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In human groups performing oscillatory tasks, it has been observed that the frequency

of participants’ oscillations reduces when compared to that acquired in solo. This

experimental observation is not captured by the standard Kuramoto oscillators, often

employed to model human synchronization. In this work, we aim at capturing this

observed phenomenon by proposing three alternative modifications of the standard

Kuramoto model that are based on three different biologically-relevant hypotheses

underlying group synchronization. The three models are tuned, validated and compared

against experiments on a group synchronization task, which is a multi-agent extension

of the so-called mirror game.

Keywords: joint action, human behavior, modeling, Kuramoto oscillators, slowing down

1. INTRODUCTION

Joint action can be regarded as any form of embodied social interaction where two or more
individuals tend to coordinate their movements, often in a highly synchronized way in space and
time, in order to reach a common goal. This phenomenon is observed in several everyday scenarios,
including music ensembles (Loehr et al., 2011) and team rowing (Cuijpers et al., 2019), and has
potential implications in group rehabilitation (Virta et al., 2008; Calabrese et al., 2021).

Physics and social science offer several mathematical frameworks to describe collective
oscillatory perceptuo-motor behaviors in joint action (Néda et al., 2000; Sumpter, 2006;
Castellano et al., 2009; Ashwin et al., 2016). Namely, both the Haken-Kelso-Bunz (HKB)
and the heterogeneous Kuramoto oscillators have been successfully employed to explain how
synchronization emerges in human groups performing oscillatory tasks (Kuramoto, 1984; Haken
et al., 1985). For instance, Alderisio et al. (2017a) found that the Kuramoto model was able to
capture the type and level of group coordination that was experimentally observed, depending
on group homogeneity and the visual coupling among group members. Although effective in
reproducing the level of synchronization in the group, this model predicts synchronization of the
group oscillatory motion to the average value of the individual characteristic frequencies when
playing solo. This is in contrast with the joint-action literature that shows how cooperative actions
require a more selective and slower mechanism compared to individual movements (Cavallo et al.,
2014).

Slowing down of individuals’ motion when coordinating with others has been widely observed
across several tasks, including applause (Néda et al., 2000), where it has been observed that
synchronization is achieved through a period doubling of the clapping rhythm, or in finger tapping,
where participants were found to tap faster alone than when involved in rhythmic cooperative
tasks (Coey et al., 2016), as well as in human-robot interactions (Lorenz et al., 2011). In addition,
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a recent experimental study on intentional group
synchronization showed that humans reduce the frequency
of oscillation of their fingers when they are asked to attain unison
in space and time (Bardy et al., 2020), thereby suggesting that
individuals modulated their behavior to maximize perceptual
coupling and increase their level of synchronization.

Motivated by these experimental findings, we propose three
new versions of the standard Kuramoto model, each of them
anchored into a specific and functionally relevant hypothesis.
The goal is to obtain a model that is able to capture at the
same time (i) the level of coordination observed in human
groups performing oscillatory tasks, and (ii) the reduction
in the frequency of oscillation when compared to a solo
performance. After developing three alternative models built
around different biologically-relevant explanations of the slowing
down phenomenon, we test them against experiments on a
group synchronization task, a multi-agent extension of the so-
called mirror game (Noy et al., 2011). Specifically, using the
three collected datasets, we experimentally tuned, validated, and
compared the three models, in terms of their ability to match
the synchronization levels and oscillation frequency reduction
observed in the experiments.

2. SYNCHRONIZATION METRICS

In what follows, we quantify the level of coordination in a
group of N players, whose phases at time t are denoted as
θ1(t), . . . , θN(t). The order parameter 0 ≤ r(t) ≤ 1 describing the
phase cohesiveness of the group at time t is defined as follows:

r(t) =
∣∣q(t)

∣∣ , (1)

where

q(t) =
1

N

N∑

i=1

ejθi(t), (2)

whereas the phase

ψ(t) = tan−1 Im{q(t)}

Re{q(t)}
(3)

associated to the order parameter will be the group phase at time t.
The order parameter quantifies the level of phase synchronization
in the group, with r(t) = 1 corresponding to the players sharing
the same phase at time t.

