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Abstract: Ommochromes are one of the least studied groups of natural pigments, frequently confused
with melanin and, so far, exclusively found in invertebrates such as cephalopods and butterflies. In
this study focused on the purple color of the shells of a mollusk, Crassostrea gigas, the first evidence
of a metabolite of ommochromes, xanthurenic acid (XA), was obtained by liquid chromatography
combined with mass spectrometry (UPLC-MS). In addition to XA and various porphyrins previously
identified, a second group of high molecular weight acid-soluble pigments (HMASP) has been
identified with physicochemical and structural characteristics similar to those of ommochromes.
In addition, fragmentation of HMASP by tandem mass spectrometry (MS/MS) has revealed a
substructure common to XA and ommochromes of the ommatin type. Furthermore, the presence of
melanins was excluded by the absence of characteristic by-products among the oxidation residues
of HMASP. Altogether, these results show that the purple color of the shells of Crassostrea gigas is a
complex association of porphyrins and ommochromes of potentially ommatin or ommin type.

Keywords: Crassostrea gigas; shell pigments; porphyrins; xanthurenic acid; ommochromes

1. Introduction

Molluscan shell pigments are generally assigned to carotenoids, melanins and
tetrapyrroles [1]. While the presence of carotenoids and few tetrapyrroles such as uropor-
phyrin and biliverdin are well established [1–4], the occurrence of melanins in shells of
bivalves is apparently less common than generally expected, as illustrated by the recent
work of S. Affenzeller et al. [5]. For instance, the black color of the adductor muscle scar
of shells of the edible oyster Crassostrea gigas, initially hypothesized as a contribution of
melanins by S. Hao et al. [6], was subsequently ruled out but without resolving the nature
of this color. Recently, uroporphyrin and derivatives were identified in the mantle of C.
gigas and the purple and dark patterns of its shell [7], constituting an evidence of the heme-
based cellular respiration of C. gigas [8]. These represent only a small proportion of the
overall acid-soluble pigments among which, the occurrence of ommochromes would cor-
roborate the recent identification of genes associated with their biosynthetic pathways [9].
However, the precise chemical structure of ommochromes is generally unknown at present,
their occurrence in a natural sample is usually postulated by the identification of specific
biosynthetic metabolites such as 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid
(3-HA) and XA [10–13].

Our previous study having established the presence of porphyrins [7], the present
study focuses on the composition of porphyrins-free acid-soluble pigments of purple
patterns of shells of C. gigas in order to establish the absence or presence of melanins and
ommochromes, carotenoids were not considered, being the only group of acid-insoluble
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molluscan shell pigments [1,14–16]. Among know biosynthetic metabolites, only XA, a
precursor and/or a degradation product of ommochromes [12], was identified from the
resulting group of acid-soluble pigments. These also displayed physicochemical properties
similar to those reported in the literature for ommochromes (insoluble in most aqueous and
organic solvents without acidifier, absorption bands from 400 to 600 nm). In addition, they
were constituted by a sub molecular unit common to that observed from the fragmentation
of XA by tandem mass spectrometry. Finally, the absence of melanins was established
by the method described by S. Affenzeller et al. [5]. Altogether, this leads us to consider
the purple color of C. gigas as an association of acid-soluble porphyrins and a type of
ommochromes.

2. Results
2.1. Identification of Xanthurenic Acid

After collection and decontamination, colorful purple fragments of shells of adult C.
gigas were dissolved in aqueous hydrochloric acid (1M HCl(aq)) and filtered. A fraction of
acid-soluble pigments, free of porphyrins, was obtained by preparative chromatography in
opened system. The resulting fraction, named purple fraction (PF, 0.37 wt.%), was analyzed
by UPLC-MS. The molecular formula of the compound eluted at 4.89 min, corresponding
to C10H7NO4 ([M + H]+

obs at m/z 206.0454, Figure 1a,b), is consistent with XA ([M + H]+
calc

at m/z 206.0453). The different retention times of XA in PF and the XA standard (4.89 and
5.03 min, respectively) is certainly due to the matrix effect. The identification of XA was
further confirmed by the comparative UPLC-MS/MS analysis of a commercial standard
(MS/MS spectra of XA in PF in Figure 1c,d, the pure XA standard in Figure 1e–h, mass
spectra in ESI− and co-injected with the shell sample in Figure S1, adapted from [17]).
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The identification of XA is of particular interest since it was described as a precursor
as well as a side or degradation product of ommochrommes, exclusively related to their
biosynthesis in invertebrates [12]. Consequently, the [M + H]+ signals of other known
metabolite precursors and side products of possible acid-soluble molluscan pigments other
than porphyrins (Figure S2), i.e., ommochromes and melanins, were searched from the
UPLC-MS data of PF. Among these compounds, only two signals potentially corresponding
to anthranilic acid and kynurenic acid were detected in PF at 3.71 and 4.50 min, respectively
(Table S1), questioning the presence of melanins among the set of acid-soluble pigments
in PF.

