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Topology of the space of locally separable functions

Hassan Boualem∗, Robert Brouzet†

May 7, 2021

Abstract. Among functions of n variables, the simplest are certainly those which are the sum of
n functions, each of them depending only on one variable. Nevertheless, the set consisting of such
particular functions is rather small compared to the whole space of general functions. Now, if we relax
this condition and only ask for a local separability in some well chosen coordinates, is this request also
binding and is the corresponding set of functions, that we will denote by S, small again? In this paper
we will show that it is not actually the case and that S has a large set of interior points that we try
to identify as well as possible.

AMS classification (2020): 26A21, 26B40, 54C50, 57M60, 57R45, 58K05, 58K15.
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1 Introduction

The problem of the separability of functions, in various coordinates systems, is a crucial one
in many questions concerning mechanics [14, 9, 1, 2, 4]. By the way, the starting point of
our questioning is strongly linked to mechanics because it concerns a class of Hamiltonians
which appeared many years ago in the problem of the connection between Arnold-Liouville
completely integrable systems and bi-Hamiltonian ones [15, 6, 7, 10]. Despite this mechanics
origin, we will never mention any mechanics in this paper and we will start directly from the
problem that we find mathematically interesting in itself. Our main question is: among all
the smooth functions, which of them can be locally written as a sum of functions of only one
variable? Moreover could we evaluate the size of the subset of such functions relative to the
whole set of functions?

Let us now specify what we mean by the separability of functions. For that, let us consider
the space E “ C8pUq of smooth functions, with real values, defined on some open neighbor-
hood U of the origin O in the Euclidean space Rn, for example the open ball BpO, 1q. If we ask
the functions H : px1, ¨ ¨ ¨ , xnq ÞÑ Hpx1, ¨ ¨ ¨ , xnq to be separable with respect to the variables
xi, i.e to be a sum of the type H “

řn
i“1Hipxiq, it is obvious to check if a given function

verifies, or not, the property. Moreover, it is rather intuitive that the set of such functions
has certainly a small size relative to the whole set of smooth functions. Now if we ask a more
relaxed separability it will be rather different. Precisely, let us consider the subset S of E
consisting of functions H : px1, ¨ ¨ ¨ , xnq ÞÑ Hpx1, ¨ ¨ ¨ , xnq which can be locally separated in the
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sense that there exists a smooth diffeomorphism ϕ (depending on H), fixing O, from an open
neighborhood V of O onto its image W

ϕ : V ÑW, px1, ¨ ¨ ¨ , xnq ÞÑ pu1px1, ¨ ¨ ¨ , xnq, ¨ ¨ ¨ , unpx1, ¨ ¨ ¨ , xnqq,

such that for all px1, ¨ ¨ ¨ , xnq P V we have

Hpx1, ¨ ¨ ¨ , xnq “ H1pu1px1, ¨ ¨ ¨ , xnqq ` ¨ ¨ ¨ `Hnpunpx1, ¨ ¨ ¨ , xnqq.

It is generally not very easy to verify if a given function satisfies, or not, this condition.
The question of the size of the subset of functions that interests us in the present work is

not obvious. Topology offers a good framework to discuss this question using the concepts of
residual set, meagre set in the context of Baire categories.

Despite what may seem like a very strong condition, the property to be locally separable
is generic in the sense that it is verified by a residual set of functions.

We will endow our space with the Fréchet topology which construction we will briefly recall.
Then, using classical results of differential calculus (respectively the submersion lemma and
the Morse lemma (see section 3.5)), it is readily seen that the property to be locally separable
is a generic one. Indeed, it is well known that a function f with a Taylor expansion at the
origin which is not too degenerate (by this we mean that dfO ­“ 0 or dfO “ 0 but the Hessian
matrix of f at O is invertible) then the function f is locally separable; moreover this kind of
“non-degenerate” functions constitute an everywhere dense open subset. Because of that, we
will search to determine the interior of S. It will be possible in the case where functions have
just two variables. But, in the case of a greater number of variables, we will just get a range
for this interior. In order to do that we need to introduce the notation Tkpfq which denotes
the homogeneous part of degree k in the Taylor’s expansion at O of the function f ; then, the
set Ok will be the set (open) of functions f with Tkpfq ­“ 0. With these notations, we will
state and prove the two next results:

Theorem 19 For n “ 2,
S̊ “ O1 YO2 YO

2
3,

where O2
3 is the subset of O3 containing the functions f with T3pfq in the orbit of x3 ` y3 for

the natural action of the linear group on the set of homogeneous polynomials.
Theorem 22 For any integer n,

1. If rn is the largest integer such that rn ă
pn´1qpn´2q

3pn`1q then

S̊ Ă O1 YO2pnq YO2pn´ 1q Y ¨ ¨ ¨ YO2prn ` 1q,

where O2pkq denotes the subset of elements of O2 for which the rank of the Hessian at O is
equal to k.

2. For r ď n´ 2, O2prq Ć S̊.

2 Fréchet topology on the space of smooth functions

In what follows we will study a particular class of smooth functions from a topological point of
view. For that, we need to define some topological structure on the functional space C8pU,Rq.
In order to get it, we will define a distance d on C8pU,Rq, using a family of semi-norms. The
obtained metric space pC8pU,Rq, dq will be complete and is called a Fréchet space. Let us
briefly recall this classic construction of d [13].
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Let pKpqp be an exhaustive sequence of compact sets of U . We will denote for α “

pα1, ¨ ¨ ¨ , αnq P Nn, |α| :“
řn
i“1 αi and, if f “ fpx1, ¨ ¨ ¨ , xnq is an element of C8pU,Rq,

Bαf :“
B|α|f

Bxα1
1 ¨ ¨ ¨ Bxαn

n
,

with the convention of notation: Bp0,¨¨¨,0qf “ f . Let us denote for m P N,

Am :“ tα “ pα1, ¨ ¨ ¨ , αnq P Nn, |α| “ mu.

Now, for each integer k P N, we can define a sequence p} }k,pqpPN˚ of semi-norms on CkpU,Rq,
by the formula

@f P CkpU,Rq, }f}k,p :“
k
ÿ

m“0

˜

ÿ

αPAm

sup
xPKp

|Bαfpxq|

¸

.

In fact, for a given function f , we get a double sequence p}f}k,pqpk,pqPNˆN˚ which will allow us
to consider a summable double family. Precisely, for f and g in C8pU,Rq, let us define

dpf, gq :“
ÿ

pk,pqPNˆN˚

1

2k`p
}f ´ g}k,p

1` }f ´ g}k,p
.

Because the family is summable the previous formula defines a non-negative real number
and it is easy to verify that we get a distance d on C8pU,Rq. Moreover, the metric space
pC8pU,Rq, dq is complete. The notion of convergence in the sense of this metric topology is
simple: a sequence pfnqn has for limit f if all the derivatives of fn converge uniformly on all
the compact sets included in U towards the corresponding derivative of f .

A subset A of such a complete metric space E is meagre (or of first category of Baire) when
it is contained in a countable union of nowhere dense closed subsets of E, in other words if it is
a subset of a nowhere dense Fσ. On the other hand, A is residual when it is the complement of
a meagre set, in other words contains an everywhere dense Gδ. A very particular case of such
residual subsets is given in the case where A contains an everywhere dense open set; on the
other hand, a very particular case of meagre set is provided by a set contained in a nowhere
dense closed set. In what follows, we will be concerned only with these particular situations.

In this work we will have also to deal with some finite dimensional subspaces of the metric
space pC8pU,Rq, dq, namely spaces of homogeneous polynomial functions of a given degree
d. These subspaces are finite dimensional and so are endowed with their natural topology
describing closeness of two elements as the closeness of each of their coordinates. It is not hard
to convince yourself that, in this finite dimensional case, the Fréchet topology and the natural
one are equivalent.

3 Separable functions

3.1 Functions with separate variables

As it is mentioned in the abstract, among all the smooth functions Hpx1, ¨ ¨ ¨ , xnq of n variables
defined on an open set of Rn, those which are separate in the variables px1, ¨ ¨ ¨ , xnq constitute
a rather “small” set.
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Proposition 1 Let S be the subset of C8pU,Rq consisting of functions with separate variables,
i.e. satisfying the partial differential equations system:

@i ­“ j,
B2f

BxiBxj
“ 0.

