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Abstract: Ammonia borane H3N−BH3 (AB) was re-discovered, in the 2000s, to play an important role
in the developing hydrogen economy, but it has seemingly failed; at best it has lagged behind.
The present review aims at analyzing, in the context of more than 300 articles, the reasons
why AB gives a sense that it has failed as an anodic fuel, a liquid-state hydrogen carrier and
a solid hydrogen carrier. The key issues AB faces and the key challenges ahead it has to address
(i.e., those hindering its technological deployment) have been identified and itemized. The reality is
that preventable errors have been made. First, some critical issues have been underestimated and
thereby understudied, whereas others have been disproportionally considered. Second, the potential
of AB has been overestimated, and there has been an undoubted lack of realistic and practical vision
of it. Third, the competition in the field is severe, with more promising and cheaper hydrides in front
of AB. Fourth, AB has been confined to lab benches, and consequently its technological readiness
level has remained low. This is discussed in detail herein.

Keywords: ammonia borane; dehydrocoupling; direct fuel cell; electro-oxidation; energy carrier;
hydrogen carrier; hydrogen generation; hydrogen storage; hydrolysis; thermolysis

1. Introduction

Recent years have witnessed a renewed interest in hydrogen, which is considered to be
a high-potential energy carrier of the near-future energy mix. New momentum has been created at the
international level [1] as a result of two decades of intense research and development at both academic
and industrial scales. Further efforts are, however, needed to knock down the remaining technological
and scientific barriers related to the whole chain of the hydrogen economy, viz. production [2],
distribution [3], storage [4,5] and end-use [6,7].

The storage issue is particularly problematic. Also the conventional physical methods
(i.e., compression up to 700–900 bars and liquefaction at−253 ◦C), new solutions involving materials have
been developed [4,5]. With porous materials, cryo-adsorption (physisorption) of molecular hydrogen
has shown to be effective in allowing high gravimetric hydrogen storage capacities; for instance, higher
than 7 wt% H2 at −196 ◦C [8]. As with all of the other materials, hydrogen storage is chemical and thus
involves elemental hydrogen in chemical binding (chemisorption) [9]. There are alkali/alkaline–earth
hydrides like magnesium hydride MgH2, intermetallic compounds like lanthanum–nickel alloy LaNi5,
complex hydrides like sodium alanate NaAlH4 and chemical hydrides like lithium borohydride
LiBH4 [10–14]. There are also BH and BNH materials [15,16], represented by sodium borohydride
NaBH4 [17], ammonia borane H3N−BH3 [18] and hydrazine borane H4N2−BH3 [19], for example.
Sodium borohydride has been much investigated from the late 1990s, primarily as liquid-state hydrogen
carrier, for which the main challenge has been dehydrogenation by catalyzed hydrolysis [20]. After more
than 20 years of research, now is the time to scale it up [21]. Ammonia borane emerged in the mid-2000s,
firstly as an alternative to sodium borohydride as a liquid-state hydrogen carrier [22], and secondly as
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solid-state hydrogen carrier, where dehydrogenation is driven by thermolytic dehydrocoupling [23].
Ammonia borane is the core subject of the present article, and it will be discussed in length hereafter.
With respect to hydrazine borane, it is in some way the latest of the BNH materials [24]. Like ammonia
borane, it has been considered to be a liquid-state hydrogen carrier, the challenge also being to
dehydrogenate the N2H4 group of the molecule together with the BH3 group [25]. It has also been seen
as solid-state hydrogen carrier, though pristine hydrazine borane has an ‘explosive’ dehydrogenation
behavior under heating [26]. Of course, BH and BNH materials are not restricted to the aforementioned
three compounds but these three compounds, especially the first two, have been by far the most
investigated ones (Figure 1).
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Figure 1. Number of results for a bibliometric resource search made on the Web of Science website the
1st of June 2020. The search was based on the combination: “X” AND “hydrogen storage”, where X is
borohydride (BH), lithium borohydride (LBH), sodium borohydride (SBH), potassium borohydride
(PBH), borane (B), ammonia borane (AB), diborane (DB), amidoboranes (AmB), hydrazine borane (HB),
triborane (TB) and dodecaborane (DdB).

Ammonia borane is an old compound. Its history commences before the 2000s, in the first half of
the twentieth century [27]; this is addressed in Section 2. Ammonia borane has been the object of a new
interest dating back to the mid-2000s. The interest stretched beyond the hydrogen storage application.
Ammonia borane has been also considered, though briefly, as a potential liquid fuel for direct liquid-fed
fuel cells. This aspect is covered in Section 3. Ammonia borane is a potential liquid-state hydrogen
carrier as well as a solid-state hydrogen storage material. Research dedicated to the former use is
discussed in Section 4, and that of the latter application is addressed in Section 5. These four sections
are put into perspective in Section 6 so as to stress on the main challenges that remain, assess the
technological readiness level of the aforementioned applications and give an objective analysis of
opportunities for the industrial development of ammonia borane as a hydrogen carrier.

2. Ammonia Borane, an Old Compound

Ammonia borane is the result of works carried out by two American research groups between
the 1930s and the 1950s. The first research group, led by Schlesinger, long sought to synthesize
it [28–32]. All of their attempts were thwarted because of unsuitable experimental conditions in terms
of reactants, stoichiometry, temperature and/or solvent [27]. The successful synthesis of ammonia
borane, as a crystalline compound, was reported by the second research group, represented by Shore
and Parry [33–35]. Ammonia borane was prepared by a metathesis reaction of lithium borohydride with
an ammonium salt in diethyl ether, followed by hydrogen evolution by proton–hydride combination,
as shown below:

LiBH4 + NH4Cl→ [NH4]+[BH4]− + LiCl (1a)
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[NH4]+[BH4]−→ H3N−BH3 + H2 (1b)

This is one of the safest paths allowing the synthesis of pure ammonia borane, which is thus being
currently used (while consuming different alkali borohydrides like NaBH4 and ammonium salts like
(NH4)2SO4) [36–42].

As a new compound, ammonia borane was then much studied. For example, the distance of the
N−B bond of the gas-state molecule was calculated to be 1.66 Å [43]. The formation enthalpy and
formation entropy of gas-state ammonia borane were calculated as−83.3 kJ mol−1 and 243.9 J mol−1 K−1,
comparing favorably to the values of the isoelectronic ethane (−83.8 kJ mol−1 and 229.6 J mol−1 K−1) [44].
The Mulliken charge of Hδ+ and that of Hδ− of ammonia borane were calculated as +0.21 and −0.195,
respectively [45]. An electron transfer from the H3N group to the BH3 one was evidenced [46], in good
agreement with the formation of a dative bond between the two groups. The ammonia borane molecule
is polarized, and a dipole moment of about 5.6 D was calculated, for instance [47]. As discussed at length
in references [18,48,49], ammonia borane as a molecule was studied extensively between the 1960s
and the 1980s, and ammonia borane as a material has been well studied within the past there decades.
For example, the crystal structure of the material, though first determined in the 1950s [33,50,51],
was scrutinized more in detail (at different temperatures and under pressure) in recent years [52–54].
It is now known that, at atmospheric pressure, ammonia borane has a low-temperature phase
(orthorhombic, space group Pmn21) and a high-temperature phase (tetragonal I4mm), the transition
taking place at −48 ◦C. The recent interest on ammonia borane as a material has been explained by its
promises as a solid-state hydrogen carrier [55]. This is discussed in the next sections.

However, the capacity of ammonia borane to generate hydrogen (i.e., its role as a hydrogen
carrier) has long been recognized. Between the 1960s and the early 1980s, it was patented as a solid
propellant hydrogen generator [56–59]. Recent works confirmed the properties of ammonia borane as
a propellant and an energetic material [60–65], but efforts in this direction have been limited. Today,
ammonia borane is first and foremost considered to be a hydrogen carrier, with the released hydrogen
being used for electricity generation by conversion in a fuel cell.

3. Aqueous Ammonia Borane as Anodic Fuel

Ammonia borane is a water-soluble reductant that can be electro-oxidized in alkaline conditions
at metal (e.g., gold) electrodes [66], the reaction being often reported as

H3N−BH3 + 6OH−→ BO2
− + NH4

+ + 4H2O + 6e− (2)

However, in the electro-oxidation conditions (<30 ◦C and <1 mol L−1), the anhydrous borate
anion BO2

− cannot form, since the thermodynamically stable form is the dihydrated one, namely the
tetrahydroxyborate anion B(OH)4

− [67]. The following reaction is thus more accurate:

H3N−BH3 + 6OH−→ B(OH)4
− + NH4

+ + 2H2O + 6e− (3)

Each of the hydridic hydrogens Hδ− of the BH3 group of ammonia borane are electro-oxidized
into a proton while two electrons per hydrogen are released. These electrons can then be involved in
an electro-reduction reaction; that of oxygen O2, for example:

3/2O2 + 3H2O + 6e−→ 6OH− (4)

These reactions form the basis of the direct ammonia borane fuel cell (DABFC; Figure 2), for which
the overall reaction is:

H3N−BH3 + 3/2O2 + H2O→ B(OH)4
− + NH4

+ (5)
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Theoretically, the fuel cell features a standard potential of +1.62 V versus the standard hydrogen
electrode, a specific energy of 8400 Wh kg−1 and a pure compound capacity of 5200 Ah kg−1 [68,69].
For comparison, the direct borohydride fuel cell (Figure 2) has the following properties: theoretically,
eight electrons released per borohydride anion BH4

−, a standard potential of +1.64 V versus the
standard hydrogen electrode, specific energy of 9300 Wh kg−1 and pure compound capacity of
5700 Ah kg−1 [70]. In operation, the borohydride cell should be slightly better performing.