2.2. Characterization of the Purple Fraction of Acid-Soluble Pigments

The physicochemical properties of PF were investigated to define more precisely the
chemical nature of its acid-soluble pigments. An important solubility was observed in
alkali solution and in acidified solvents, especially in methanol containing HCl(aq) (Table 1).
Clearly, the solubility of PF is similar to that of ommochromes [16], being described in the
literature as insoluble in almost all aqueous and organic solvents and slightly soluble in
pure methanol but turning fully soluble when acidified with HCl [16,18].

The absorption spectrum of PF in the UV-visible region (Figure 2a) was characterized
by an absorption band at 360 nm and a large band from 400 to 600 nm, with λmax at 464, 496
and 552 nm. This absorption profile is comparable to those of ommochromes (a large band
from 400 to 600 nm and a smaller around 310 or 380 nm depending on the pH and chemical
structure) [16,18–20], but strongly differs from those synthetic and natural melanins of
different sources, all characterized by a continuous decreasing absorption towards the
visible region without specific absorption band from 400 to 800 nm [21] (Figure 2b).
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Table 1. Qualitative estimation of PF solubility 1, data from [17].

Solvents Solubility

Acetic acid (1M, aqueous) Fully soluble
Acetone Not soluble

Cyclohexane Not soluble
Chloroform Not soluble

Dichloromethane Not soluble
Diethyl ether Not soluble

Ethanol Slightly soluble
Ethyl acetate Not soluble

Isopropyl alcohol Not soluble
Hexane Not soluble

HCl (1M, aqueous) Fully soluble
Methanol Slightly soluble

Methanol containing 1% of 12M HCl(aq) Fully soluble
Methanol containing 0.1% of 12M HCl(aq) Fully soluble

Sodium hydroxide (1M, aqueous) Fully soluble
Ultrapure water Slightly soluble

1 Tested at 1 mg/mL, for 60 min at 500 RPM and 20 ◦C.
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officinalis eumelanin, respectively; (e) MS/MS spectrum of the major acid-soluble pigment from PF ([M − 2H]2− at m/z 722),
adapted from reference [17].

The infrared (IR) spectrum of PF (Figure 2c) is also comparable to those of om-
mochromes either ommatin or ommin types [20,22–24]. Among characteristic bands,
the broad band at 3000–3500 cm−1 may be representative of carboxylic acid function. The
bands at 1634 cm−1 potentially correspond to C-O stretching vibration of carboxylic acid
function, and 1410 cm−1 to N-H bending vibrations. In addition, the band at 1725 cm−1 is
in agreement with that described as specific to ommochromes of the ommatin type [20,24].
In contrast, the IR spectrum of Sepia officinalis eumelanin is characterized by broad bands at
3262 cm−1, 1557 cm−1 and 1361 cm−1 (Figure 2d) as already mentioned in the literature [25].
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Given the structural diversity of melanins, additional bands can be observed, some of
which are common to ommochromes due to the presence of carboxylic acid, amide, amine,
aromatic amine and phenolic functions [25].

The analysis of PF by UPLC-MS in negative ionization mode (more sensitive for acidic
compounds compared to the positive ionization mode), was characterized by ions with
a state of charge of 2 in the m/z 700−770 range. The major ion at m/z 722 investigated by
MS/MS was characterized by multiple neutral losses of CO2 (≥9), being representative
of carboxylic acid groups (Figure 2e). In addition, the intense product ion at m/z 160,
corresponding to C9H6NO2

−, was also observed in the fragmentation spectrum of XA
(Figure 1d), suggesting a common sub-structural unit. These results were systematically
observed for other ions with a state of charge of 2 in the m/z 700–770 range (Figure S3).