The level of frequency coordination of the entire ensemble at
time t can be quantified as

ρ(t) : =
1

N

∣∣∣∣∣

N∑

i=1

ej1φi(t)

∣∣∣∣∣ , (4)

where1φi(t) : = φi(t)− φ̄i(t), with

φ̄i(t) : = tan−1 Im{φ̄′i}

Re{φ̄′i}
. (5)

Differently from Richardson et al. (2012), φ̄′i is the moving
average over a time window w of the relative phase φi(t) : =

θi(t)− ψ(t) of oscillator i with respect to the group, that is,

φ̄′i(t) : =
1

w

t∑

l=t−w

ejφi(l), (6)

The index 0 ≤ ρ(t) ≤ 1 gives information on the variability of
the phase mismatch among all oscillators. Namely, ρ(t) equal to
1 corresponds to a perfect matching of the oscillation frequencies
at time t.

3. MODELING HUMAN GROUP
SYNCHRONIZATION

The emergence of synchronization in interacting groups of
humans performing oscillatory tasks has been successfully
captured by networks of nonlinearly coupled heterogeneous
Kuramoto oscillators (Kuramoto, 1984; Alderisio et al., 2017a):

θ̇i(t) = ωi + c

N∑

j=1

sin(θj(t)− θi(t)), (7)

where θi is the phase associated to the motion of player
i, ωi represents its natural frequency, and c the coupling
gain describing the intensity of the interaction between the
agents. However, this standard model predicts frequency
synchronization onto the average value of the individual
characteristic frequencies (Bullo, 2018), at a distance from the
experimental observation of a frequency reduction in group
oscillations (Lorenz et al., 2011; Cavallo et al., 2014; Coey et al.,
2016; Bardy et al., 2020), thus suggesting that model (Equation 7)
needs to be appropriately modified.

Toward capturing this frequency reduction, we propose three
different extensions of the standard Kuramotomodel, each acting
on one of the three salient components of a complex system,
that is, the individual dynamics, the interaction topology, and the
communication protocol. Each of the extensions, which we will
call Model 1, 2, and 3, respectively, is based on one of three main
biologically-relevant explanations of the observed frequency
reduction (Foulkes and Miall, 2000; Chafe et al., 2010; Serences
and Kastner, 2014). In particular, the first two models will relate
this phenomenon to behavioral plasticity, that is, the ability each
individual has of adjusting to complex environmental conditions,
whereas the latter to the inherent perception-action delays.

3.1. Model 1: Behavioral Plasticity as the
Result of Individual Adaptability
Behavioral plasticity is crucial to achieve successful coordination
in humans, and it has been posited that such human ability
is the result of movement adaptation (Van Der Steen and
Keller, 2013), whereby our motor system needs to deal with
muscular fatigue, external loads, or changes in our sensory
systems guiding the movement (Foulkes and Miall, 2000). This
adaptation is often associated with a slower individual motion,
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which favors synchronization and fosters a successful interaction
with others (Van Braeckel et al., 2007). From a social perspective,
interpersonal entrainment leads to de-individuation and to
the formation of a common group identity amongst partners,
motivating the individuals to adapt their behavior (Cross et al.,
2019).

Here, we model the observed frequency reduction as the
result of an adaptive mechanism where individuals in the group
reduce their natural frequencies until a desired degree of phase
synchronization is achieved. This is quantified by a threshold
value r̃ > 0 of the order parameter (Equation 1), so that model
(Equation 7) becomes

θ̇i(t) = ωi(t)+ c

N∑

j=1

sin(θj(t)− θi(t)),

ω̇i(t) =

{
− 1

r2(t)
ωi(t), if r(t) < r̃,

0, otherwise.

(8)

Note that the farther the group is from the desired level of
coordination r̃, the larger the decrease in individual frequencies
will be.

3.2. Model 2: Behavioral Plasticity as a
Result of Selective Attention
An alternative explanation of human behavioral plasticity lies in
selective attention, which is the ability to focus on one source
of information while disregarding the others (Portas et al.,
1998). This neural mechanism allows to complete group tasks
successfully (Capozzi et al., 2016), coping with i) the noise
affecting the sensory neurons that encode external stimuli, and ii)
the fact that only themost relevant visual stimuli can be processed
and translated into actions by the motor system (Serences and
Kastner, 2014).