The first DABFC was reported by Yao et al. [71]. They isolated an efficient silver anode
electrocatalyst (among other metals like platinum and gold), and manganese oxide MnO2 as a cathode
electrocatalyst showing tolerance to ammonia borane. The fuel cell showed, at ambient temperature,
an energy density of about 2000 mAh g−1 at 1 mA cm−2 and 0.9 V. Shortly afterward, Zhang et al. [68,69]
reported their DABFC made of a carbon-supported platinum (30–46.6 wt%) electrodes, showing
a power density of 110 mW cm−2 at 185 mA cm−2, 0.6 V and 45 ◦C. These studies opened the way
for developing efficient anode electrocatalysts, which were especially inactive towards the unwanted
heterogeneous hydrolysis of ammonia borane:

H3N−BH3 + 3H2O→ NH3 + B(OH)3 + 3H2 (6)

H3N−BH3 + 4H2O→ NH4
+ + B(OH)4

− + 3H2 (7)

Zhang et al. [72] worked on electro-oxidation on a gold electrode in the presence of thiourea.
Direct electro-oxidation was found to occur, but the number of electrons exchanged was determined
as being two, out of the theoretical maximum of six, because of the occurrence of hydrolysis.
Belén Molina Concha et al. [73] confirmed, by on-line differential electrochemical mass spectrometry
and in situ Fourier transform infrared spectroscopy, the occurrence of heterogeneous hydrolysis,
especially at low potential. Hydrogen was detected, and the number of electrons exchanged was found
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to be about three. At higher potential, above 0.6 V, the number of electrons was about six because of
preponderant electro-oxidation. The authors stressed the key role of the intermediate species BH3OH−:

H3N−BH3 + OH−→ NH3 + BH3OH− (8)

BH3OH− + NH3 + 5OH−→ B(OH)4
− + NH4

+ + 2H2O + 6e− (9)

Nagle et al. [74,75] focused on gold in nanoporous morphology. The electrode was more active
than bulk gold, with an oxidation current of 13.1 mA cm−2 versus 2.65 mA cm−2. Barsuk et al. [76]
also showed the beneficial effect of the nanoporous morphology, in their case for a silver anode
electrocatalyst. To further enhance the electrocatalytic activity of gold, Karabiberoğlu et al. [77] alloyed
it with silver. Zhang et al. [78] focused on core-shell nanoparticles with an amorphous core of iron and
a shell of platinum. They were much more active than commercial platinum (with about 2.5 and 0.75 mA
µg−1 respectively at −0.7 V). Kiran et al. [79] developed a titanium carbide anode electrocatalyst. A fuel
cell made of it, and of carbon-supported platinum as the cathode, generated a maximum power density
of 85 mW cm−2 at 105 mA cm−2 and 80 ◦C. Olu et al. [80] explored the potential of a carbon-supported
palladium anode electro-catalyst. A peak power density of 181 mW cm−2 was measured at 25 ◦C,
with a similar performance being found for a comparable platinum electro-catalyst. Above all, this work
showed that the performance depends on the anode’s texture. Zadick et al. [81] alloyed palladium with
nickel, such as Ni3Pd nanoparticles, supported onto a carbon support. Alternatively, silver and cobalt
were used instead of palladium. The noble-free nickel–cobalt nanoparticles exhibited the best results,
being both active and durable in the ammonia borane electro-oxidation conditions. Wang et al. [82]
confirmed the potential of noble metal-free nickel-based electro-catalysts, especially that of carbon
fiber-supported nanowires of nickel–copper selenide (better performing than the iron and cobalt
counterparts). Similar conclusions were obtained by Wu et al. [83]. They successfully developed
carbon fiber supported porous nickel–copper oxide nanowire arrays that showed a low onset potential
with −0.316 V and high faradic efficiency (>98%), for example.

The electro-oxidation of ammonia borane has been little studied in comparison with the
electro-oxidation of the borohydride anion of sodium borohydride. The fuel cells based on these two
reactions are, however, comparable, in particular as regards the issues they both suffer from. The first
main issue is, as briefly reported above, the occurrence of metal electrode-catalyzed heterogeneous
hydrolysis that competes with the electro-oxidation reaction and lowers the number of electrons
exchanged, and thus the faradic capacity of ammonia borane. The second main issue is about crossover
of ammonia borane or other intermediate species through the ion exchange membrane of the fuel
cell [72]: the ammonium ion NH4

+ (Equation (5)) is likely to crossover a cation exchange membrane,
and the key intermediate species BH3OH− is prone to crossover an anion exchange membrane.
Crossover is harmful for the performance of the cathode electro-catalyst. As far as is known, there is no
study reporting a membrane specifically developed for a direct ammonia borane fuel cell. On a final
matter, ammonia borane necessarily costs more than sodium borohydride, as the former is synthesized
from the latter [18]. The electro-oxidation of ammonia borane is very likely facing another issue,
which has been neglected so far. In aqueous solution, ammonia borane generates ammonium ions in
equilibrium with ammonia, and these species (a weak Brønsted acid and a Lewis base, respectively)
may have a negative effect on the fuel cell by deteriorating the electrode, the electro-catalyst and/or
the membrane.

The features of ammonia borane as an anodic fuel are less attractive than those of sodium
borohydride. This can explain why, in comparison, the electro-oxidation of ammonia borane has been
little studied. Few fuel cells were constructed and tested, but these efforts remained at the lab scale
and, in any case, the technology appears to have been abandoned now.

The electro-oxidation of ammonia borane remains of scientific interest. There is much to be learned
from it, with regard to the intermediate species BH3OH− (Equation (8)), for example. This species
is believed to play an important role in the electro-oxidation of the borohydride anion as well [84],
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and the electro-oxidation of ammonia borane might allow better understanding of the electro-oxidation
of the borohydride anion.

4. Ammonia Borane in Solution as a Liquid-State Hydrogen Carrier

4.1. In Water

From a technological point of view, the hydrolysis of ammonia borane (Equations (6) and (7))
does not present any advantage over the hydrolysis of sodium borohydride. This is discussed hereafter.
In all aspects, the latter reaction is superior (Figure 3). Evidence of this comes from the fact that the
hydrolysis of ammonia borane has not been scaled up yet: no demonstrator, nor prototype and device,
has been reported, and the effective gravimetric hydrogen storage capacity of the couple ammonia
borane–water under operation is unknown [21].
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Figure 3. (a) Hydrolysis of ammonia borane. (b) Hydrolysis of sodium borohydride. (c) Recycling of
the sodium borohydride hydrolysis product. In red are shown the main differences between path (a)
and path (b), thereby making the latter superior.

The hydrolysis of ammonia borane has been studied extensively. However, the vast majority
of the published articles deal with catalysts and how fast the catalysts allow the completion of the
release of hydrogen. Listing the catalysts reported since 2006 [22] goes beyond the scope of the present
article. The reader is warmly referred to the almost-yearly published reviews authored by active
researchers in this field, like Xu and co-workers [85–89], Özkar and co-workers [90,91] and other
groups [92–96]. Catalysts in various forms have been investigated. Metal organic framework-supported
metal nanoparticles [97–99], silica-supported bi-/ter-nary composites [100–103], graphene-containing
catalytic materials [104–107], nitride as active phase supports [108–110], cobalt-based alloys and
catalysts [111–115], nickel-based systems [116–118], supported ruthenium nanostructures [119–122]
and palladium-based materials [123–126] are examples among the catalysts reported within the last
three years. Such efforts have allowed the development of many active heterogeneous catalysts like
the rhodium nanoparticles supported over cobalt (II, III) oxide, which attained a turnover frequency of
1800 min−1 and a total of 1.02 × 106 turnovers for hydrogen release at 25 ◦C [127].

Improved catalytic performance will take place certainly and soon, achieved by means of further
changes and developments. The number of potential heterogenous catalysts is illimited. This may
be illustrated as follows. Starting with twelve transition metals (i.e., Fe, Co, Ni, Cu, Zn, Ag, Pd,
Rh, Ru, Ir, Pt, Au) and considering bi- and tri-atomic systems with these metals, as well as other
elements like B and P, there would be more than 2900 combinations (Figure 4). Then, supporting
these combinations onto various supports (e.g., silica or carbon in various forms, nitrides, graphene
and modified graphene, metal organic frameworks which exceed 10,000 candidates and so forth),
for example onto ten supports for example, there would be more than 40,000 potential catalysts.
The possibilities seem to be almost limitless.



Energies 2020, 13, 3071 7 of 45

Energies 2020, 13, x FOR PEER REVIEW 7 of 45 

 

by Equation (6), the by-product is ammonium tetrahydroxyborate. Each of these reactant and by-
products are important, at least as important as the catalyst, but little attention has been paid to them. 

 
Figure 4. More than 40,000 potential heterogeneous metal-based catalysts, based on the combinations 
of 10 metals (mono-, bi- and tri-metallic systems, represented by M, MM’ and MM’M’’ respectively), 
the addition of an element like boron (B) or phosphorus (P) and supporting onto ten different 
supports. 

Water is, first and foremost, a reactant. Half of the released H2 is due to it, as one hydridic 
hydrogen Hδ− of the BH3 group of ammonia borane reacts with one protic hydrogen Hδ+ of water: 

H3N−B(H2)−Hδ− + Hδ+−OH → H3N−B(H2)⋅⋅⋅Hδ−⋅⋅⋅Hδ+⋅⋅⋅OH (10)

H3N−B(H2)⋅⋅⋅Hδ−⋅⋅⋅Hδ+⋅⋅⋅OH → H3N−B(H2)−OH + H2 (11)

No side-reaction exists, which makes the hydrogen generation so simple. Water is almost always 
used in excess. This makes sense when a catalyst is under development. Accordingly, water is also a 
solvent. However, this makes no sense when the application is foreseen because of a negative impact 
on the storage capacities (Figure 5). When water is used in stoichiometric conditions (Equations (6) 
and (7)), the theoretical gravimetric hydrogen storage capacities of the couple ammonia borane–water 
is 7.1 and 5.8 wt% H2, respectively. The solubility limit of ammonia borane in water is 11.4 mol L−1 
[128], which is similar to a molar ratio H2O/H3N−BH3 of 4.9 and a theoretical gravimetric hydrogen 
storage capacity of about 5 wt% H2. At lower concentrations of ammonia borane, e.g., 1 mol L−1 (and 
even lower), as in those applied for investigating a wide variety of heterogeneous catalysts, the 
theoretical gravimetric hydrogen storage capacity is lower than 0.6 wt% H2, thus precluding any 
technological perspective. A very limited number of studies have explored the use of ammonia 
borane in a solid state (as powder [129] or in the form of pellets [130]) combined with the addition of 
water in near-stoichiometric conditions. In a recent work, an all-in-one formulation consisting of 
nickel nanoparticles intimately combined to AB nanoparticles was reacted with a limited amount of 
water [129]. An effective gravimetric hydrogen storage capacity of 4.8 wt% H2 was determined at 43.3 
°C, whereas the conversion was lower than 100% (i.e., 78.3%). Further improvements in the composite 
formulation should allow the achievement of higher capacities, the target being 6.8 wt% H2. 

Figure 4. More than 40,000 potential heterogeneous metal-based catalysts, based on the combinations
of 10 metals (mono-, bi- and tri-metallic systems, represented by M, MM’ and MM’M” respectively),
the addition of an element like boron (B) or phosphorus (P) and supporting onto ten different supports.

However, the hydrolysis reaction goes beyond the catalytic accelerator. According to Equation (6),
water as a reactant, and ammonia and boric acid as by-products have to be taken into account.
According to Equation (7), where there is a slight excess of water in comparison to the reaction
shown by Equation (6), the by-product is ammonium tetrahydroxyborate. Each of these reactant and
by-products are important, at least as important as the catalyst, but little attention has been paid
to them.