2.3. Comparative Analysis with Natural Melanin

The discrimination of melanins from ommochromes in a natural sample is challenging
and often lead to confusion from the macroscopic (granular morphology) to the molecular
point of view (polycarboxylic and polyaromatic structure) [19,26–28]. In order to establish
whether or not melanins are present in PF, an oxidation method [29], recently applied
by S. Affenzeller et al. [5], was used since it has allowed to investigate the presence of
melanins in the black adductor muscle scar of shells of C. gigas. Briefly, after alkaline
oxidation of PF with a 30% H2O2 aqueous solution (pH > 10), the resulting products were
analyzed by UPLC-MS in negative ionization mode and compared to eumelanin of Sepia
officinalis treated in the same conditions. From the latter, the molecular ions of pyrrole-2,3-
dicarboxylic acid (PDCA) [M − H]− at m/z 154.0148 and pyrrole-2,3,5-tricarboxylic acid
(PTCA) [M − H]− at m/z 198.0046 were detected at 1.59 min (Figure 3a,b). In contrast,
none of these oxidation products of melanins, including those of pheomelanin (thiazole-4,5-
dicarboxylic acid and thiazole-2,4,5-tricarboxylic acid), were observed in PF (Figure 3c–f),
supporting the absence of melanins in PF among the set of acid-soluble pigments. The
two other well-known melanin markers (4-amino-3-hydroxyphenylalanine and 3-amino-
tyrosine [25], [M − H]−calc at m/z 195.0770) were not detected in both samples (Figure S4),
possibly due to sample preparation by solid phase extraction.
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3. Discussion

In mollusks, like in other living organism, “similar shell colors can arise from different
pigments” [3]. Conversely, a given group of pigments can produce different shell colors
especially those with a complex polymeric structure varying according to the living organ-
ism and its environment. In this study, we noted that at least two groups of acid-soluble
pigments were involved in the purple color of shells of the oyster C. gigas. Among possible
pigments supported by the genes associated with their biosynthesis (carotenoids, melanins,
ommochromes and porphyrins) [9], acid-soluble porphyrins (uroporphyrin I or III and
derivatives) were recently established [7,8]. Besides, after separation of porphyrins from PF,
the absence of animal melanins and corresponding known metabolites is established here,
in line with the recent study of S. Affenzeller et al. [5]. If animal melanins are deposited in
the shell purple patterns of C. gigas, they are not among acid-soluble pigments.

Pioneering studies on ommochromes have proposed a subdivided classification
according to their dialysis profile: ommatins (rather dialyzable), ommins (almost non-
dialyzable) and ommidins (intermediate) [18]. To date, the structures of approximately
fourteen natural ommatins have been established but the structure of ommins and om-
mindins is poorly described. For example, the well accepted structure of ommin A [18,30]
(Figure 4) is solely based on chemical properties and elemental determination [19,31].
Besides, ommidins have completely disappeared from experimental investigations subse-
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quent to the work of B. Linzen in 1974 [19]. Only a recent review points out their possible
occurrence in invertebrates [18]. In the ommochrome literature, the identification of XA
is a decisive parameter. For examples, the red, red-brown and yellow pigments of wings
of Junonia coenia (common buckeye) were attributed to dihydroxanthommatin, ommatin
D and xanthommatin (ommochromes of the ommatin type) but none were detected by
MS/MS liquid chromatography, in contrast to XA [10,32]. Indeed, in invertebrates, XA
is described as a key metabolite of the biosynthesis of ommochromes [12,13,18,19], exclu-
sively related to this biological route [12]. To date, two main biosynthetic pathways of
ommochrome pigments have been proposed, both involving XA. The first involves the
condensation of XA with 3-hydroxyanthranilic acid and/or 3-hydroxykynurenine [11]. The
second involves only 3-hydroxykynurenine (3-HK) as an intermediate by condensation
of two units [12]. In this case, XA is described as a side product of the intramolecular
cyclisation of 3-HK or as a degradation product of higher ommochromes of the ommatin
type. Since XA was identified among known ommochrome metabolite precursors and
intermediates, such a similar process could occur in the case of shell purple patterns of
C. gigas. Starting from tryptophan as the initial precursor, the genes responsible for XA
biosynthesis in the ommochrome pathway, i.e., tryptophan-2,3-dioxygenase, kynurenine
formamidase and kynurenine-3-monooxygenase [18], have been identified in the genome
of C. gigas [33]. Only 3-HK transaminase was not identified yet (3-HK→ XA). Therefore, in
the case of this study XA may either be a metabolite produced in excess or a degradation
product of multiple possible origin (during dissolution in aqueous acid conditions with
light exposition, biosynthesis or during the development of the shell). From a structural
point of view, a XA sub molecular unit can be distinguished from the phenoxazine unit of
ommatins (red in Figure 4), a characteristic also observed from the acid-soluble pigments of
PF investigated by tandem mass spectrometry, where none of known ommochromes were
identified (Figure S5). The molecular weight of the acid-soluble pigments of PF, higher
than those of ommatins, and the numerous carboxylic acid groups of their structure may
be consistent with the polymeric/oligomeric nature of ommins described in the literature.
However, there is no available commercial standard to confirm this assumption. Since XA
was identified in PF, it may originate from a degradation of acid-soluble pigments of PF.
Experiments on the mantle edge epithelium by a non- or soft-destructive process could
also give reliable information on the structure of acid-soluble pigments of PF, and could
allow the correlation of a potential function in living conditions. Experiments using matrix
assisted laser desorption ionization combined with mass spectrometry conducted on solid
state samples (PF or shell purple fragments) could give reliable information on species not
detected by MS liquid chromatography as was the case for allomelanin from black oat [34].
To date, the strong absorption of acid-soluble pigments of PF in the visible region suggests
a potential protection against light but other properties could emerge, eventually related to
an oxidation process as observed in the production of uroporphyrin and derivatives [7,8].

