of metal-free amine-modified dextran
 microgels in hydrogen release through methanolysis of NaBH₄. Int J Energy Res 2020.
 https://doi.org/10.1002/er.5395.
- Khan SB, Ali F, Asiri AM. Metal nanoparticles supported on polyacrylamide water beads
 as catalyst for efficient generation of H₂ from NaBH₄ methanolysis. Int J Hydrogen
 Energy 2020;45:1532–40. https://doi.org/10.1016/j.ijhydene.2019.11.042.
- 497 [47] Saka C, Kaya M, Bekiroğullari M. Spirulina microalgal strain as efficient a metal-free
 498 catalyst to generate hydrogen via methanolysis of sodium borohydride. Int J Energy Res
 499 2020;44:402–10. https://doi.org/10.1002/er.4936.
- 500 [48] Kaya M. NiB loaded acetic acid treated microalgae strain (Spirulina Platensis) to use as a catalyst for hydrogen generation from sodium borohydride methanolysis. Energy 501 А Eff 502 Sources, Part Recover Util Environ 2019;41:2549-60. https://doi.org/10.1080/15567036.2019.1647312. 503
- [49] Kaya M. Production of metal-free catalyst from defatted spent coffee ground for
 hydrogen generation by sodium borohyride methanolysis. Int J Hydrogen Energy
 2020;45:12731–42. https://doi.org/10.1016/j.ijhydene.2019.08.013.
- 507 [50] Kaya M. Evaluating organic waste sources (spent coffee ground) as metal-free catalyst
 508 for hydrogen generation by the methanolysis of sodium borohydride. Int J Hydrogen
 509 Energy 2020;45:12743–54. https://doi.org/10.1016/j.ijhydene.2019.10.180.
- 510 [51] Huynh K, Napolitano K, Wang R, Jessop PG, Davis BR. Indirect hydrolysis of sodium
 511 borohydride: Isolation and crystallographic characterization of methanolysis and
 512 hydrolysis by-products. Int J Hydrogen Energy 2013;38:5775–82.
 513 https://doi.org/10.1016/j.ijhydene.2013.03.011.
- 514 [52] Concha BM, Chatenet M, Coutanceau C, Hahn F. In situ infrared (FTIR) study of the

- 515 borohydride oxidation reaction. Electrochem Commun 2009;11:223–6.
 516 https://doi.org/10.1016/j.elecom.2008.11.018.
- 517 [53] Lixia Z, Tao Y, Jiang W, Shiyang G. FT-IR and Raman spectroscopic study of hydrated
 518 rubidium (cesium) borates and alkali double borates. Russ J Inorg Chem 2007;52:1786–
 519 92. https://doi.org/10.1134/S0036023607110241.
- 520 [54] Jun L, Shuping X, Shiyang G. FT-IR and Raman spectroscopic study of hydrated borates.
 521 Spectrochim Acta Part A Mol Biomol Spectrosc 1995;51:519–32.
 522 https://doi.org/10.1016/0584-8539(94)00183-C.
- 523 [55] Sljukic B, Santos DMF, Sequeira CAC, Banks CE. Analytical monitoring of sodium 524 borohydride. Anal Methods 2013;5:829. https://doi.org/10.1039/c2ay26077h.
- 525 [56] Xu D, Zhao L, Dai P, Ji S. Hydrogen generation from methanolysis of sodium borohydride
 526 over Co/Al2O3 catalyst. J Nat Gas Chem 2012;21:488–94.
 527 https://doi.org/10.1016/S1003-9953(11)60395-2.
- [57] Kantürk Figen A, Sari M, Pişkin S. Synthesis, crystal structure and dehydration kinetics
 of NaB(OH)4.2H2O. Korean J Chem Eng 2008;25:1331–7.
 https://doi.org/10.1007/s11814-008-0218-8.
- [58] Zhong H, Ouyang LZ, Ye JS, Liu JW, Wang H, Yao XD, et al. An one-step approach towards
 hydrogen production and storage through regeneration of NaBH₄. Energy Storage
 Mater 2017;7:222–8. https://doi.org/10.1016/j.ensm.2017.03.001.
- [59] Netskina OV, Komova OV, Simagina VI, Odegova GV, Prosvirin IP, Bulavchenko OA.
 Aqueous-alkaline NaBH₄ solution: the influence of storage duration of solutions on
 reduction and activity of cobalt catalysts. Renew Energy 2016;99:1073–81.
 https://doi.org/10.1016/j.renene.2016.08.005.
- [60] Chandra M, Xu Q. Dissociation and hydrolysis of ammonia-borane with solid acids and
 carbon dioxide: an efficient hydrogen generation system. J Power Sources
 2006;159:855–60. https://doi.org/10.1016/j.jpowsour.2005.12.033.
- 541 [61] Salentine CG. High-field boron-11 NMR of alkali borates. Aqueous polyborate equilibria.
 542 Inorg Chem 1983;22:3920–4. https://doi.org/10.1021/ic00168a019.
- [62] Kantürk Figen A, Pişkin S. Parametric investigation on anhydrous sodium metaborate
 (NaBO2) synthesis from concentrated tincal. Adv Powder Technol 2010;21:513–20.
 https://doi.org/10.1016/j.apt.2010.01.012.
- 546 [63] Applegarth L, Pye CC, Cox JS, Tremaine PR. Raman spectroscopic and ab initio