Water is, first and foremost, a reactant. Half of the released H2 is due to it, as one hydridic
hydrogen Hδ− of the BH3 group of ammonia borane reacts with one protic hydrogen Hδ+ of water:

H3N−B(H2)−Hδ− + Hδ+
−OH→ H3N−B(H2)···Hδ−

···Hδ+
···OH (10)

H3N−B(H2)···Hδ−
···Hδ+

···OH→ H3N−B(H2)−OH + H2 (11)

No side-reaction exists, which makes the hydrogen generation so simple. Water is almost always
used in excess. This makes sense when a catalyst is under development. Accordingly, water is also
a solvent. However, this makes no sense when the application is foreseen because of a negative impact on
the storage capacities (Figure 5). When water is used in stoichiometric conditions (Equations (6) and (7)),
the theoretical gravimetric hydrogen storage capacities of the couple ammonia borane–water is 7.1
and 5.8 wt% H2, respectively. The solubility limit of ammonia borane in water is 11.4 mol L−1 [128],
which is similar to a molar ratio H2O/H3N−BH3 of 4.9 and a theoretical gravimetric hydrogen
storage capacity of about 5 wt% H2. At lower concentrations of ammonia borane, e.g., 1 mol L−1

(and even lower), as in those applied for investigating a wide variety of heterogeneous catalysts,
the theoretical gravimetric hydrogen storage capacity is lower than 0.6 wt% H2, thus precluding
any technological perspective. A very limited number of studies have explored the use of ammonia
borane in a solid state (as powder [129] or in the form of pellets [130]) combined with the addition
of water in near-stoichiometric conditions. In a recent work, an all-in-one formulation consisting of
nickel nanoparticles intimately combined to AB nanoparticles was reacted with a limited amount
of water [129]. An effective gravimetric hydrogen storage capacity of 4.8 wt% H2 was determined
at 43.3 ◦C, whereas the conversion was lower than 100% (i.e., 78.3%). Further improvements in the
composite formulation should allow the achievement of higher capacities, the target being 6.8 wt% H2.
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species, the B−O bond being relevantly compared to the C−O bond of carbon dioxide [137]. They are 
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(7.1 and 5.8 wt% H2) in stoichiometric conditions (Equations (6) and (7)) are shown. The capacities
calculated for an ammonia borane concentration of 11.4 mol L−1 (solubility limit of ammonia borane in
water) and a concentration of 1 mol L−1 are also shown (5 and 0.6 wt% H2 respectively).

The hydrolysis of ammonia borane is often compared to that of sodium borohydride to underline
the similarities between these two reactions. There is, however, a substantial difference. Ammonia is
generated when ammonia borane is used. Ammonia is highly soluble in water and reacts to form its
acidic form (pKa = 9.25):

NH3 + H2O↔ NH4
+ + OH− (12)

This does not hinder the loss of some ammonia in the gas phase, which is also exacerbated by
the exothermic nature (−156 kJ mol−1) of the hydrolysis reaction [131]. This is well known, especially
since the work published by Ramachandran and Gagare in 2007 [37]. The point is that ammonia is
thermodynamically stable in hydrolytic conditions (enthalpy of dehydrogenation of 92.4 kJ mol−1);
in other words, it cannot be dehydrogenated at a temperature below 600 ◦C [132]. Hence, the release of
some ammonia together with hydrogen is unavoidable. The issue can be addressed by using a trap
consisting of an aqueous solution of sulfuric acid [133] or of copper sulfate [128]. This is an efficient
approach for a laboratory set-up. It is, however, questionable whether such a trap is implementable for
a scaled-up device. The fact is that the ammonia problem is being grossly underrated whilst ammonia
is detrimental to low-temperature polymer electrolyte membrane fuel cells (because of the poisoning
of platinum anode and reaction with acidic membrane) [134].

As mentioned above, the hydrolysis reaction is spontaneous, and thus exothermic. This has
negative consequences. The exothermicity of the reaction means that some water is vaporized and
expelled out together with the generated hydrogen. Borates are very likely to be carried out by the
steam. No report has been found on this, but such an issue was reported for the exothermic hydrolysis
of sodium borohydride [135]. In such conditions, hydrogen is not pure, water condensates on any cold
surface and the carried borates precipitate in the piping, resulting in accumulation and the clogging of
the system. Such problems were encountered in operation conditions for a commercial device based
on the hydrolysis of sodium borohydride [136].

The exothermicity of the hydrolysis reaction also means that there is a transition from a reactive
B−H bond in H3N−BH3 to a stable B−O bond, e.g., in B(OH)3 (Equation (6)). Borates are indeed
a stable species, the B−O bond being relevantly compared to the C−O bond of carbon dioxide [137].
They are hardly transformed, that is, reduced, back into the starting hydride, whether it be sodium
borohydride [138] or ammonia borane, but it should be noted that the direct or indirect regeneration of
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ammonia borane from the borates forming upon hydrolysis has not been investigated yet. This might
be explained by the fact that more than one borate forms upon the hydrolysis of ammonia borane.

As shown by Equations (6) and (7), two borates are likely to form, i.e., boric acid B(OH)3 and the
tetrahydroxyborate anion B(OH)4

−, especially for diluted aqueous solutions [133,139]. In addition to
these species, other unidentified borates have been suggested [22,131]. The reaction of B(OH)3 and
B(OH)4

− to form equilibria towards borates is in fact well documented [140–142]. Rachiero et al. [143]
suggested the formation of polyborates:

2B(OH)3 + B(OH)4
−
↔ B3O3(OH)4

− + 3H2O (13)

For concentrated aqueous solutions (10.8 mol L−1), a tetraborate like (NH4)2B4O5(OH)4·1.4H2O
was reported by Ramachandran and Gagare [37]. Recently, for a comparable concentrated solution
(10 mol L−1), Valero-Pedraza et al. [144] observed the precipitation of (NH4)2B4O5(OH)4·2H2O.
The formation of this species was supposed to be as follows:

4H3N−BH3 + 11H2O→ (NH4)2B4O5(OH)4·2H2O + 2NH3 + 12H2 (14)

According to this path, there are two free ammonia molecules. If lost, they could not be integrated
into the recycling cycle of the borates, which would run counter to a few green chemistry principles [145].
The tetraborate (NH4)2B4O5(OH)4·2H2O is an analog of borax Na2B4O5(OH)4·2H2O, and borax is
one of the reactants used for the industrial production of sodium borohydride via the so-called
Brown–Schlesinger process. These findings suggest that, with sustained efforts, one may gain a better
understanding of these borate species while working on their imperative recyclability. In any case,
the recyclability requires a large amount of energy, and the cost of the process will be dependent on the
energy cost [146], suggesting the crucial role of green electricity for efficient cost reduction [147].

4.2. In Methanol

Methanol can be used instead of water as a source of protic hydrogens Hδ+ that can react with
the hydridic hydrogens Hδ− of ammonia borane. The first report about the methanolysis of ammonia
borane dates back to 2007, and it is insightful on several levels. Ramachandran and Gagare [37],
after comparing a series of aliphatic alcohols, found that methanol provided the best results. The couple
ammonia borane–methanol, in the presence of 1 mol% ruthenium chloride, was able to generate
3 equivalents of hydrogen in less than 1 min at ambient conditions. However, a 15% excess of methanol
was found to be necessary to obtain the three equivalents of hydrogen (Equation (15)). A precipitating
“crude borate” was isolated and identified as being an ammonium tetramethoxyborate salt such as
[NH4B(OCH3)4]5·2CH3OH:

5H3N−BH3 + 22CH3OH→ [NH4B(OCH3)4]5·2CH3OH + 15H2 (15)

It is not clearly specified whether the methanolic solution, in addition to the precipitating “crude
borate”, was analyzed or not. It is also not clearly specified whether the purity of the released hydrogen
was analyzed or not. Interestingly, the recyclability of the ammonium tetramethoxyborate salt was
investigated. It was transformed back into ammonia borane (yield 81% and purity >98%), by using
lithium alanate LiAlH4 as a reducing agent and ammonium chloride NH4Cl as a source of ammonia:

[NH4B(OCH3)4]5·2CH3OH + 5NH4Cl + 5LiAlH4

→ 5H3N−BH3 + 5Al(OCH3)3 + 7CH3OH + H2 + 5LiCl + 5NH3
(16)

The reaction was performed in a sealed reactor, with tetrahydrofuran as a solvent, for 8 h at
ambient conditions. Hence, the cycle was closed. From this work, four interesting aspects stand out:
an excess of methanol is required to obtain a conversion of 100%, one of the by-products is a polyborate
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salt, the release (or not) of ammonia is unclear, and the polyborate salt can be effectively recycled back
into ammonia borane.

While the aforementioned report has the advantage of putting several aspects of the methanolysis
reaction forward, none of these aspects has been the subject of a systematic and deep investigation.
As for the hydrolysis reaction, efforts have been focused on heterogeneous catalysts. Listing the
catalysts reported since 2007 goes beyond the scope of the present article. The reader may refer
to a recent review article [148]. A variety of nanostructured transition metal catalysts (also called
nanocatalysts) have been developed, with a special focus on copper [149–152], cobalt [153] and
cobalt–palladium combinations [154,155], nickel [153,156,157], palladium [158–160], rhodium [161–164]
and ruthenium [165–167].

The reaction shown by Equation (16) was proposed to explain the formation of the ammonium
tetramethoxyborate salt [NH4B(OCH3)4]5·2CH3OH, forming from an aqueous solution of ammonia
borane at 2 mol L−1 [37]. For more diluted solutions, the following equation is generally reported:

H3N−BH3 + 4CH3OH→ NH4
+ + B(OCH3)4

− + 3H2 (17)

When the literature is reviewed, it stands out that this reaction is rather unknown. The amount
of methanol has not been optimized in order to optimize the effective gravimetric hydrogen storage
capacity of the couple ammonia borane–methanol (versus the theoretical value of 3.8 wt% H2 for the
stoichiometry in Equation (17) (Figure 6). The release of some ammonia, together with hydrogen,
has not been checked and measured. The nature of the borate by-products, depending on the amount of
methanol used and/or the drying process, has not been determined yet, except for the aforementioned
tetramethoxyborate salt. The knowledge generated by the hydrolysis reaction suggests that the effective
capacities will be lower than the theoretical value; ammonia could be found in the hydrogen stream
and more than one borate may form. These have to be seen as outstanding issues.
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The successful regeneration of ammonia borane using the ammonium tetramethoxyborate salt
[NH4B(OCH3)4]5·2CH3OH as reactant [37] has great appeal. The hydrogen cycle with the couple
ammonia borane–methanol can be closed. More broadly, ammonia borane can be directly synthesized,
namely without forming sodium borohydride in the first step, from another possible methanolysis
product, which is trimethoxyborate B(OCH3)3. Indeed, Ramachandran et al. [168] developed a one-pot
synthesis of ammonia borane, taking place in tetrahydrofuran at 0 ◦C:

B(OCH3)3 + NH4Cl + LiAlH4→ H3N−BH3 + Al(OCH3)3 + LiCl + H2 (18)
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These achievements are arguments in favor of the methanolysis reaction, for which the hydrogen
cycle could be closed (Figure 7).Energies 2020, 13, x FOR PEER REVIEW 11 of 45 
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5. Ammonia Borane as a Solid-State Hydrogen Storage Material

5.1. Pristine Ammonia Borane

Pure ammonia borane is stable at ambient conditions under inert atmosphere, for 13 to 72 days
when kept at 50 ◦C [169], about 5.5 days at 60 ◦C [170] and only 3 h at 85 ◦C [171]. At around 100 ◦C,
ammonia borane melts [172]. Above this temperature, it decomposes. However, the decomposition
may start below 100 ◦C, from about 70 ◦C, when a very slow heating rate (e.g., 0.05 ◦C min−1) is
applied [173].