Whatever is the definitive structure of these compounds; the high number of car-
boxylic groups is reminiscent to those of uroporphyrin and derivatives. Related to the
mineralization process of the shell, their occurrence is consistent with the binding of pig-
ments to the calcite part of the shell via an ionic carboxylate-Ca2+ bond, that is also suitable
for the transport and fixation of calcium in the shell. It remains to be elucidated whether
this was selected by nature, in order to ensure the binding of pigments designed for a
specific function, or whether pigments are a carboxylic-rich by-product of the physiology
of the animal resulting in their coincidental accumulation on the shell surface. A potential
perspective of this study would lie in the selective extraction of XA from purple shells of C.
gigas as a natural source substituting synthetic XA, and its use to study neurological and
tryptophan metabolism disorders [35–37].
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4. Materials and Methods
4.1. Shell Fragments

Approximately 1 kg of shell fragments were collected by hand on living adult oysters
in August 2017 (Thau lagoon, Marseillan, France, GPS coordinates: 43.382127, 3.555193).
Shell fragments were rinsed with tap water at the farm and transported to the labora-
tory. Shell fragments were extensively rinsed with tap water and suspended in 0.0155M
NaOCl(aq) with sonification and regular manual stirring (1:10 wt/v, 120 min). Shell frag-
ments were rinsed several times and suspended in demineralized water with sonification
and regular manual stirring (1:10 wt/v, 120 min). Shell fragments were rinsed several
times with demineralized water and dried in oven (overnight, 40 ◦C). Shell fragments were
sorted in three classes according to their color. Only fully purple shell fragments were used
in this study. Samples were stored in the dark at 25 ◦C before use.