Both factors reduce the speed and accuracy of perception-
action responses, and thus we propose to weigh the interactions
among the individuals to prioritize the relevant stimuli:

θ̇i(t) = ωi + c

N∑

j=1

wij sin(θj(t)− θi(t)). (9)

In this expression, wij ≥ 0 quantifies the attention level that
agent i devotes to the motion of agent j. Here, we ground the
selection of these weights in the theory of motor variability
(Bernstein, 1966), which is viewed as the result of adaptive
and compensatory mechanisms to e.g., cope with perturbations,
reduce injury risks, or improve coordination (Bardy and Laurent,
1998; Bartlett et al., 2007). In oscillatory tasks, motor variability
in each individual, say i, can be simply quantified in terms of
the standard deviation σi of the oscillatory frequency (Longo
and Meulenbroek, 2018), which we computed from experiments
performed by a single individual (from now on denoted as the
solo experimental condition). We then hypothesize that agents
with a larger standard deviation will be more prone to adjust
their rhythm to that of their neighbors. At the same time, recent
findings indicated that individuals involved in a joint action

adjust the variability of their own movements depending on the
predictability of their partners’ movements (Sabu et al., 2020),
thus suggesting that the attention that agent i devotes to agent j is
inversely proportional to the standard deviation σj. Accordingly,
we propose to select wij in Equation (9) as

wij =
σi

σj
. (10)

Indeed, our hypothesis here is that the standard deviation in
solo is the proxy of the individual motor signature (Slowinski
et al., 2016) of each individual, thereby the ratio between these
standard deviation is what the individual actually perceives when
interacting with the others.

3.3. Model 3: Perception-Action Delays
Previous work has considered the presence of delays in
the neuro-communication pathways for modeling oscillatory
behavior (Izhikevich, 2007; Timms and English, 2014; Petkoski
and Jirsa, 2019; Slowinski et al., 2020). In fact, multilevel
crosstalk represents an important neural basis for motor control
(Banerjee and Jirsa, 2007), since multi-sensory processing is not
instantaneous and involves participation of different senses (e.g.,
vision, hearing) to facilitate the perception of environmental
stimuli (Thakur et al., 2016).

As a third alternative, we propose to explain the reduced
frequency observed in groups of individuals synchronizing their
movements by introducing a perception-action delay in the
standard Kuramoto model (Equation 7) as follows:

θ̇i(t) = ωi + c

N∑

j=1

sin(θj(t − τ )− θi(t)), (11)

where the neuro-motor delays are captured by the parameter τ ,
which corresponds to the time required by an agent i to track the
position of an agent j 6= i, process this information, andmodulate
its own action accordingly. Estimating the delay associated with
perception-action has been the subject of extensive literature
in neuroscience (Clarke et al., 1999), psychology (Brown et al.,
1999), and behavioral science (Marzi et al., 1991; Li et al., 2012),
with all studies agreeing that τ should lie in the range [5, 300] ×
10−3 s. Note that the delay might be also modeled through a
phase shift in the coupling function (Izhikevich, 2007), but we
preferred to explicitly model it to clarify that it is a perception
delay, whereby in Equation (11) the delay parameter τ affects θj
(the phase of individual j perceived with delay τ by individual i)
and not θi (the own phase of individual i).

4. METHODS

4.1. Data Collection
We considered a dataset coming from experiments on group
motor coordination performed at the University of Naples
Federico II. The experiments were run via the computer-based
architecture Chronos (Alderisio et al., 2017b), which allows
remote motor coordination between players in the absence
of social (visual and/or acoustic) interaction. The Chronos
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FIGURE 1 | Experimental setup- Chronos. Participants had to oscillate and

synchronize the index finger of their preferred hand over a Leap Motion

controller while being virtually connected with the others through the platform

Chronos.

TABLE 1 | Mean individual frequencies ωi in the solo condition.

Player ωi (rad/s)

1 3.40± 1.55

2 3.04± 0.11

3 6.36± 0.58

4 3.34± 0.21

5 9.91± 0.68

Average 5.21± 2.96

TABLE 2 | Group synchronization frequency ωg, order parameter r̄ and frequency

synchronization index ρ̄g observed in the experiments.