The decomposition path of ammonia borane is generally described in a fairly straightforward
manner. The first step is the induction [174]. Ammonia borane, which becomes more mobile under
heating [175], dimerizes into an ionic dimer, the diammoniate of diborane:

2H3N−BH3→ [NH3BH2NH3]+[BH4]− (19)

The diammoniate of diborane is the reactive species, the one decomposing. It is more reactive
than ammonia borane. The decomposition is then stepwise.

From the diammoniate of diborane, which reacts with an additional ammonia borane molecule,
the first equivalent of hydrogen is generated. This can be illustrated as follows:

[NH3BH2NH3]+[BH4]− + H3N−BH3→ H3N−(BH2−NH2)2−BH3 + 2H2 (20)

It is important to point out that the reaction is generally reported in the open literature as
follows [176]:

nH3N−BH3→ [−BH2−NH2−]n + nH2 (21)

Ammonia borane transforms into polyaminoborane (non-crystalline) and hydrogen by
dehydrocoupling. However, gaseous by-products like aminoborane H2N=BH2, diborane B2H6,
ammonia NH3 and/or borazine B3N3H6 are also generated (Figure 8) [177]. This first decomposition
step is exothermic, with an enthalpy of e.g., −21 kJ mol−1 [178].
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The second step of the ammonia borane decomposition, taking place above 120–130 ◦C [172],
generates borazine as the main product [179]. The second equivalent of hydrogen is also generated:

[−BH2−NH2−]n→ [−BH=NH−]n + nH2 (22)

According to this reaction, polyiminoborane [−BH=NH−]n forms. The aforementioned two steps
take place at temperatures lower than 200 ◦C.

The third equivalent of hydrogen is generated above 200 ◦C. The total release of it requires high
temperatures, well beyond 500 ◦C, and this results boron nitride BN forming (semi-crystalline above
1170 ◦C) [180]:

[−BH2−NH2−]n→ [BN]n + nH2 (23)

Boron nitride is a highly stable ceramic, and its rehydrogenation is thermodynamically impossible
in affordable conditions (in terms of temperature and pressure of H2). The dehydrogenation of
ammonia borane thus has to be restricted to about two equivalents of hydrogen to avoid the formation
of boron nitride.

The decomposition is in fact more complex than the simplistic chain-growth polymerization
path (Equations (21) and (22)) based on heteropolar dihydrogen N−Hδ+

···Hδ−
−B interactions and the

head-to-tail dehydrocoupling of ammonia borane (Figure 9a). Basically, this path does not rationalize
the release of the unwanted gaseous products like diborane and the formation of a polymeric residue
with tri- and tetra-coordinated boron atoms, thus being more complex than the aforementioned linear
polymers [181]. Wolstenholme et al. [182] and Roy et al. [183] showed the existence of counterintuitive
homopolar dihydrogen B−Hδ−

···Hδ−
−B interactions (Figure 9b). Petit and Demirci [184] reported

homopolar dihydrogen N−Hδ+
···Hδ+

−N interactions noticeably contributing to hydrogen release.
Al-Kukhun et al. [177] showed that the BH3 group of ammonia borane makes a superior contribution
to the release of hydrogen than the NH3 group, and that the heteropolar and homopolar interactions
have comparable contributions. Otherwise, Petit et al. [185] analyzed the polymeric products forming
upon the evolution of one equivalent of hydrogen from two different ammonia boranes, and found
that all of the molecules do not simultaneously decompose and polymerize (Figure 10). The polymeric
products were found to be composed of various molecular structures, suggesting a mixture of
polyaminoborane, polyiminoborane and polyborazylene, in good agreement with Summerscales
and Gordon’s observations [186]. In other words, various reaction pathways, which are intra- and
inter-molecular, take place during the two-step decomposition of ammonia borane, up to about
200 ◦C [187]. It results in a polymeric residue generally denoted as BNHx (with x < 2) or BNH<2.
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Figure 10. Illustration of the heterogenous decomposition of ammonia borane: all of the molecules
would not simultaneously decompose and polymerize.

In summary, ammonia borane in a pristine state is not appropriate for hydrogen storage, and this
is for four main reasons. Ammonia borane decomposes more than it dehydrogenates. The process
takes place slowly at temperatures over 70 ◦C and more rapidly above 120 ◦C. The decomposition
(and the dehydrogenation) is exothermic. Accordingly, the rehydrogenation of the dehydrogenated
form of ammonia borane requires energy to offset the heat lost (due to the exothermic breaking of
B−H and N−H bonds). This suggests difficult, from a thermodynamic point of view, rehydrogenation
at low temperature and under hydrogen pressure. This thus suggests the requirement of chemical
rehydrogenation. The polymeric residue forming upon decomposition is of complex composition and
not well identified, which makes the recycling approach tough.

It is in that context that strategies for destabilizing ammonia borane and making it suitable for
hydrogen storage were introduced. There are four. They all aim at dehydrogenating ammonia borane
rapidly, at temperatures below 100 ◦C and with the formation of a single polymeric product.

5.2. Ammonia Borane in an Aprotic Solvent

With protic solvents, hydrolysis and alcoholysis take place, as discussed in the previous
sections. With aprotic solvents, ammonia borane can be isolated as a molecule and the dihydrogen
N−Hδ+

···Hδ−
−B interactions are disrupted. This makes dehydrogenation easier.
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Ammonia borane is soluble in ionic liquids. Bluhm et al. [171] investigated an equal weight mixture
of ammonia borane and 1-butyl-3-methylimidazolium chloride (oversaturated solution), the solubility
of the borane being 47.5 g in 100 g of solvent [188]. The mixture consisted of ammonia borane in both
solubilized and solid states. Heated at 85 ◦C, the mixture released hydrogen immediately, showing no
induction period (versus an induction time of about 3 h for the pristine borane). It released 1 mol H2 per
mol H3N−BH3 in 67 min and 2.2 mol H2 in 330 min [189]. Nakagawa et al. [188] reported that more than
2 mol H2 per mol H3N−BH3, with limited impurity emissions, can be released between 80 and 130 ◦C,
without any reaction between ammonia borane and 1-butyl-3-methylimidazolium chloride. Consistent
results were reported elsewhere [190]. The ionic liquid was suggested to act as a promoter favoring
the formation of the diammoniate of diborane. Upon dehydrogenation, neutral polyaminoborane
and then unsaturated cross-linked polyborazylene were reported to form. Elsewhere, a complex
solid solution was instead suggested [188]. Several other ionic liquids were reported in
reference [189] and elsewhere [191–193], including 1-butyl-2,3-dimethylimidazolium chloride,
1-ethyl-2,3-dimethylimidazolium ethyl-sulfate, 1-butyl-3-methylimidazolium tetra-fluoroborate,
1-butyl-3-methylimidazolium triflate and 1-butyl-3-methylimidazolium hexafluorophosphate, among
others. Beyond the works cited above, where the last dates back to 2015, the use of ionic liquids has
not been further studied. One plausible explanation is the difficult extraction of the dehydrogenation
products because of the high boiling point of the ionic liquids.

Ammonia borane is soluble in organic solvents. In triglyme, its solubility is 34.4 g in 100 g of
solvent. Kostka et al. [194] studied solutions at various concentrations, from 0.1 to 6 mol L−1. Improved
dehydrogenation properties were found, in comparison with the pristine ammonia borane. For instance,
the solution at 6 mol L−1 generated 1 mol H2 per mol H3N−BH3 in less than 1 h at 70 ◦C. There was no
induction period, also for other solvents like glyme, diglyme and tetraglyme. Dehydrocoupling of
ammonia borane in triglyme follows a complex path where, in addition to borazine, several cyclic
products form (Figure 11), especially for high concentrations of ammonia borane. The cyclic products
were suggested to be intermediates before the formation of borazine and then polyborazylene [195].

Ammonia borane, solubilized in an organic solvent, is able to generate pure hydrogen with good
kinetics, provided that a (homogenous) catalyst is used. Denney et al. [196] reported an iridium pincer
complex, denoted (POCOP)Ir(H)2 with POCOP as [η3-1,3-(OPtBu2)2C6H3]. The complex (1 mol%) was
able to catalyze the dehydrocoupling of ammonia borane (0.5 mol L−1 in tetrahydrofuran) towards the
release of one equivalent of hydrogen in less than 5 min at room temperature:

5H3N−BH3→ [H2N−BH2]5 + 5H2 (24)

The oligomeric product precipitated. Another iridium complex, [Ir(H)2(dppm)2]OTf, was reported
elsewhere [197]. Keaton et al. [198] investigated a N-heterocyclic carbene nickel complex for
dehydrogenating ammonia borane (25 wt%) in diglyme at 60 ◦C. A small amount of the complex
(1 mol%) was able to catalyze the rapid dehydrogenation of ammonia borane to a high extent
(ca. 2.8 mol H2 per mol H3N−BH3) in less than 4 h. Conley and Williams [199] developed a Shvo’s
cyclopentadienone-ligated ruthenium complex that catalyzed the generation of two equivalents of
hydrogen and the formation of borazine from ammonia borane in a mixture of diglyme and benzene,
at 70 ◦C:

3H3N−BH3→ B3N3H6 + 3H2 (25)

Afterwards, iron [200,201], ruthenium [202–204] and palladium complexes [205,206] were reported
as possible efficient homogeneous catalysts for dehydrogenating ammonia borane in solution.
Details about all of the homogeneous catalysts reported above are available in several review papers
authored by active researchers in the field [207–209]. Recently, Hasenbeck et al. [210] reported
a metal-free organocatalyst, the 6-tert-butyl-2-thiopyriperformed. At a concentration of 1 mol%, it was
able to dehydrogenate ammonia borane at reflux in tetrahydrofuran in 2 h (Equation (25)). A turnover
frequency of 88 h−1 was achieved.
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The dehydrocoupling of ammonia borane in an organic solvent and in the presence of
a homogenous catalyst offers some advantages, such as a simple dehydrogenation pathway resulting in
a single product like borazine or polyborazylene, the release of pure hydrogen (apart from the solvent),
faster hydrogen release kinetics in comparison to the uncatalyzed reaction and temperatures of reaction
lower than 100 ◦C (e.g., at ambient conditions). However, there are also drawbacks, which are significant
barriers to the technological implementation of this destabilization strategy, namely: the vapor pressure
of the organic solvents that inevitably pollutes the hydrogen stream; the homogenous nature of the
catalyst that makes its extraction from the reaction slurry tough; the limited cyclability of the catalyst;
and the low solubility of ammonia borane in the mentioned solvents, which negatively impact the
effective gravimetric hydrogen storage capacities (Figure 12). Using a liquid hydrogen fuel resembling
gasoline has appeal, and it is regrettable that this liquid ammonia borane approach has not been scaled
up yet. This would have allowed a better understanding of the advantages and drawbacks of it.Energies 2020, 13, x FOR PEER REVIEW 15 of 45 
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75% of the hydrogen of ammonia borane can be released. The capacities (in wt% H2) are all given.
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5.3. Chemical Doping of Solid Ammonia Borane