- investigation of aqueous boric acid, borate, and polyborate speciation from 25 to 80 °C.
 Ind Eng Chem Res 2017;56:13983–96. https://doi.org/10.1021/acs.iecr.7b03316.
- 549 [64] Weng B, Wu Z, Li Z, Yang H, Leng H. Hydrogen generation from noncatalytic hydrolysis
 550 of LiBH₄/NH₃BH₃ mixture for fuel cell applications. Int J Hydrogen Energy
 551 2011;36:10870–6. https://doi.org/10.1016/j.ijhydene.2011.06.009.
- [65] Zhang J, Lin F, Yang L, He Z, Huang X, Zhang D, et al. Ultrasmall Ru nanoparticles
 supported on chitin nanofibers for hydrogen production from NaBH4 hydrolysis.
 Chinese Chem Lett 2019. https://doi.org/10.1016/j.cclet.2019.11.042.
- 555 [66] Yang L, Huang X, Zhang J, Dong H. Protonated Poly(ethylene imine)-Coated Silica
 556 Nanoparticles for Promoting Hydrogen Generation from the Hydrolysis of Sodium
 557 Borohydride. Chempluschem 2020;85:399–404.
 558 https://doi.org/10.1002/cplu.201900609.
- [67] Keçeli E, Özkar S. Ruthenium(III) acetylacetonate: A homogeneous catalyst in the
 hydrolysis of sodium borohydride. J Mol Catal A Chem 2008;286:87–91.
 https://doi.org/10.1016/j.molcata.2008.02.008.
- 562 [68] Arzac GM, Fernández A. Hydrogen production through sodium borohydride
 563 ethanolysis. Int J Hydrogen Energy 2015;40:5326–32.
 564 https://doi.org/10.1016/j.ijhydene.2015.01.115.
- 565 [69] Saka C, Balbay A. Fast and effective hydrogen production from ethanolysis and
 566 hydrolysis reactions of potassium borohydride using phosphoric acid. Int J Hydrogen
 567 Energy 2018;43:19976–83. https://doi.org/10.1016/j.ijhydene.2018.09.048.
- 568 [70] Chen J, Fu H, Xiong Y, Xu J, Zheng J, Li X. MgCl₂ promoted hydrolysis of MgH₂
 569 nanoparticles for highly efficient H₂ generation. Nano Energy 2014;10:337–43.
 570 https://doi.org/10.1016/j.nanoen.2014.10.002.
- Figen AK, Taşçı K. Hydrolysis characteristics of calcium hydride (CaH₂) powder in the
 presence of ethylene glycol, methanol, and ethanol for controllable hydrogen
 production. Energy Sources, Part A Recover Util Environ Eff 2016;38:37–42.
 https://doi.org/10.1080/15567036.2015.1043473.
- [72] Ramachandran PV, Gagare PD. Preparation of ammonia borane in high yield and purity,
 methanolysis, and regeneration. Inorg Chem 2007;46:7810–7.
 https://doi.org/10.1021/ic700772a.
- 578 [73] Inoue H, Yamazaki T, Kitamura T, Shimada M, Chiku M, Higuchi E. Electrochemical