Then S is a closed nowhere dense subset of C8pU,Rq and so is meagre. Therefore, the set of
smooth functions which have not separate variables is residual or, in other words the property
for a function to have separate variables is generic.

Proof The main point is that for all ε ą 0 and f P S the function f ` εx1x2 does not
belong to S. This remark implies that S is nowhere dense. The fact that it is a closed subset
is a rather straightforward sequential reasoning. ˝

3.2 A relaxed separability

We recall that the set, already mentioned in the introduction, that we want to study in this
paper, is the subset S of the set E “ C8pBpO, 1q,Rq consisting of functions H : px1, ¨ ¨ ¨ , xnq ÞÑ
Hpx1, ¨ ¨ ¨ , xnq which can be locally separated in the sense that there exists a smooth diffeo-
morphism ϕ, fixing O, from an open neighborhood V of O onto its image W

ϕ : V ÑW, px1, ¨ ¨ ¨ , xnq ÞÑ pu1px1, ¨ ¨ ¨ , xnq, ¨ ¨ ¨ , unpx1, ¨ ¨ ¨ , xnqq,

such that for all px1, ¨ ¨ ¨ , xnq P V we have

Hpx1, ¨ ¨ ¨ , xnq “ H1pu1px1, ¨ ¨ ¨ , xnqq ` ¨ ¨ ¨ `Hnpu1px1, ¨ ¨ ¨ , xnqq.

From now and until the end of this paper, by “separable function” we will mean that the
considered function is some element of S.

Remark 1 Of course this notion of separability is actually relaxed since, for example, the
function defined by Hpx1, ¨ ¨ ¨ , xnq “ x1x2 obviously does not belong to S but belongs to S:

H “
1

4
u21 ´

1

4
u22 with u1 “ x1 ` x2, u2 “ x1 ´ x2, u3 “ x3, ¨ ¨ ¨ , un “ xn.

3.3 About the jets of a function

In order to deal with our problem we need to work with the jets of functions at the origin O.
Let us introduce some notations.

Around the origin O let us write the Taylor-Young formula

H “ T0pHq ` T1pHq ` T2pHq ` ¨ ¨ ¨ ,

where, for each k, Tk is the homogeneous part of degree k of the Taylor expansion. Let us
recall that the sum of the first k polynomials TjpHq is called the k-jet of H at O:

JkOpHq “
k
ÿ

j“0

TjpHq “ HpOq ` dHpOq.X `
1

2!
d2HpOq.Xb2 ` ¨ ¨ ¨ `

1

k!
dkHpOq.Xbk,
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where X “ pX1, ¨ ¨ ¨ , Xnq.
Now, for H P E, let us define:

dpHq :“ inftk P N˚, TkpHq ­“ 0u,

with the convention that this infimum will be taken equal to `8 in the case where all the
TkpHq are zero, in other words in the case where H is a flat function at O.

For all k P N the function Tk : H ÞÑ TkpHq which maps E to some RNk , where Nk is the
dimension of the space of k-homogeneous polynomials, is clearly linear and so the sets

Ek :“ kerTk “ tH P E, TkpHq “ 0u

are vector subspaces of E. We can also define for all integers k the space

Fk “ E1 X ¨ ¨ ¨ X Ek “ tH P E, JkOpHq “ 0u.

It is easy to prove the following statement:

Proposition 2 For all k P N, the function

Tk : H ÞÑ TkpHq

is continuous. So the subspaces Ek and Fk are closed.

For k P N, let us define Ok :“ EzEk and Ωk “ EzFk “ O1 Y ¨ ¨ ¨ Y Ok. Because of the
previous proposition, these sets are open subsets of E.

The fact to be in some Ek is not invariant by change of coordinates. So it is not an intrinsic
property because, for each k ě 2, the differential dkH of order k is not tensorial. Nevertheless
the following proposition, which is essential throughout this paper in order to simplify a lot
of proofs, states that we can find some intrinsic object in this landscape:

Proposition 3
1. For all integers k and for all smooth functions H the two following properties are

equivalent:
i) JkOpHq “ 0 and Tk`1pHq ­“ 0
ii) for all local diffeomorphism ϕ around O and fixing O,

JkOpH ˝ ϕq “ 0 and Tk`1pH ˝ ϕq ­“ 0.