4.2. Identification of XA in PF

Approximately 10 g of decontaminated purple fragments of shells of C. gigas were
dissolved in 1M HCl(aq) under magnetic stirring (1:20 wt/v, 30 min, 700 RPM). The solution
of acid-soluble pigments was obtained after filtration on a glass sintered filter (POR 4) filled
with Fontainebleau sand. The solution of acid-soluble pigments (40 mL) was deposited
on a C18 grafted silica gel (approximately 40 g) previously equilibrated with 1M HCl(aq).
After deposition, decalcification was performed with 80 mL 1M HCl(aq) followed by 80 mL
0.1% TFA. Separative elution was monitored by fluorescence at λex 400 nm and conducted
with 420 mL of ultrapure water/acetonitrile (80:20 v/v + 0.1% TFA). The resulting non-
photoluminescent PF was freeze-dried and weighted (0.37 wt.%). Separation was followed
with 140 mL acetonitrile +0.1% TFA. The resulting photoluminescent fraction (porphyrins)
was freeze-dried and weighted (<0.1 wt.%). The purple fraction (1 mg) was solubilized in
200 µL of 1M HCl(aq), filtered on a polyethersulfone syringe filter (0.22 µm) and analyzed
on a UPLC Synapt G2-S system (Waters Corporation, Milford, MA, USA) equipped with
an electrospray ionization source (UPLC-DAD-Q-ToF-HRMS, Waters Corporation, Milford,
MA, USA). UV-vis spectra were recorded with a UPLC LG 500 nm DAD detector from 200
to 500 nm with a resolution of 1.2 nm and a sampling rate of 20 points/sec. Separation
was carried out using a 150 × 2.1 mm Kinetex 2.6 µm EVO C18 100 Å reverse stationary
phase, operating at 30 ◦C with a constant flow rate of 0.5 mL/min using ultrapure water
(0.055 µS/cm) and acetonitrile HPLC grade as eluents both containing 0.1% formic acid.
Mass spectra were recorded in the m/z range of 50 to 3000 with a ZQ spectrometer fitted
with Micromass Q-Tof spectrometer operating at capillary voltage of 3 kV and cone voltage
of 30 V, using phosphoric acid as an internal standard. Masslynx software (version V4.1,
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Waters Corporation, Milford, MA, USA) was used for instrument control and data pro-
cessing. Samples were kept at 10 ◦C in the autosampler. Appropriate blank analysis was
performed before each sample (Vinj: 10 µL). Blank TIC chromatogram was systematically
subtracted to the corresponding sample TIC chromatogram before data processing. Sepa-
ration was performed with a gradient system: 0 to 50% acetonitrile in 20 min, followed
by 50 to 100% acetonitrile in 5 min, followed by 100% acetonitrile in 1 min, followed by
100% ultrapure water in 0.1 min and finally 4.9 min with 100% ultrapure water. A solution
of 10 mg/mL of XA was prepared in 1 mL of 1M HCl(aq) under magnetic stirring (60 min,
700 RPM), followed by filtration on polyethersulfone syringe filter (0.22 µm), XA being
slightly soluble in water. The resulting solution was analyzed by UPLC-DAD-Q-ToF-HRMS
according to the method previously employed. MS/MS experiments were performed in
collision-induced dissociation mode with a trap collision energy ramp from 15 to 40 eV
and using auto transfer collision energy of 2 eV. Argon was used as the collision gas.

4.3. Characterization of PF

The qualitative estimation of the PF solubility was conducted at 1 mg/mL (60 min,
500 RPM, 20 ◦C), followed by centrifugation (20 min, 4400 RPM). Absorption spectra
were recorded from 200 to 800 nm using UV-1800 spectrophotometer, 10 mm optical path
length (Shimadzu Corporation, Kyoto, Japan). Appropriate auto zero on solvent blank was
performed before each measurement. The absorption spectrum of PF was obtained with
1 mg in 1mL of 1M HCl(aq) and diluted by a factor 10 and 100. The absorption spectrum of
S. officinalis was obtained with 1 mg in 1mL of 1M HCl(aq) and filtered on polyethersulfone
syringe filter 0.22 µm (very slightly soluble). IR spectra were recorded using a spectrum
two FTIR spectrometer (ATR mode, PerkinElmer, Waltham, MA, USA). UPLC-MS/MS was
conducted according to the previously described method. Automatic MS/MS experiments
were conducted using auto transfer collision energy of 2 eV. Argon was used as the collision
gas. Collision-induced was performed in dissociation mode. MS/MS range was set from
50 Da to 1500 Da. The number of fragmented compounds was set at 3 × 4. MS/MS
fragmentation was set to switch after 2 s with a scan time of 0.1 s. Peak detection was used
in intensity based peak detection mode and peak detection window with a charge state
tolerance of m/z 0.2. The trap MS/MS collision energy was set according to a ramp from 30
to 50 eV. The cone voltage was set at 40 V. The collision energy was set according to a ramp
from low mass (50 Da, 10–20 eV) to high mass (1500 Da, 80–140 eV).