ωg (rad/s) r̄ ρ̄

2.97± 0.08 0.90± 0.08 0.97± 0.01

platform is a computer-based architecture consisting of different
software/hardware devices. A central server unit receives position
data from the clients (i.e., players), captured by a low-cost
position sensor- Leap Motion device (Guna et al., 2014). The
positions of each agent are then broadcast to the others, through
a Wi-Fi network, and appear on the monitor of each individual
personal computer (see Figure 1).

Task description. The dataset referred to experiments with
groups of 5 participants that were asked to move their index
finger on a Leap Motion controller so as to move a ball on
the screen representing their own avatar, oscillating from left
to right and vice versa. Each experiment started with a 30 s
solo session to capture the natural frequency of each individual,
identified as its average frequency across 7 solo trials, see Table 1.
The second session of the experiments (6 trials, 30 s each)
was devoted to investigating group synchronization. Participants
were connected through the software platformChronos and were
asked to oscillate their fingers in synchrony with the others.
Namely, they were instructed to “Synchronize the movement of
your finger from left to right with the movement of the others,
as naturally as possible, as if you could do it for 30 min” (see

FIGURE 2 | Cost function Jm as a function of parameter selection, see

Section 4.2.1. Panel (A) corresponds to Standard Kuramoto (5s = {c}), (B) to

Model 1 (51 = {c, r̃}), (C) to Model 2 (52 = {c}), and (D) to Model 3

(53 = {c, τ }). The values of the cost function Jm are averaged over 10

simulated trials in each parameter set Am, see Table 3 for the optimal

parameter values for each model.

TABLE 3 | Optimal parameter values for each model.

Standard Kuramoto Model 1 Model 2 Model 3

c⋆ c⋆ r̃⋆ c⋆ c⋆ τ ⋆

1.6 1.3 0.55 1.1 1.9 0.17

Figure 1). A demonstration was performed to make sure the
task was understood by each participant. Moreover, volunteers
were separated by barriers and wore headphones playing white
noise. Albeit the Chronos platform can be used to manipulate
the on-screen information for each player to implement different
interaction topologies, here we focused on a complete topology
where all players have access to the current position of all the
other group members. The experiment was carried out according
to the principles expressed in the Declaration of Helsinki.
All participants provided their written informed consent to
participate in the study.

Preprocessing the data. The position time-series of the players
was sampled at 10 Hz, interpolated with a spline to obtain a 100
Hz dataset, and then processed by a Butterworth filter with a
cutoff frequency that is twice the typical one associated to human
natural movement (∼ 3 Hz). The Hilbert transform (Kralemann
et al., 2008) was used to reconstruct the phase associated to each
agent from its position time series.

4.2. Parameterizing the Models
Comparing Tables 1, 2, we observe that participants reduce
the frequency of their oscillations when coordinating with
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their partners. Independent t-tests run between solo and group
frequencies in each group showed significant differences [t(11) =
17.07, p < 0.001]. We observed that the reduction in group
frequency was beneficial for coordination, since participants
reach a synchronization level significantly different from that
obtained when the phases are randomly extracted from a uniform
distribution in [0, 2π], that is, r = 0.40± 0.20.

The standard Kuramoto model (Equation 7) is capable of
reproducing the emergence of coordination when agents interact
but it fails to capture the observed slowing down in their motions’
frequencies. In what follows, we calibrate Models 1–3 and the
standard Kuramoto model (Equation 7) on the collected dataset.
Then, we perform an ANOVA to assess whether the new models
yield a significant improvement over the standard one, and
to evaluate which of them is more effective in reproducing
the observed reduction in the oscillation frequency among the
players when in group.

4.2.1. Tuning the Model Parameters

We follow a different procedure for the standard Kuramoto
model and for Models 1–3. As in the standard model the
frequencies will always converge to the mean (Bullo, 2018), we
select the optimal coupling gain c⋆ of model (Equation 7) so
that the model best captures the observed phase and frequency
synchronization level in a mean square sense. Namely, to find
the optimal c⋆, we performed 10 simulations for each candidate
value c, varied in [0, 2] with step 0.1 with the same duration
and sampling as in the experiment. In each simulation, the
initial phases were randomly picked from a uniform distribution
in [0, 2π], whereas the natural frequency ωi of player i from
a Gaussian distribution with mean and standard deviation

FIGURE 3 | Boxplots of Je,lm . Each sample represents the value of the cost

function Je,lm for all the possible pairs of experimental and simulated trials, to

compare the effectiveness of the l-th simulated trial in reproducing the e-th

experimental data in each model m. A triple star corresponds to p < 0.001.