In other words the property, for a given function, to belong to FkXOk`1 is intrinsic in the
sense that it does not depend on the chosen coordinates system.

2. An homogeneous polynomial H with degree k`1 is separable if and only if there is some
linear change of coordinates px1, ¨ ¨ ¨ , xnq ÞÑ pu1, ¨ ¨ ¨ , unq and some real numbers α1, ¨ ¨ ¨ , αn
such that

H “

n
ÿ

i“1

αiu
k`1
i .
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Proof
1. It is easy to verify that if ϕ is a change of coordinates around O, fixing O and H a

smooth function defined around O then for all integers k P N, we have

Bk`1pH ˝ ϕq

Bui1 ¨ ¨ ¨ Buik`1

“

n
ÿ

j1,¨¨¨,jk`1“1

Bk`1H

Bxj1 ¨ ¨ ¨ Bxjk`1

Bxj1
Bui1

¨ ¨ ¨
Bxjk`1

Buik`1

` LpT1pHq, ¨ ¨ ¨ , TkpHqq,

where LpT1pHq, ¨ ¨ ¨ , TkpHqq is a linear expression in the T1pHq, ¨ ¨ ¨ , TkpHq. The property is
now easy to prove using induction since the “tensorial part” of the right hand side, namely

n
ÿ

j1,¨¨¨,jk`1“1

Bk`1H

Bxj1 ¨ ¨ ¨ Bxjk`1

Bxj1
Bui1

¨ ¨ ¨
Bxjk`1

Buik`1

,

and Bk`1pH˝ϕq
Bui1 ¨¨¨Buik`1

are vanishing simultaneously according to the fact that the Jacobian matrix
´

Bxj
Bui

¯

i,j
is invertible. This later property is necessary in order to get the equivalence between

the vanishing of the partial derivatives of H and that of H ˝ ϕ.
2. Obviously, if H can be written for a linear change of coordinates as H “

řn
i“1 αiu

k`1
i

then H is an homogeneous polynomial with degree k ` 1 and H is separable. Conversely, let
us assume that H is an homogeneous polynomial with degree k ` 1 and that H is separable.
Then it exists a change of coordinates

px1, ¨ ¨ ¨ , xnq ÞÑ pu1 “ a11x1 ` ¨ ¨ ¨ ` a1nxn ` h.o.t., ¨ ¨ ¨ , un “ an1x1 ` ¨ ¨ ¨ ` annxn ` h.o.t.q,

where the matrix paijqi,j is invertible, such that

Hpx1, ¨ ¨ ¨ , xnq “ H1pu1q ` ¨ ¨ ¨ `Hnpunq,

condition that we can also write

H “

n
ÿ

i“1

αipuiqu
k`1
i

for some smooth functions αipuiq.
Now, becauseH is pk`1q-homogeneous, we get, replacing a fixed px1, ¨ ¨ ¨ , xnq by ptx1, ¨ ¨ ¨ , txnq

(where t is describing the real line) and simplifying by tk`1, that

@t P R, Hpx1, ¨ ¨ ¨ , xnq “
n
ÿ

i“1

αiptuiqpai1x1 ` ¨ ¨ ¨ ` ainxn ` op1qq
k`1.

We outline that here the terms op1q are relative to t (the xi are fixed) and so denote terms
whith a limit equal to 0 when t goes toward 0. Now considering the limit when t goes toward
0 we get

Hpx1, ¨ ¨ ¨ , xnq “
n
ÿ

i“1

αip0qpai1x1 ` ¨ ¨ ¨ ` ainxnq
k`1,

and so the separability of H by the way of a linear change of coordinates. ˝
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3.4 An example of function which is not separable

As it was already mentioned, the checking that a given function does not belong to S requires
more or less long calculations. In the next proposition, we give an example of a family of such
functions.

Proposition 4 For all integer m ě 2, the functions defined by Hpx1, ¨ ¨ ¨ , xnq “ xm1 x2 are not
separable.