By adding a chemical dopant, solid mixtures made of ammonia borane as the main component
can be obtained. The first mixture was proposed by Benedetto et al. [211]. They showed that the
addition of 1–2 mol% of platinum, in the form of hexachloroplatinic salt, resulted in improved
dehydrogenation properties, with a significantly reduced induction period and faster kinetics.
Upon reaction, reduced platinum was recovered, but no analyses were performed with regard
to the purity of the released hydrogen and the nature of the polymeric residue. The positive effect of
a dopant on the induction period of ammonia borane was later confirmed by Heldebrant et al. [175].
The period was measured to be as long as about 6 h for pristine ammonia borane at 80 ◦C, whereas
the addition of ammonium chloride (5 wt%) resulted in the absence of an induction period. A series
of chlorides were afterwards considered to be possible dopants. He et al. [212] tested nickel chloride
NiCl2 and cobalt chloride CoCl2 (for both 2 mol%). Ammonia borane was destabilized, liberating
hydrogen (and no borazine) at 59 ◦C and upwards. Benzouaa et al. [213] worked with cobalt chloride
CoCl2, iron chloride FeCl3 and aluminum chloride AlCl3. They all destabilized ammonia borane,
which featured decreased onset temperatures of decomposition (52, 65 and 85 ◦C respectively, versus
99 ◦C for the pristine ammonia borane, the last temperature being typical of an ammonia borane
sample with a purity higher than 97% and of an experiment performed at a heating rate of 5 ◦C min−1).
Reduced induction periods and much less borazine were noticed when, for example, cobalt chloride
was used. Better results were reported for copper chloride [214,215]. Despite improved decomposition
properties, doping with metal chlorides does not totally prevent the formation of borazine, and the
polymeric residue formed is of complex composition [213–216]. The metal cation Cu2+ of copper
chloride plays a Lewis acid role, destabilizing the B−N bond of ammonia borane through the formation
of a reactive intermediate, such as Cu· · ·NH2–BH2, then facilitating the head-to-tail dehydrocoupling of
ammonia borane. Comparable results were reported for magnesium and calcium chlorides [217]. In the
presence of the former, ammonia borane dehydrogenated purely, starting from 40 ◦C, whereas traces
of ammonia were detected when ammonia borane was doped with the latter halide. The release of
ammonia was also reported for ammonia borane doped with potassium bromide [218]. The additive
was found to favor the formation of diammoniate of diborane as well as the formation of ammonium
ions that catalyzed the dehydrogenation of ammonia borane. Overall, the addition of metal halide has
positive effects, but the evolution of gaseous by-products is not totally suppressed. It is also unclear
what the nature of the polymeric residue and the post-thermolysis state of the chemical additive are.

Metal hydrides are also possible dopants. Note that the mixtures made of one mole of ammonia
borane and one mole of another hydride, which are actually composites, are out of the scope of the
present work. In such composites, the addition of the hydride cannot be seen as a simple destabilization
of ammonia borane. The composites have to be considered to be new materials.

Kang et al. [219] demonstrated the positive effect of magnesium hydride MgH2 as a chemical
additive. The milled mixture, consisting of 1 mol H3N−BH3 and 0.5 mol MgH2, showed an apparent
activation energy of 66 kJ mol−1 for the release of one equivalent of hydrogen (versus 183 kJ mol−1 for
pristine ammonia borane). Up to 200 ◦C, it released around 1.9 equivalents of hydrogen:

H3N−BH3→ BNH2.2 + 1.9H2 (26)

A fraction of magnesium hydride was suggested to participate in the dehydrogenation process
via the formation of Mg–B–N–H intermediate species [220]. Tang et al. [221] used magnesium–nickel
hydride Mg2NiH4 (1 mol) to destabilize ammonia borane (4 mol). Pure hydrogen (two equivalents)
was released, according to a two-step process occurring at 50 and 110 ◦C (one equivalent for each
step). Improved dehydrogenation properties were also reported for other double cation hydrides,
such as NaMgH3, KMgH3 and RbMgH3 [222]. Choi et al. [223] compared magnesium hydride
MgH2, titanium hydride TiH2, zirconium hydride ZrH2 and calcium hydride CaH2. Doping 2 mol
H3N−BH3 with 1 mol MgH2 and 0.1 mol TiH was found to be efficient in lowering the dehydrogenation
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temperature of ammonia borane. Kobayashi et al. [224] showed that lithium alanate Li3AlH6 improves
the dehydrogenation kinetics of ammonia borane (for a 1:3 mixture) via the formation of an intermediate
containing lithium amidoborane LiNH2BH3. Wan et al. [225] destabilized ammonia borane (3 mol)
by using aluminum hydride AlH3 (1 mol). The release of more than 12 wt% of pure hydrogen was
measured up to 250 ◦C. Ammonia borane was destabilized by Coulombic attraction between Hδ+ of
NH3 of ammonia borane and Hδ− of AlH3. With more reactive metal hydrides like sodium hydride
NaH, chemical doping is not relevant because a derivative of ammonia borane forms. This is discussed
hereafter, in Section 5.5, which is dedicated to amidoboranes.

Other chemical dopants have been reported so far. Neiner et al. [226,227] used pre-milled
hexagonal boron nitride. The dopant showed a slight beneficial effect by favoring the disruption of
the dihydrogen N−Hδ+

···Hδ−
−B interactions in ammonia borane, but it also had a negative impact,

by promoting the formation of borazine by a surface-enhanced mechanism. Pre-milling boron nitride
was important to obtain nanocrystallites of about 10 nm, thereby developing a higher specific surface
area of 251 m2 g−1 than the bulk counterpart (12 m2 g−1). The chemical dopant destabilization strategy
is based on grain-to-grain contact between the dopant and ammonia borane, and nanosizing the dopant
allows increased contacts. In this way, elsewhere, silicon [228], silica [229] and nickel [230] were used
in the form of nanosized dopants.

Some of the studied dopants contain oxygen and protic hydrogen. This is a paradox, because it
is like protonolysis (comparable to hydrolysis or methanolysis), and stable B−O bonds are likely to
form. A first example of an oxygen-containing dopant is boric acid B(OH)3. Hwang and Varma [231]
demonstrated its positive effect on the thermolysis of ammonia borane. For example, more than
two equivalents of hydrogen were released at 85 ◦C, and only trace amount of ammonia (<30 ppm)
was detected. The involvement of the tetrahydroxyborate ion B(OH)4

− and water was noticed.
However, surprisingly, the polymeric residue was suggested to be a polyborazylene-like species,
with no mention of likely B−O bonds. Ergüven et al. [232] explained the role of boric acid as that of
a Lewis acid (versus a Lewis base for ammonia borane). Shin et al. [233] destabilized ammonia borane
with mucic acid, a dicarboxylic acid with the formula C6H10O8. The 8:2 mixture produced pure H2

(10.8 wt%) at 80 ◦C in 1 min. This performance is attractive. Similar attractive results were reported by
Kim et al. [234], who used d-mannitol C6H14O6, an alcohol with six OH groups, as a dopant. In both
works, the polymeric residue was made of B−O bonds. This raises the question: is such an approach
more attractive than hydrolysis, which allows the generation of a lot hydrogen at 20 ◦C, and with
faster kinetics?

There are also protic hydrogen-free oxygen-containing dopants. Kim et al. [235,236] investigated
polyetheral additives like tetraethylene glycol dimethyl ether C10H22O5, which enhanced the rate of
hydrogen generation from ammonia borane under heating (e.g., 125 ◦C). It, however, did not hinder
the formation of unwanted gaseous products like borazine. The great thing about Kim et al.’s works
is that they pushed the logic to the extreme [237]. They constructed a hydrogen generator based on
ammonia borane and the aforementioned additive, with the generator integrating a 200 We polymer
electrolyte membrane fuel cell (Figure 13). Under operation, a hydrogen generation rate as high as
3.3 L min−1 was reached, being enough to operate the fuel cell for 25 min with 58 g of ammonia borane.
A purifying system (i.e., acidic active carbons trapping borazine) allowed the feeding of the fuel cell
with pure hydrogen. This demonstrator was the first one ever reported with ammonia borane as
a hydrogen carrier.
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Figure 13. Hydrogen generator developed by Kim et al. [237]. (a) A process flow diagram of the
continuous hydrogen generator from ammonia borane: the ammonia borane beads are conveyed into
the tetraethylene glycol dimethyl ether-containing reactor; the generated hydrogen is filtered and
then it feeds a polymer electrolyte membrane fuel cell (PEMFC); the excess of hydrogen is recycled.
(b) Photography of the hydrogen generator. Reprinted from ref. [237], Copyright (2013), with permission
from Elsevier.

The addition of a chemical dopant results in the destabilization of ammonia borane, which releases
hydrogen at temperatures below 100 ◦C and with faster kinetics. The destabilization is even, in some
cases, too effective, leading to the ammonia borane being unstable at ambient temperature. The released
hydrogen is purer than the hydrogen generated by pristine ammonia borane, but the chemical dopant
does not seem to be efficient enough to suppress the formation of any gaseous by-product. The purity
of the released hydrogen is, however, not clearly specified, and is globally controversial. The main
limitation is inherent to the destabilization strategy itself, which is based on grain-to-grain contacts.
The most efficient destabilization could be expected from the smallest grains, namely, at the nanoscale.
Another critical issue with the doping strategy concerns the residue recovered upon dehydrogenation.
Globally, very little is known about the state of the chemical dopant, and the nature of the polymeric
residue is rather complex, though it is claimed to be polyborazylene-like in some instances. This also
leads to substantial uncertainties in how to separate the dopant from the polymeric residue and then
recycle all of the products. Recycling is a critical issue. This is discussed in Section 5.6 for the polymeric
residue, but it is important to notice here that the presence of B−O bonds in the polymeric residue
makes the recycling more complicated. If this destabilization strategy should be further investigated,
because it is the best for obtaining highly effective gravimetric hydrogen storage capacities (Figure 14),
efforts should be focused on nano-engineering.Energies 2020, 13, x FOR PEER REVIEW 19 of 45 
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Figure 14. Gravimetric hydrogen storage capacity (GHSC) of ammonia borane (100 to 50% weight)
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is based on 100% on the hydrogens of ammonia borane. For the bars with the white borders, it is
assumed that 75% of the hydrogen of ammonia borane can be released. The capacities (in wt% H2) are
all given.
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5.4. Nanoconfinement of Ammonia Borane

By infiltrating ammonia borane into the porosity of a scaffold, it is nanosized, and nanosized
ammonia borane (also called ammonia borane nanophase) is able to show modified decomposition
properties, with dehydrogenation being greatly favored. This is the nanoconfinement strategy [238–241].