See Table 4 for the average Je,lm and its standard deviation, in each model m.

corresponding to their sample estimates computed in the solo
condition. For the set of simulations, we computed r̄ sim and ρ̄ sim

representing the averages across time and simulated trials of the
synchronization metrics r and ρg defined in Equations (1) and
(4), respectively. Namely, we computed

c⋆s = argmin
c

Js(c), (12)

where

Js(c) = λ

(
r̄ exp− r̄ sim(c)

r̄ exp

)2
+(1− λ)

(
ρ̄ exp− ρ̄ sim(c)

ρ exp

)2
(13)

where r̄ exp and ρ̄ exp are the averages across time and trials of the
indexes r and ρ. This cost function measures the agreement in
phase and frequency synchronization between simulations and
experiments. Parameter λ is set to 0.30 to bias parameter choice
toward a better agreement on the average ρ, that is, on the level
of frequency synchronization.

Models 1–3 have been introduced to also capture the reduced
oscillation frequency when in group, therefore a different cost
function is needed for tuning their parameters. Let us denote with
5m, m ∈ {1, 2, 3}, the set of tunable parameters of model m.
Namely, we have51 = {c, r̃},52 = {c}, and53 = {c, τ }. Further,
we denote as Am the set of admissible values for the parameters
of modelm. Specifically,

• the coupling gain c is varied in the range [0, 2] with step 0.1,
consistent with the choice made for the standard Kuramoto
model;

• the threshold r̃ in Equation (8) is varied in [0.40, 0.95] with
step 0.05, where 0.40 is the expected order parameter when the
phases of 5 oscillators are randomly extracted in [0, 2π], and
0.95 corresponds to all phases within an angle of π/3 rad;

• the information delay τ is varied in the interval [0.01, 0.35]
with step 0.01. The extrema of the interval have been selected
on the basis of the transmission delays typically reported in the
literature on the sensorimotor system.

As in the case of the standard Kuramoto model, we performed
ten simulations for each proposed model and combination
of parameters. The selection of the initial phases and natural
frequencies was performed as above and, for each model, we
then computed r̄ sim and ρ̄ sim. In addition, we computed the
oscillation frequency ω sim

g in the group averaged over time and
simulated trials. Then, to calibrate the parameters of model m ∈

{1, 2, 3}, we considered the following cost function:

Jm(5m) = Js(5m)+

(
ω exp − ω sim(5m)

ω exp

)2

, (14)

TABLE 4 | Results of the ANOVA comparing the cost functions Je,lm for each of the models.

Anova results Standard kuramoto Model 1 Model 2 Model 3

F(3,134) = 60.64, p < 0.001 0.51± 0.11 0.46± 0.37 0.02± 0.01 0.04± 0.02

We report the F-statistics, p-value, and the mean and standard deviation of J
e,l
m .
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FIGURE 4 | Comparison between three sample simulated trials of the Standard Kuramoto (A), Model 2 (B), and Model 3 (C), respectively. In each panel, the dashed

line reports the average experimental group frequency ω
exp
g whereas on the top the order parameter r and the group frequency index ρg, in their averaged values, are

detailed.

where ω
exp
g is the oscillation frequency in the group averaged

over time and experimental trials. Compared with the cost
function Js used to calibrate the standard Kuramoto model, this
cost function is complemented by a second term that accounts
for the model ability to capture the average group frequency
observed in the experiment. The color maps in Figure 2 show for
each parameter combination and model the value of Jm.

For all models m ∈ {1, 2, 3}, we selected the parameter
combination5⋆m yielding the lowest value of Jm, that is,

5⋆m = argmin
5m∈Am

Jm(5m). (15)

In Table 3, we report the optimal parameter values
corresponding to the minimum cost function for each model
and dataset.