Proof We will prove it arguing by contradiction. So, let us assume that H P S. Using
proposition 3, because the m-jet of H is zero and Tm`1pHq ­“ 0, we get that we could write
by the mean of a linear change of coordinates

xm1 x2 “ α1u
m`1
1 ` ¨ ¨ ¨ ` αnu

m`1
n

where at least one αi is not zero. Now, because the change of coordinates is linear, x1 and
x2 are linear forms ϕ1 and ϕ2 in the ui and they are linearly independent. So we are in the
situation where two independent linear forms ϕ1 and ϕ2 verify the condition that the product
ϕm1 ϕ2 has separated variables. So applying for i ­“ j the operator B2

BuiBuj
to this product we

must get zero. So we get

mpm´1qϕm´21

Bϕ1

Bui

Bϕ1

Buj
ϕ2`mϕ

m´1
1

B2ϕ1

BuiBuj
ϕ2`mϕ

m´1
1

ˆ

Bϕ1

Bui

Bϕ2

Buj
`
Bϕ1

Buj

Bϕ2

Bui

˙

`ϕm1
B2ϕ2

BuiBuj
“ 0.

Now because the ϕi are linear forms, their second derivatives vanish; moreover, because ϕ1 is
not zero we can simplify and get the relation

pm´ 1q
Bϕ1

Bui

Bϕ1

Buj
ϕ2 ` ϕ1

ˆ

Bϕ1

Bui

Bϕ2

Buj
`
Bϕ1

Buj

Bϕ2

Bui

˙

“ 0.

Now, because the linear forms ϕ1 and ϕ2 are linearly independent, necessarily we must have
that

@i ­“ j,
Bϕ1

Bui

Bϕ1

Buj
“ 0 and

Bϕ1

Bui

Bϕ2

Buj
`
Bϕ1

Buj

Bϕ2

Bui
“ 0.

Because one of the derivatives Bϕ1

Bui
is not zero we can assume, without loss of generality that,

for example, Bϕ1

Bu1
­“ 0. Then the first group of relations above gives us that for all j ě 2,

Bϕ1

Bui
“ 0 and so ϕ1 is colinear to u1 ÞÑ u1. Now the second group of relations above gives us

that also is ϕ2 and so that ϕ1 and ϕ2 are colinear, so a contradiction because they are two
rows of the Jacobian matrix of a diffeomorphism. ˝

3.5 About some large families of separable functions

As we have already seen functions which are separated in some given system of coordinates (for
example cartesian coordinates) constitute a very small subset among all the smooth functions.
On the other hand, using classic theorems of calculus, it is easy to prove that the functions
which are separable up to some change of coordinates constitute a very large subset.

This first classic result of calculus is the submersion lemma. We recall it.
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Lemma 5 (submersion lemma) Let H be a regular function at the origin. Then it ex-
ists a local diffeomorphism ϕ : V Ñ W, px1, ¨ ¨ ¨ , xnq ÞÑ pu1, ¨ ¨ ¨ , unq with V and W open
neighborhoods of O, ϕpOq “ O, and such that u1 “ H on V .

Corollary 6 The set O1 of regular functions at the origin is contained in the set S of separable
functions. Moreover, it is a dense open subset of E.

Proof The fact that O1 is open subset of S follows immediately from the submersion lemma.
Now, if H P E1 :“ EzO1, then for all ε ą 0 the function Hε :“ H ` εx1 belongs to O1 and

an easy calculation shows that dpH,Hεq ď 4ε. So O1 is everywhere dense in E. ˝

Comment 1 It follows from this last result that the set S is residual, or, in other words that,
for a smooth function the property to belong to S is generic. Moreover the inclusion O1 Ă S
and the property for O1 to be open give the inclusion

O1 Ă S̊.

After submersion lemma we can use an other result of calculus, namely the Morse lemma
[16].

Lemma 7 ( Morse lemma) If some function H is not regular at the origin but has a non-
degenerate Hessian at this point, then we can find a local diffeomorphism ϕ : px1, ¨ ¨ ¨ , xnq ÞÑ
pu1, ¨ ¨ ¨ , unq around O such that

Hpϕ´1pu1, ¨ ¨ ¨ , unqq “ Hp0, ¨ ¨ ¨ , 0q ` u21 ` ¨ ¨ ¨ ` u
2
p ´ u

2
p`1 ´ ¨ ¨ ¨u

2
n,

where pp, n´ pq is the signature of the quadratic form defined by the Hessian of H at O.