The first work dealing with the nanoconfinement of ammonia borane used silica SBA-15 (specific
surface area of 900 m2 g−1) as a scaffold. Gutowska et al. [23] infiltrated by capillary action the
mesoporosity of the silica SBA-15 using a saturated methanolic solution of ammonia borane. In doing
so, AB@SBA-15, consisting in 50 wt% of ammonia borane and showing a specific surface area below
50 m2 g−1, was produced. AB@SBA-15 showed attractive dehydrogenation properties by releasing
hydrogen from 50 ◦C. Moreover, the enthalpy of hydrogen release was measured as −1 kJ mol−1,
suggesting an almost neutral process. Comparable improved dehydrogenation properties were reported
for mesoporous silica MCM-41 [242–244], silica hollow nanospheres [245] and silica aerogel [246].
Note that the infiltration of AB is feasible with another suitable solvent, i.e., tetrahydrofuran [247],
but the most important aspect is to avoid the presence of ammonia borane outside the porosity, because
non-confined ammonia borane (also called an excess of ammonia borane) forms aggregates outside
the scaffold porosity and behaves like pristine ammonia borane [248,249]. With silica as the scaffold,
the purity of the released H2 is debated. It was found to be pure [250] or not (due to the formation of
borazine and ammonia) [23,242].

There are three effects to explain the better dehydrogenation properties of the ammonia borane
nanophase (Figure 15). First, the reduction of the size of the ammonia borane particles results in
more defect sites (i.e., active sites initiating the dehydrogenation process) [243,250] and in reduced
diffusion distances (facilitating the release of hydrogen) [251]. Second, the hydrogens Hδ+ of the
surface SiO−H groups catalytically activate ammonia borane through dihydrogen O−Hδ+

···Hδ−
−B

interactions [252], resulting in an acid–base reaction between SiO−H and BH3 and the formation of
surface SiO−B groups [245]:

H3N−BH3 + SiO−H +→ H3N−BH2−OSi + H2 (27)
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Porous carbon is also a potential scaffold of ammonia borane. Improved dehydrogenation
properties for ammonia borane were reported for carbon cryogels [254,255], activated carbon [256,257],
mesoporous carbon CMK-3 [258], microporous carbon [259] and N-containing carbon nanotubes [260].
The positive effects described for the silica scaffolds are valid for the carbon scaffolds (Figure 15).
First, Tang et al. [261] clearly showed that nanoparticles with a diameter of 4 nm were able to
dehydrogenate starting from 50 ◦C, whereas larger nanoparticles (diameter of 10 nm) dehydrogenated
from 67 ◦C. So et al. [262] showed that the dehydrogenation of ammonia borane could be tuned
by controlling the scaffold pore size in such a way that the narrower the pore size is, the lower the
peak temperature of the H2 release. In other words, microporosity (a pore size of <2 nm) should be
favored [263]. Second, the surface COO−H (and/or CO−H) groups provide acidic hydrogens Hδ+

that destabilize the ammonia borane molecules by acid–base reactions, even at temperatures as low
as 3–4 ◦C [256], which indicates that this effect overpasses the nanosizing effect. This is interpreted
as catalytic activation (i.e., acid catalysis) [264]. This was evidenced by the detection of CO−B and
COO−B bonds in the materials upon dehydrogenation [265,266]. The catalytic activation, however,
does not hinder the formation and release of ammonia [267].

Metal organic frameworks (MOFs) have also been designated as potential scaffolds of ammonia
borane. The first ever reported for that purpose was water-free JUC-32-Y, made of unsaturated
Y3+ metal sites and 1,3,5-benzenetricarboxylate rigid linkers [268]. Ammonia borane was infiltrated
by capillary action and the as-obtained nanophase released hydrogen from 50 ◦C, with the peak
temperature of the dehydrogenation being 84 ◦C. Onset temperatures of dehydrogenation lower than
70 ◦C were reported for a series of MOFs, such as Mg-MOF-74 [269], Zn-MOF-74 [270], MIL-101 [271]
and MOF-5 [272]. This was explained by the nanosizing effect [273]. Better yet, Chung et al. [274]
showed a linear relationship between the temperature of hydrogen release and the reciprocal of the
particle size of the ammonia borane nanophase (Figure 16). On the other hand, Jeong et al. [272]
stressed on the importance of using MOFs with small pores. Geometric hindrance caused by the small
pores was suggested to prevent the formation of borazine. In fact, it is believed that a large surface
area and porosity are essential to avoid the formation of borazine [275]. Another effect, which is
catalytic, was suggested [276–279]. The unsaturated metals of the MOFs are believed to act as Lewis
acid sites, favoring the destabilization of ammonia borane through Mα+

···NH3−BH3 interactions.
For example, the formation of Fe−NH2 groups was identified for ammonia borane confined into
Fe-MIL-5 upon dehydrogenation [270]. With saturated metal sites, ammonia was produced because of
a less efficient catalytic effect [271,274,275]. Another catalytic effect (Figure 15), due to the O-functional
groups (belonging to the linkers) of the MOFs, was suggested to take place together with the previous
catalytic effect. These groups interact with the BH3 group of ammonia borane, thereby destabilizing
the B−H and B−N bonds. Srinivas et al. [270,277] gave evidence of this, via the formation of B−O
bonds upon dehydrogenation.

Another way to obtain a nanophase of ammonia borane is to blend it with a polymer. Poly(methyl
acrylate) is a possible scaffold [280]. The as-obtained nanophase released hydrogen and some ammonia
from 70 ◦C. Comparable behaviors were reported for polyacrylamide and polyvinylpyrrolidone [281,
282]. With hyper-crosslinked porous polymers, ammonia borane is infiltrated by the capillary effect.
For instance, Tang et al. [283] used poly(styrene-co-divinylbenzene) with a specific surface area of 757
m2 g−1 and a pore volume of 0.88 cm3 g−1. The ammonia borane nanophase was in the form of 4-nm
nanoparticles, and released pure hydrogen from 50 ◦C. A last synthetic approach is nanostructuration
by electrospinning, where nanofibers of a polymer encapsulating ammonia borane are elaborated.
Useful polymers for that purpose are polystyrene [284], polyvinylpyrrolidone [285], poly(methyl
methacrylate) [286], polyethylene oxide [287] and polyacrylamide [288]. In each case, embedded
ammonia borane nanophase showed improved dehydrogenation properties in comparison with the
bulk counterpart, but the release of some ammonia, diborane and/or borazine could not be avoided.
The first, obvious, effect explaining the better dehydrogenation properties is nanosizing (Figure 15).
The other effect is related to the occurrence of C=O···BH3 interactions between the polymer and the
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ammonia borane. These interactions weaken the B−H, N−H and B−N bonds of ammonia borane,
thereby favoring the release of hydrogen but also driving the release of ammonia because of weakened
B−N bonds [289,290].
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There are few other examples of scaffolds. Boron nitride, in the form of porous hollow
nanopolyhedra (a mean diameter of 70 nm, wall thickness of 5 nm and total pore volume of
0.424 cm3 g−1), was found to effectively nanosize and destabilize ammonia borane from 40 ◦C [291].
The destabilization was due to a pure nanoconfinement effect, because the surface of the boron nitride
scaffold was totally hydrogen-free. The release of some NH3 was, however, detected. Another example
is manganese oxide. With porous hollow cubes (diameter of 400 nm, wall thickness of 40 nm and porous
volume of 1.05 cm3 g−1) [292] and porous hollow spheres (diameter of 1–2 µm nm, wall thickness
of 80 nm and porous volume of 0.47 cm3 g−1) [293], the ammonia borane nanophase released pure
hydrogen from 60 ◦C due to the nanosizing effect.

The nanosizing effect has clearly shown to be successful. Pure hydrogen can be generated at very
low temperatures, though the presence of gaseous by-products is still possible. However, overly low
temperatures, like the ambient temperature, should be avoided for safety and technical reasons. Given
the variety of the scaffolds reported so far, there is room for finding the optimal conditions for the
release of pure hydrogen. In fact, the nanoconfinement strategy faces two salient issues. Ironically,
the first issue is the scaffold. It has a weight and, because of it, there is a mass penalty, resulting in
a substantial drop of the theoretical gravimetric hydrogen storage capacity of the pair scaffold–ammonia
borane (Figure 17). The second issue is related to the formation of highly stable B−O bonds upon the
dehydrogenation of ammonia borane infiltrated into most of the scaffolds reported above. This is
an added complication for the tricky recycling of the polymeric residue (cf. Section 5.6). Here, also,
the lack of effort towards scaling up is to be regretted.
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of ammonia borane. For the bars with the white borders, it is assumed that 75% of the hydrogen of
ammonia borane can be released. The capacities (in wt% H2) are all given.

5.5. Alkali and Alkaline-Earth Derivatives of Ammonia Borane

The last, but not the least, of the destabilization strategies is to make ammonia borane evolve
towards a derivative. In a simple way, one of the protic hydrogens Hδ+ of ammonia borane is
substituted by a cation, like an alkali metal, leading to a new compound; an amidoborane. The first
amidoborane, sodium amidoborane NaNH2BH3, was discovered in the 1930s by Schlesinger et al. [29,31].
A few others were discovered in the 1990s. Shore and co-workers studied some amidoboranes,
including sodium, lithium and potassium salts [294–296]. Myers et al. [297] synthesized the lithium
counterpart, LiNH2BH3. In recent history, relating to ammonia borane, the first derivative to emerge
was an alkaline earth compound, namely calcium amidoborane Ca(NH2BH3)2 [298]. Since then,
a number of amidoboranes have been discovered. It goes beyond the scope of the present work to
survey all of the mono- and multi-metallic amidoboranes reported so far. All have been discussed at
length in a series of reviews [299–303], and hereafter only the monometallic alkali and alkaline-earth
amidoboranes are tackled.

Lithium amidoborane LiNH2BH3 is easily prepared by, for example, ball-milling an equimolar
mixture of ammonia borane and lithium hydride LiH [304]:

H3N−BH3 + LiH→ LiNH2BH3 + H2 (28)

It is worth briefly mentioning that there are alternative routes for preparing alkali amidoboranes,
as surveyed in details in refs. [299–303]. Lithium amidoborane is a crystalline solid, having two
allotropes, theα and theβphases; both crystallize in the orthorhombic space group Pbca, but the unit cell
of the β phase is twice that of the α phase [305]. Lithium amidoborane has a high gravimetric hydrogen
density, with 13.7 wt% H2, and this makes it attractive in the field. Under heating, it dehydrogenates
according to a nearly thermally neutral event (−3 kJ mol−1), and at temperatures below 100 ◦C [306].
The purity of the released hydrogen is not clear. It was claimed to be either pure [307] or polluted
with some ammonia [308]. With sodium amidoborane NaNH2BH3 (orthorhombic, with a Pbca space
group), the high weight of sodium results in a lower gravimetric hydrogen density, with 9.6 wt% H2.
It can be prepared by gentle ball-milling [309], or even by a simple mixing in an inert atmosphere [310],
because sodium hydride is more reactive than lithium hydride [311]. Under heating, at 80 ◦C, it was
found to release 0.5 equivalents of hydrogen in about 1.5 min, whereas a time of about 50 min
was required for the lithium compound [307]. Traces of ammonia were, however, detected [312].
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The synthesis of potassium amidoborane requires safer vessel (a stainless steel autoclave), and a solvent
like tetrahydrofuran, because potassium hydride, a base stronger than the aforementioned metal
hydrides, reacts violently with ammonia borane [313]. Potassium amidoborane crystallizes in the
orthorhombic space group Pbca. It carries 7.3 wt% of hydrogen. It is less stable than the parent ammonia
borane, releasing 1.5 equivalents of pure hydrogen up to 100 ◦C. Note that it cannot be compared to
the previous alkali amidoboranes because of discrepancies in the conditions of the dehydrogenation
experiments. Though less attractive in terms of gravimetric hydrogen density, rubidium amidoborane
RbNH2BH3 (4.4 wt% H2) and cesium amidoborane CsNH2BH3 (3.1 wt% H2) were synthesized by
reacting the metal with ammonia borane in anhydrous tetrahydrofuran; for example [314]:

H3N−BH3 + Rb→ RbNH2BH3 + 1/2H2 (29)

Both are crystalline [315]. The former crystallizes in a monoclinic system, with the space
group P21/c. The latter crystallizes in a primitive orthorhombic structure and the space group Pnam.
They decompose over the temperature range of 55–100 ◦C while liberating hydrogen and ammonia.
In sum, the most attractive amidoboranes for solid-state hydrogen storage are the lithium and sodium
compounds (Figure 18); they carry more hydrogen and are able to release quite pure hydrogen below
100 ◦C [302].