5. RESULTS

Here, we compare how each of the models captures the
experimental data by evaluating the cost function (Equation
14) for each pair (e, l) of experimental and simulated trials.
Specifically, denoting Nt the number of trials of the dataset, we
compute

Je,lm =

(
ω

exp
e − ω sim

ml
(5⋆m)

ω
exp
e

)2

(16)

+ (1−λ)

(
ρ
exp
e − ρ sim

ml
(5⋆m)

ρ
exp
e

)2
+λ

(
r
exp
e − r sim

ml
(5⋆m)

r
exp
e

)2

for allm ∈ {s, 1, 2, 3}, e, l ∈ {1, . . . ,Nt}, where5
⋆
m are the optimal

parameters reported in Table 3, ω
exp
e , ρ

exp
e and r

exp
e represent

group frequency, level of frequency coordination, and order
parameter recorded in the e-th experimental trial, respectively,
whereas ω sim

ml
, ρ sim

ml
and r sim

ml
are the corresponding values in

the l-th simulated trial. For each model m, we evaluated the
cost function (Equation 16) for all the 36 possible pairs of

experimental and simulated trials, and then ran an ANOVA test
on the distribution of Je,lm to compare the effectiveness of each
model in reproducing the experimental data. The outcome of the
analysis is reported in the boxplot in Figure 3 and Table 4, which
show a significant difference among the model performances
(p < 0.001).

A closer look at the results indicate that Models 2 and
3 should be preferred over the standard Kuramoto, since
pairwise comparisons show that they have statistically different
performances (post-hoc Bonferroni tests, p < 0.001), with a
notable reduction in the average value of the cost function
(Equation 16), see Table 4. Model 1, instead does not prove
better than the standard Kuramoto, whereby we cannot reject
the null hypothesis of equivalent performances (p = 0.50).
In terms of average values, Model 2 outperforms also Model
3, albeit their performances are not statistically different. To
illustrate how Models 2 and 3 are capable of better matching
the average experimental value compared with the standard
Kuramoto model, we report in Figure 4 their dynamics in a
sample simulated trial.

6. DISCUSSION

In this article, starting from the observation that human
agents performing a joint oscillatory task together slow
down their motion, we proposed three different models to
capture this phenomenon based on different biologically-relevant
hypotheses underlying sensorimotor group synchronization.
The results presented in this manuscript suggest that two
models emerge as the ones that better capture the experimental
observations, that is, Model 2, which includes a mechanism
of selective attention toward the players that are more
consistent in their solo conditions, and Model 3, which
includes time delays in the dynamics to account for the
time needed for information processing. Interestingly, the
communication delay estimated from the data by using Model
3 (170 ms) is coherent with the typical delays in the
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action-perception loop, which includes anticipation, prediction,
active preparation and muscular adjustments, in addition
to passively added delays in the brain loops. Indeed, the
sensorimotor control system requires coordinating different
forms of sensory and motor data and these data are generally in
various formats.

The Kuramoto model has already been successfully used in
its simplest form to describe slowing down occuring in human
group interaction, e.g., during applause (Néda et al., 2000).
Authors of this work were able to explain the key features of
applause dynamics but only exploiting parameters tuning. In
our work, we propose model extensions to provide possible
mechanisms underlying the observed slowing down, which
emerges directly through the dynamics. Indeed, differently from
the standard Kuramoto model, Models 2 and 3 are capable
of capturing not only the observed synchronization level, but
also the reduced frequency of oscillation compared to solo
trials that we observed in our experiments on a group version
of the mirror game. Our findings suggest, therefore, that the
observed frequency reduction is due to both selective attention
and time delays in the action-perception loop. Thus, both these
phenomena should be appropriately taken into account when
developing models of group synchronization, as for example
in the extended Kuramoto models we propose in this paper.
Therefore, we believe that this work represents a valuable
contribution for the development of more robust models for
the simulation of human group interaction, independent of
parameter tuning.

The promising results reported in this manuscript call for
further theoretical and experimental research in this area. For
instance, from our experiments we could not discriminate which
is the dominant effect between the selective attention and the
information processing delays. Albeit Model 2 seems to be in
average to perform better, we could not reject the hypothesis
of equivalent performances with Model 3. Therefore, further
experimental studies may be tailored to determine under which
circumstances one factor may dominate the other and to assess
whether the findings reported in this paper may extend to
other kinds of alternative tasks. Finally, albeit our works focuses
on steady-state behavior, since in this specific task the agents
rapidly converge on their observed oscillation frequency, in other

contexts transient dynamics may play a relevant role and should
be further investigated.
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