It is well known that the so-called Morse functions, namely functions of which all critical
points are non-degenerate, constitute a very important class of functions. Here we are only
interested in what happens at the origin O. So we will introduce a terminology for our purpose
and will say that H is a Morse function at the origin if either H is regular at O (dHpOq ­“ 0)
or O is a non-degenerate critical point of H. We will denote by MO the set of such functions.

It results from the definitions and Morse lemma the following statement:

Proposition 8 We have the following inclusions:

O1 ĂMO Ă S.

Remark 2 We can notice that the Morse functions belong to MO and that this later set,
because it is open, is included in S̊.

Non-degenerate functions are very particular elements of O2. Let us introduce some nota-
tions. For r P t1, ¨ ¨ ¨ , nu let us denote

O2prq :“ tH P C8pBpO, 1q,Rq, rankpHessOpHqq “ rqu,

8



where HessOpHq denotes the Hessian of the function H at the origin O. Then, of course,

O2 “

n
ď

r“1

O2prq.

We must pay attention: the notation is somewhat dangerous because one might think that
O2prq is an open set. It is not the case. Only unions of such sets for all the indices greater than
a given one, namely

Ť

rěk O2prq, are open sets (because of the semi-continuity of the rank).
Now, with these notations, the set MO is nothing else than

MO “ O1 YO2pnq.

Actually we can slightly relax the condition on the rank of the Hessian matrix at O by using
a generalization of the Morse lemma called the Relative Morse lemma. Namely we have the
following statement [8, 12, 13, 11]:

Theorem 9 (Relative Morse lemma)
Let f be a C8 function defined on a neighborhood of O in Rn with dfpOq “ 0. Let r be

the rank of the Hessian form Hf pOq of f at O. Then there exists a local coordinate system
px1, ¨ ¨ ¨ , xr, y1, ¨ ¨ ¨ , yn´rq on Rn centered at O and a function g defined on a neighborhood of
O in Rn´r such that f can be written

f “ fpOq ` x21 ` ¨ ¨ ¨ ` x
2
p ´ x

2
p`1 ´ ¨ ¨ ¨x

2
r ` gpy1, ¨ ¨ ¨ , yn´rq,

where the function g is of order ě 3 at O.

This theorem allows us to get an enlargement of functions contained in S and even in the
interior of S, namely:

Proposition 10 We have for n ě 2 the following inclusion

O1 YO2pn´ 1q YO2pnq Ă S̊.

Proof We have already seen that O1YO2pnq Ă S using the submersion and Morse lemmas so
we get O1YO2pnq Ă S̊ because the left hand side is an open set. Now, using the Relative Morse
lemma, stated above, we get the improvement given in this lemma, namely the inclusion of
O2pn´1q in S. So, finallyO1YO2pn´1qYO2pnq Ă S and even betterO1YO2pn´1qYO2pnq Ă S̊
because the left hand side is an open subset. ˝

So, if we define the set of almost Morse functions at the origin as the set

AMO “ O1 YO2pn´ 1q YO2pnq,

then we know now that
O1 ĂMO Ă AMO Ă S̊.

We can remark that, in the case where n “ 2, O2 “ O2p1qYO2p2q and so in this particular
case we get

AMO “ O1 YO2.

It follows that in the particular case where n “ 2 we have the inclusion O1 YO2 Ă S and so,
because the left hand side is open, O1 YO2 Ă S̊.

9



4 More about the topology of the set of separable functions

In the previous sections we have seen that the set S is rather large since its interior set contains
the set AM0 of the almost Morse functions at the origin. Our goal in this section is to improve
our knowledge of S̊. For this study it will be necessary to distinguish two cases: n “ 2 and
n ě 3. In the first case we will be able to determine exactly the interior of S. But, in the
second case, we will only able to give a range for S̊ in the sense that we will give only a double
inclusion with S̊ as the central term. Before dealing with this topic let us remark that S is
not closed. Indeed, let us define the sequence of functions pHkqkPN where for k P N,

Hkpx1, ¨ ¨ ¨ , xnq “
1

k ` 1
px21 ` ¨ ¨ ¨ ` x

2
nq ` x

2
1x2.