Energies 2020, 13, x FOR PEER REVIEW 23 of 45 

 

[307] or polluted with some ammonia [308]. With sodium amidoborane NaNH2BH3 (orthorhombic, 
with a Pbca space group), the high weight of sodium results in a lower gravimetric hydrogen density, 
with 9.6 wt% H2. It can be prepared by gentle ball-milling [309], or even by a simple mixing in an 
inert atmosphere [310], because sodium hydride is more reactive than lithium hydride [311]. Under 
heating, at 80 °C, it was found to release 0.5 equivalents of hydrogen in about 1.5 min, whereas a time 
of about 50 min was required for the lithium compound [307]. Traces of ammonia were, however, 
detected [312]. The synthesis of potassium amidoborane requires safer vessel (a stainless steel 
autoclave), and a solvent like tetrahydrofuran, because potassium hydride, a base stronger than the 
aforementioned metal hydrides, reacts violently with ammonia borane [313]. Potassium 
amidoborane crystallizes in the orthorhombic space group Pbca. It carries 7.3 wt% of hydrogen. It is 
less stable than the parent ammonia borane, releasing 1.5 equivalents of pure hydrogen up to 100 °C. 
Note that it cannot be compared to the previous alkali amidoboranes because of discrepancies in the 
conditions of the dehydrogenation experiments. Though less attractive in terms of gravimetric 
hydrogen density, rubidium amidoborane RbNH2BH3 (4.4 wt% H2) and cesium amidoborane 
CsNH2BH3 (3.1 wt% H2) were synthesized by reacting the metal with ammonia borane in anhydrous 
tetrahydrofuran; for example [314]: 

H3N−BH3 + Rb → RbNH2BH3 + 1/2H2 (29)

Both are crystalline [315]. The former crystallizes in a monoclinic system, with the space group 
P21/c. The latter crystallizes in a primitive orthorhombic structure and the space group Pnam. They 
decompose over the temperature range of 55–100 °C while liberating hydrogen and ammonia. In 
sum, the most attractive amidoboranes for solid-state hydrogen storage are the lithium and sodium 
compounds (Figure 18); they carry more hydrogen and are able to release quite pure hydrogen below 
100 °C [302]. 

 

Figure 18. Weight percentage of hydrogen, boron, nitrogen and alkali or alkaline-earth atoms for the 
amidoboranes of (a) lithium, (b) sodium, (c) potassium, (d) beryllium, (e) magnesium and (f) calcium. 
The weight percentage of hydrogen is the gravimetric hydrogen density or gravimetric hydrogen 
storage capacity (in wt% H2) of the amidoborane. 

The better dehydrogenation properties of the alkali amidoboranes (versus ammonia borane) can 
be explained in two ways. First, the compound becomes ionic, and substantial changes occur in 
chemical bonding by substituting one protic hydrogen Hδ+ with a metal cation M+ [316]: the M−N 

Figure 18. Weight percentage of hydrogen, boron, nitrogen and alkali or alkaline-earth atoms for the
amidoboranes of (a) lithium, (b) sodium, (c) potassium, (d) beryllium, (e) magnesium and (f) calcium.
The weight percentage of hydrogen is the gravimetric hydrogen density or gravimetric hydrogen
storage capacity (in wt% H2) of the amidoborane.

The better dehydrogenation properties of the alkali amidoboranes (versus ammonia borane) can be
explained in two ways. First, the compound becomes ionic, and substantial changes occur in chemical
bonding by substituting one protic hydrogen Hδ+ with a metal cation M+ [316]: the M−N bond is
longer than the H−N bond in ammonia borane, and the B−N bond is slightly shorter, with, for example,
1.53 Å for sodium amidoborane and 1.6 Å for ammonia borane. This has implications (Figure 19).
The B−N bond is then stronger, the NH2 group is stronger in terms of Lewis basicity and the hydridic
hydrogen Hδ−, becoming more basic, is more reactive than its counterpart in ammonia borane [317].
Second, the intermolecular dihydrogen N−Hδ+

···Hδ−
−B interactions are weakened with the presence
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of the metal cation [313]; that is, the Hδ+
···Hδ− distances are longer. A distance of 2.25 Å was suggested

for lithium amidoborane, for example [317]. This is longer than the distance 2.02 Å in ammonia borane,
but still shorter than the sum of the van der Waals radii for two H atoms (2.4 Å). This is an evidence of
weaker dihydrogen N−Hδ+

···Hδ−
−B interactions [314]. The consequence of these two effects is a lower

stability of the amidoboranes in comparison with ammonia borane.Energies 2020, 13, x FOR PEER REVIEW 25 of 45 
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···Hδ−
−B bonds).

With alkaline earth metal cations, the positive charge +2 is counterbalanced by two anions
[NH2BH3]−. Because of the acute toxicity of beryllium, beryllium amidoborane Be(NH2BH3)2

was investigated virtually, by computational calculations [318]. This is unfortunate, as beryllium
amidoborane would have a theoretical gravimetric hydrogen density of 14.7 wt% H2. The synthesis of
magnesium amidoborane Mg(NH2BH3)2 was awkward. Both magnesium hydride and magnesium,
as reactants, seemed to be inert towards ammonia borane, which was explained for the former reactant
by a weaker Lewis basicity [319]. Luo et al. [320] found the solution to such inertness. To obtain
magnesium amidoborane (12 wt% H2), the mixture of magnesium hydride (or magnesium) and
ammonia borane was aged under an argon atmosphere:

2H3N−BH3 + MgH2→Mg(NH2BH3) + 2H2 (30)

The reaction required 45 days with magnesium hydride (6 months with magnesium) at ambient
temperature. The as-obtained amidoborane (monoclinic, space group C2) is not more attractive than
ammonia borane for solid-state hydrogen storage. It dehydrogenates between 100 and 300 ◦C, through
a complex multistep process, resulting in the release of 4.2 equivalents of hydrogen, the formation of
polyborazylene-like residues and the presence of a small amount of magnesium hydride. The calcium
derivative, Ca(NH2BH3)2, which requires an intense milling to form and isolate a pure phase, is quite
challenging. The reactants, calcium hydride CaH2 and ammonia borane, are still present as minor
phases [321]. Calcium amidoborane crystallizes in a monoclinic C2 unit cell, and the B−N bond
(1.546 Å) is shorter than that of ammonia borane, suggesting more Lewis basic hydridic hydrogens
Hδ−. Calcium amidoborane (10.1 wt% H2) is less stable, as it releases hydrogen from 80 ◦C. About four
equivalents of hydrogen are formed over the temperature range 80–250 ◦C. Strontium amidoborane
Sr(NH2BH3)2 (6.9 wt% H2) was reported to form by making pre-milled strontium hydride SrH2

and two equivalents of pre-milled ammonia borane react, the process being performed at 45 ◦C for
2 h [322]. The final product contained 55 wt% of crystalline strontium amidoborane (isostructural
to calcium amidoborane), 34 wt% of an unidentified phase, 7 wt% of strontium hydride and 4 wt%
of ammonia borane. As the last representative, amorphous barium amidoborane Ba(NH2BH3) was
obtained by the reaction of metallic barium with ammonia borane in tetrahydrofuran at −10 ◦C [323].
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Its dehydrogenation properties are comparable to those of calcium amidoborane. It was found to
release hydrogen (5 wt% out of a theoretical capacity of 5.1 wt%) from 81 to 163 ◦C. To sum up,
alkaline earth amidoboranes are less attractive than their alkali counterparts because they are more
difficult to synthesize, they have lower gravimetric hydrogen densities (Figure 18) and they are more
thermally stable.

If this destabilization strategy is compared to the ones discussed above, it is the simplest; there is
no solvent, no catalyst, no chemical dopant and no scaffold. The amidoborane only needs to be heated
up so that it dehydrogenates below 100 ◦C. Against this background, one can only regret that there has
been no scaling up. Data collected in more realistic conditions, from a technological point of view,
would have allowed a more technical discussion.

5.6. The Critical Issue of Regeneration

In comparison with the efforts made to dehydrogenate ammonia borane, there has been
very little effort made to hydrogenate the polymeric residues, those recovered upon thermolytic
dehydrogenation [186,324].

Hausdorf et al. [325] used a polymeric residue denoted BNH<2, which was prepared from
ammonia borane heated at 90 ◦C for 12 h and then 180 ◦C for 2 h. The polymeric residue was first
digested in hydrochloric acid (Figure 20), the product ammonium chloride NH4Cl was recovered
to produce ammonia, the product boron trichloride BCl3 was hydrodechlorinated to form diborane
B2H6 and finally the as-obtained ammonia and diborane were reacted to form ammonia borane.
Instead of hydrochloric acid, the superacid systems AlBr3/HBr/CS2 and AlCl3/HCl/toluene were also
used, with the regeneration leading to ammonia borane, with a yield of 60% [326]. An alternative
path was suggested by Davis et al. [327]. Using polyborazylene as a model polymeric residue,
a digestion-reduction path using a thiol and a tin hydride was suggested. The B−N bonds of the
polymeric residue were broken by the action of the thiol, and the as-formed intermediates were reduced
in the presence of an excess tin hydride, allowing the formation of ammonia borane with a yield
of 67%. These two regeneration schemes were later combined by Tan et al. [328]. They proposed
a derived method based on the use of the superacid system AlCl3/HCl/CS2 for the digestion step and
a tin hydride for the reduction step. An improved yield of 89% was calculated.
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Figure 20. Regeneration of ammonia borane by acidic digestion of the solid residue BNH<2, followed
by hydrodechlorination of boron trichloride and decomposition of ammonium chloride into ammonia,
and finally a Lewis acid–base reaction between diborane and ammonia. Adapted from ref. [325].