- 579 hydrogen production system from ammonia borane in methanol solution. Electrochim
 580 Acta 2012;82:392–6. https://doi.org/10.1016/j.electacta.2012.05.091.
- [74] Weng B, Wu Z, Li Z, Yang H. Hydrogen generation from hydrolysis of MNH₂BH₃ and
 NH3BH3/MH (M=Li, Na) for fuel cells based unmanned submarine vehicles application.
 Energy 2012;38:205–11. https://doi.org/10.1016/j.energy.2011.12.012.
- [75] Hsueh C-L, Liu C-H, Chen B-H, Chen C-Y, Kuo Y-C, Hwang K-J, et al. Regeneration of
 spent-NaBH₄ back to NaBH₄ by using high-energy ball milling. Int J Hydrogen Energy
 2009;34:1717–25. https://doi.org/10.1016/j.ijhydene.2008.12.036.
- [76] Lang C, Jia Y, Liu J, Wang H, Ouyang L, Zhu M, et al. NaBH₄ regeneration from NaBO₂ by
 high-energy ball milling and its plausible mechanism. Int J Hydrogen Energy
 2017;42:13127–35. https://doi.org/10.1016/j.ijhydene.2017.04.014.
- [77] Zhu Y, Ouyang L, Zhong H, Liu J, Wang H, Shao H, et al. Closing the loop for hydrogen
 storage: facile regeneration of NaBH₄ from its hydrolytic product. Angew Chemie Int Ed
 2020;59:8623–9. https://doi.org/10.1002/anie.201915988.
- 593 [78] Ouyang L, Zhong H, Li H-W, Zhu M. A recycling hydrogen supply system of NaBH₄ based
 594 on a facile regeneration process: A review. Inorganics 2018;6:10.
 595 https://doi.org/10.3390/inorganics6010010.
- 596 [79] Chen W, Ouyang LZ, Liu JW, Yao XD, Wang H, Liu ZW, et al. Hydrolysis and regeneration
 597 of sodium borohydride (NaBH₄) A combination of hydrogen production and storage.
 598 J Power Sources 2017;359:400–7. https://doi.org/10.1016/j.jpowsour.2017.05.075.
- [80] Ouyang L, Chen W, Liu J, Felderhoff M, Wang H, Zhu M. Enhancing the regeneration
 process of consumed NaBH₄ for hydrogen storage. Adv Energy Mater 2017;7:1700299.
 https://doi.org/10.1002/aenm.201700299.
- 602
- 603
- 604
- 605
- 606
- 607
- 608
- 609
- 610

Figure 1. ¹¹B NMR spectra of the solids recovered after methanolysis of NaBH₄ such as x = 2, 4, 8, 16
 and 32. The solids were dissolved in N,N-dimethylformamide (with CD₃CN).

- _ . _

Figure 2. XRD patterns of the solids recovered after methanolysis of NaBH₄ such as x = 2, 4, 8, 16 and
 32. The peaks have been indexed as shown. The structures indicated by # and @ were found to
 match with referenced patterns (respectively: NaBH₄ ref. 00-009-0386, and NaB(OCH₃)₄ ref. 00-012 0863). The structure indicated by & corresponds to that of [Na₂(B(OCH₃)₄)₂(CH₃OH)₂]₄ reported
 elsewhere [51]. There are also few unidentified peaks (as shown by the symbol ?).

Figure 3. FTIR spectra of the solids recovered after methanolysis of NaBH₄ such as x = 2, 4, 8, 16 and 32. The bands have assigned. The symbol * is attributed to the B–H bending mode. The spectra for x= 8, 16 and 32 are also shown in Figures S7 to S9.

- ...

Figure 4. XRD patterns of the hydrolysis product of NaB(OCH₃)₄ (i.e. x = 4) heated at 60, 300, and 500 °C. The peaks have been assigned, when possible, as shown in the figure. There are few peaks (shown by the symbol ?) that have not been assigned because of unsuccessful pattern matching.

- ----

Figure 5. FTIR spectra of the hydrolysis product of NaB(OCH₃)₄ (i.e. x = 4) heated at 60, 300, and 500
°C. The bands have assigned.

- - -

673Figure 7. Raman spectra of the hydrolysis product of NaB(OCH_3)_4 (i.e. x = 4) heated at 60, 300, and674500 °C. The bands have assigned.

-

Figure 8. Triangular scheme of the recycling process of the spent fuel stemming from methanolysis of
 NaBH₄ and subsequent hydrolysis of NaB(OCH₃)₄. The reduction process transforming NaBO₂ to
 NaBH₄ requires a reducing agent such H₂ or MgH₂; here the scheme has been illustrated with H₂.

Table 1. Comparison of the H₂ generation rates (HGR) for a series of hydride-protonic solvent couples
 (spontaneous solvolysis reactions without the presence of a catalyst or of an acid).

Hydride	Protonic solvent	T (°C)	HGR (mL H₂ min ^{−1})	Ref.
LiBH4	H ₂ O	23	2	[64]
NaBH ₄	H ₂ O	20-30	<2	[22,65–67]
NaBH ₄	CH₃OH	5	37	[30]
NaBH ₄	CH₃OH	20	331	This work
NaBH ₄	CH₃OH	45	480	[21]
NaBH ₄	CH ₃ CH ₂ OH	25	<0.1	[68]
KBH4	H ₂ O	30	55	[69]
KBH4	CH ₃ CH ₂ OH	30	60	[69]
MgH ₂	H ₂ O	25	20	[70]
CaH ₂	H ₂ O	20	3	[71]
NH_3BH_3	H ₂ O	20	<0.1	[64]
NH ₃ BH ₃	CH₃OH	20	<0.1	[72]
LiNH ₂ BH ₃	H ₂ O	20	546	[73]
NaNH ₂ BH ₃	H ₂ O	20	381	[74]