4.4. Comparative Analysis with Natural Eumelanin

The oxidation was conducted with 10 mg of PF, ultrapure water (1 mL), 1M K2CO3(aq)
(3.75 mL) and 30% H2O2(aq) (250 µL), under magnetic stirring (20 h, 500 RPM, 20 ◦C). A
volume of 500 µL of 10% Na2SO3(aq) was added. A volume of 550 µL of the solution was
mixed with 140 µL of 6M HCl(aq). After centrifugation (20 min, 4,400 RPM), the supernatant
was collected and purified by solid phase extraction (Strata-X 200 mg, Phenomenex Inc.,
Torrance, CA, USA)). Conditioning was conducted with methanol (6 mL) followed by
ultrapure water (6 mL). After sample loading, washing was conducted with 0.3% aqueous
formic acid (3 mL). Elution was conducted with methanol (3 mL) and ethyl acetate (3 mL).
The collected fraction was evaporated under a constant flux of argon for approximately
5h. After evaporation, the solid residue was solubilized in ultrapure water (200 µL) and
analyzed by UPLC-Q-ToF-HRMS with the previously described Water alliances UPLC
Synapt G2-S system in electrospray negative ionization mode (Waters Corporation, Milford,
MA, USA). Separation was carried out using a 100× 2.1 mm Kinetex 1.7 µm EVO C18 100 Å
reverse stationary phase, operating at 45 ◦C with a constant flow rate of 0.2 mL/min using
ultrapure water (0.055 µS/cm) and acetonitrile HPLC grade as eluents both containing
0.1% formic acid. Mass spectra were recorded in the m/z range of 50 to 1500 with a ZQ
spectrometer fitted with Micromass Q-Tof spectrometer (Waters Corporation, Milford, MA,
USA) operating at capillary voltage of 2.4 kV and cone voltage of 30 V, using phosphoric
acid as an internal standard. Masslynx software (version V4.1, Waters Corporation, Milford,
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MA, USA) was used for instrument control and data processing. Samples were kept at
10 ◦C in the autosampler (Vinj: 10 µL). Separation was performed with a gradient system:
0 to 20% acetonitrile in 20 min, followed by 20 to 100% acetonitrile in 1 min, followed by
100% acetonitrile in 2 min, followed by 100% ultrapure water in 0.1 min and finally 4.9 min
with 100% ultrapure water. The entire process was repeated with 10 mg of Sepia officinalis
eumelanin.

4.5. Chemicals

Acetonitrile and methanol HPLC grade (≥99.9%) were purchased from Fisher scien-
tific (Merelbeke, Belgium). Trifluoroacetic acid HPLC grade was purchased from Fisher
scientific (Loughborough, UK). C18 grafted silica for flash high throughput purification
was purchased from Supelco (Bellefonte, PA, USA, batch SP98226). Fontainebleau sand,
hydrochloric acid 37%, hydrogen peroxide 30% and sodium sulfite were purchased from
VWR Chemicals (Leuven, Belgium). Formic acid ULC/MS grade (99%) was purchased
from Biosolve (Valkenswaard, The Netherlands). Sodium hypochlorite 9.6% was purchased
from Notilia (Nîmes, France). Sepia officinalis eumelanin was purchased from Sigma-Aldrich
(Burlington, MA, USA, batch #103H1023). Ultrapure water (0.055 µS/cm) was obtained by
pre-filtration and reverse osmosis system (Labostar Pro TWF, Evoqua water technologies,
Pittsburgh, PA, USA). Xanthurenic acid was purchased from Interchim (Montluçon, France,
batch V0226P002).

Supplementary Materials: The following are available online, Figure S1: Identification of XA in PF,
Figure S2: Known metabolite precursors and side products of ommochromes and melanins searched
in PF, Figure S3: UPLC-MS/MS analysis of PF, Figure S4: Absence of melanin oxidation products
in both S. officinalis eumelanin and PF samples, Figure S5: Absence of ommin A and some known
ommatins in PF; Table S1: Identification of ommochrome metabolites in PF.
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3-HA 3-hydroxyanthranilic acid
3-HK 3-hydroxykynurenine
ESI− electrospray negative ionization mode
ESI+ electrospray positive ionization mode
FTIR Fourier transform infrared spectroscopy
HMASP high molecular weight acid-soluble pigments
IR infrared
MS/MS tandem mass spectrometry
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PDCA pyrrole-2,3-dicarboxylic acid
PF purple fraction
PTCA pyrrole-2,3,5-tricarboxylic acid
TDCA thiazole-4,5-dicarboxylic acid
TFA trifluoroacetic acid
TTCA thiazole-2,4,5-tricarboxylic acid
UPLC-MS liquid chromatography mass spectrometry
UPLC-MS/MS liquid chromatography tandem mass spectrometry
XA xanthurenic acid
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