Another regeneration strategy was proposed by Sutton et al. [329]. Polyborazylene was used as
model polymeric residue and, through a one-pot process (Figure 21), ammonia borane was regenerated
with a yield higher than 90%. This is a simple process, where the polymer is suspended in liquid
ammonia at −77 ◦C and then reduced by hydrazine at 40 ◦C for 24 h. According to Hua and
Ahluwalia [330], who analyzed these processes in terms of energy consumption, efficiency and life
cycle greenhouse gas emissions, none are energy efficient.
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Figure 21. Regeneration of ammonia borane by reduction of polyborazylene (PB) by hydrazine in
ammonia. Adapted from ref. [329].

As for ammonia borane, the dehydrogenation of the amidoboranes is exothermic, and direct
rehydrogenation is thermodynamically impossible at affordable conditions. Attempts up to 120 bars of
hydrogen and 300 ◦C were found to be ineffective [309,317,319]. The only feasible approach is chemical
reduction, as discussed above. Tang et al. [331] successfully applied the process using hydrazine as
a reducing agent and ammonia as a solvent (Figure 21) to a polymeric residue recovered upon the
dehydrogenation of lithium amidoborane. The starting ammonia borane was regenerated with a yield
of 63%. This approach, like the ones discussed above, cannot be applied for the reduction of B−O
bonds into B−H bonds.

It is worth mentioning another approach that could be considered for any polymeric residue,
whether they contain B−O bonds or not. Tang et al. [332] suggested a digestion of the polymeric residue
into methanol, resulting in the methanolysis of the polymeric residue and formation of trimethoxyborate
B(OCH3)3. Then, the authors applied the ammonia borane one-pot synthesis procedure developed
by Ramachandran et al. [168]. The trimethoxyborate was reduced by lithium alanate in the presence
of ammonium chloride acting as ammonia source (Equation (18) and Figure 7). The as-obtained
ammonia borane can then be reacted with lithium hydride to form lithium amidoborane, for example
(Equation (28)). The energy efficiency of this process was calculated to be about 46%, and the authors
concluded that the process is not effective enough.

6. Conclusions and Outlook

The main feature of ammonia borane is that it is versatile. Owing to the hydridic hydrogens
Hδ− it is made of, it can be used as an anodic fuel, a hydrolytic hydrogen carrier and a solid-state
hydrogen storage material. Re-emerging in the mid-2000s, it demonstrated its potential for each
of these applications, raising wide interest, as well as questions. The title of an article authored by
Marder in 2007 is explicit. The author wondered whether we will soon be fueling automobiles with
ammonia borane [333]. At that time, ammonia borane seemed to be full of promise—the automobile
application, which is the most challenging, was targeted—but it was as if ammonia borane offered
no guarantee. After 15 years of research, we may be pessimistic on the technological future of
ammonia borane. The fact is, ammonia borane has barely been scaled up, which is a failure in terms of
technological implementation.

The reality is that preventable errors have been made with ammonia borane. One of them has
been mentioned just above. The technological readiness level of ammonia borane has remained low
(Figure 22), mainly at the laboratory and milligram scales. There should have been more actions and
efforts towards scaling up, i.e., towards the construction and operation of demonstrators and prototypes.
This would have helped researchers gain more insight into the problems facing its applications as
an anodic fuel and hydrogen carrier. It is obvious that the technological future of ammonia borane,
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if any, will be promoted through scaling up. The ammonia borane nanophase, on the one hand,
and lithium or sodium amidoborane, on the other, are mature enough to be investigated at the scale of
a few dozen grams. Inspiration in this regard should be taken from the demonstrator based on 58
g of glycol-doped ammonia borane providing enough hydrogen to power a 200-We fuel cell [237].
Inspiration should be also taken from the few prototypes and devices using sodium borohydride as
a hydrolytic hydrogen carrier [21]. It is likely that scaling up of ammonia borane went beyond the
aforementioned demonstrator. Unfortunately, there has been very little communication. For instance,
the company Cella Energy Ltd. (insolvent in 2018–2019 [334] and now bankrupt) developed plastic
pellets consisting of ammonia borane enclosed in a polymeric shell [284], and briefly communicated
about a successful unmanned aerial vehicle test flight [335], the vehicle being powered by a power
system based on the ammonia borane-based pellets.
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Figure 22. Estimation of the technological readiness level of ammonia borane as an anodic fuel,
a liquid-state hydrogen carrier and a solid hydrogen carrier. The prototypes reported in ref. [237] and
in ref. [335] have been taken into account to take the chemical doping and confinement strategies to
a higher level than the other approaches.

Another preventable error has been to underestimate critical issues. The example of ammonia
borane hydrolysis is characteristic and indicative. This reaction (Equations (6) and (7)) can be divided
into five aspects (the optimization of the couple ammonia borane–water, catalyst and catalysis, purity of
hydrogen due to the release of ammonia, nature of the borates and regeneration of ammonia borane)
that are equally important. However, one of them (catalyst and catalysis) has been disproportionately
scrutinized, and the others have regrettably been understudied. Consequently, it is difficult at
present to argue the hydrolysis abilities in terms of effective gravimetric hydrogen storage capacities,
purity of the released hydrogen, number and nature of the by-products and regeneration of ammonia
borane. The same error, viz. underestimating critical issues, can be observed in the electro-oxidation,
methanolysis and thermolysis of ammonia borane. An example for each reaction is as follows.
In electro-oxidation, the impact of ammonia on, for example, the electrocatalyst and the membrane
has not been investigated thoroughly. In methanolysis, it is not clear whether there is one borate
forming upon reaction or if there are several in equilibrium. In thermolysis, the effective gravimetric
hydrogen storage capacities have not been optimized and properly determined yet. Those all affect the
technological maturity of ammonia borane.

We may well have overestimated the potential of ammonia borane. For instance, a mere 15 years
ago, we were wondering whether ammonia borane would be a fuel for automobiles [333]. Today, it is
obvious that ammonia borane is far from having demonstrated such potential. Three concrete examples
illustrate the error that has been made. First, the gravimetric hydrogen density 19.5 wt% H2 of
ammonia borane was put forward. This value is far from the net, i.e., real and useable, gravimetric
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hydrogen storage capacities; in such a case, the storage system as a whole is taken into account; that is,
the system weight (accounting for 50 wt% in a first approximation) is considered for the calculations
of the net capacities (Figure 23). The weight of the system is then seen as a ‘dead mass’, negatively
impacting the storage capacities. For instance, in the hydrolysis of ammonia borane, the highest net
capacity would be 3.5 wt% H2. For ammonia borane doped with 20 wt% of a chemical additive, the net
capacity could be 5.9 wt% H2. In the thermolysis of nanoconfined ammonia borane, the highest net
capacity would be 3.7 wt% H2. With lithium amidoborane dehydrogenating at an extent of 75%, the net
capacity would reach 5.2 wt% H2. It is worth mentioning that an ultimate net capacity of 6.5 wt% H2 is
expected for light-duty vehicles [336]. Second, it is not clear whether the hydrogen release kinetics
(in terms of rate and/or variability) are suitable for automotive applications. This question is also
relevant for other applications (mobile, portable and stationary). There are some answers in hydrolysis
and very few in electro-oxidation and thermolysis. Third, ammonia borane was, unintentionally
and/or unmindfully, addressed as gasoline. Consider the analogy. A lot of the efforts have focused
on improving and optimizing the conversion of both fuels, whereas very little consideration was
given to the by-products (borates and polymeric residues, versus carbon dioxide). The analogy breaks
down at this point. Ammonia borane cannot be compared with gasoline. The chemistry behind it,
the issues and the challenges ahead and the absolute necessity to close the hydrogen cycle, among
others, make ammonia borane radically and conceptually different from gasoline. It is hoped that
ammonia borane will, in the near-future, contribute to powering electrical devices. It is unlikely,
however, that it supersedes gasoline.Energies 2020, 13, x FOR PEER REVIEW 29 of 45 
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Figure 23. Net (i.e., useable) gravimetric hydrogen storage capacity (GHSC, in wt% H2) for a storage
system taken as a whole, in the case of (a) ammonia borane as liquid-state hydrogen carrier in water
(in stoichiometric conditions such as in Equation (6)), (b) ammonia borane as liquid-state hydrogen
carrier in methanol (in stoichiometric conditions such as in Equation (17)), (c) ammonia borane in
saturation in the BmimCl ionic liquid (assuming the release of 75% of the borane’s hydrogen), (d) 80 wt%
of ammonia borane doped with 20 wt% of a chemical additive (assuming the release of 75% of ammonia
borane’s hydrogen), (e) ammonia borane confined into a scaffold (50–50 wt%; assuming the release
of 75% of the ammonia borane’s hydrogen) and (f) lithium amidoborane as derivative of ammonia
borane (assuming the release of 75% of the amidoborane’s hydrogen). The weight percentages of the
lost hydrogen atoms, of the other atoms (e.g., B, N, C and O) and of the storage system (set at 50 wt% of
the total weight) are shown.
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As a final point, the competition is high. Ammonia borane has, in front of it, promising and
cheaper hydrides. The cost issue has not been tackled above, appearing inappropriate because of
discrepancies in many aspects, but it can be briefly discussed for comparing one material with another.
For instance, ammonia borane is commonly synthesized from sodium borohydride. It is thus more
costly. As long as ammonia borane is not regenerated from its own by-products, it will remain more
costly than sodium borohydride, for which regeneration paths exist. It is therefore obvious that, for the
same level of performance, the sodium borohydride-based technology will be cheaper. The problem is
that ammonia borane performs less well than sodium borohydride for the electro-oxidation, hydrolysis
and methanolysis reactions. For example, the specific energy and pure compound capacity of sodium
borohydride are higher. The hydrogen released by hydrolysis and methanolysis of sodium borohydride
is purer, and free of ammonia. With respect to ammonia borane as a solid-state hydrogen carrier,
the situation is different. It is certainly the best material in many aspects, such as the temperature of
dehydrogenation and the amount of hydrogen that can be released. However, there is one aspect that is
detrimental to ammonia borane. The dehydrogenation is exothermic, and thus the storage of hydrogen
is irreversible. In other words, the polymeric residue stemming from ammonia borane cannot be
hydrogenated under the pressure of hydrogen, which is a limitation. Accordingly, the question may
legitimately be asked whether the main critical impediment to ammonia borane development is not
the fact that it stores hydrogen irreversibly.

Ammonia borane has failed to play an important role in the deploying hydrogen economy.
More optimistically, it has lagged behind. The absolute requirement to regenerate it, from its
oxidation, hydrolysis, methanolysis and thermolysis products, has been and remains its Achilles heel.
That is where more efforts should be expended, in order to go through significant achievements and
breakthroughs. Without an industry dedicated to ammonia borane regeneration, ammonia borane
will have no large-scale commercial future. Concomitantly, more efforts should be made in scaling up,
in constructing and operating demonstrators and prototypes. The technological readiness level should
then rise. Ammonia borane should get outside the laboratory hood and be studied in near-real and
real conditions.
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