Each of these functions is separable because of the Morse lemma but its limit function is
Hpx1, ¨ ¨ ¨ , xnq “ x21x2 which is not separable. Now, we get that S is not open either. Indeed,

H̃kpx1, ¨ ¨ ¨ , xnq “
1

k ` 1
x21x2

is arbitrary close to the separable zero function and is not itself separable. To end with this
short introduction to this section, let us also state that our main results (theorems 19 and 22)
will imply that the separable flat functions are in SzS̊.

4.1 The case where the number of variables is equal to 2

In the case of two variables, the interior of S contains more than just the almost Morse
functions at the origin. Indeed, it also contains a part of the open subset O3, just a part
because O3 Ć S. Indeed, according to the example given in the proposition 4 for the case
n “ 2, the function H defined by Hpx, yq “ x2y belongs to O3 but is not a separable function.

In order to describe the part of O3 which is contained in the set S, we must first study the
issue of separability when we limit it to homogeneous polynomials of degree 3.

Proposition 3 says that if H P Rrx, ys is a non zero homogeneous polynomial function of
degree 3 that belongs to S then H can be written as

Hpx, yq “ αpax` byq3 ` βpcx` dyq3 p˚q,

for some real numbers α, β, a, b, c, d such that pα, βq ­“ p0, 0q and ad´ bc ­“ 0.
A geometric way to describe what we need is the following. Let us consider the group

action of the linear group GL2pRq on the set of homogeneous polynomial with degree 3: one
simply replaces x and y with respectively ax` by and cx`dy where a, b, c, d are real numbers
such that ad ´ bc ­“ 0. In other words if H is an homogeneous polynomial with degree 3, we

define for A “
ˆ

a b
c d

˙

P GL2pRq, A.H :“ HpAXq where AX is the product of A with the

column vector X “

ˆ

x
y

˙

. Among the polynomials H satisfying p˚q we can consider three
cases:
˛ If α “ β “ 0 then H “ 0 which corresponds to the orbit of 0.
˛ If α ­“ 0 and β “ 0 or α “ 0 and β ­“ 0 then H is in the orbit of x3

˛ If α ­“ 0 and β ­“ 0 then H is in the orbit of x3 ` y3.
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Now let us write O3 as the disjoint union of three subsets, O3 “ O1
3 YO

2
3 YO

3
3, where O1

3

is the set of functions H such that T3pHq belongs to the orbit of x3, O2
3 is the set of functions

H such that T3pHq belongs to the orbit of x3 ` y3 and O3
3 is what remains. If we denote by

H3 the vector space of homogeneous polynomial functions of degree 3 then we can state:

Proposition 11
1. O1

3 XH3 is not open.
2. O2

3 XH3 is open.
3. The polynomial x3 ` xy2 belongs to O2

3, so is in the orbit of x3 ` y3.

Proof
For all three points, we need to perform similar calculations. Indeed, for points 1. and 2.

we have to determine the isotropy subgroup of the action respectively at x3 and x3 ` y3 and
so to calculate real coefficients a, b, c, d with ad´ bc ­“ 0 such that

pax` byq3 “ x3 presp. pax` byq3 ` pcx` dyq3 “ x3 ` y3q,

and for the point 3. we have to find real coefficients a, b, c, d such that

pax` byq3 ` pcx` dyq3 “ x3 ` xy2.

Precisely, we have to respectively solve the following systems of equations:
$

’

’

&

’

’

%

a3 “ 1
3a2b “ 0
3ab2 “ 0
b3 “ 0

,

$

’

’

&

’

’

%

a3 ` c3 “ 1
3a2b` 3c2d “ 0
3ab2 ` 3cd2 “ 0
b3 ` d3 “ 1

,

$

’

’

&

’

’

%

a3 ` c3 “ 1
3a2b` 3c2d “ 0
3ab2 ` 3cd2 “ 1
b3 ` d3 “ 0

For the first system we get a “ 1 and b “ 0 so the isotropy subgroup of x3 is
"ˆ

1 0
c d

˙

, pc, dq P Rˆ R˚
*

.

For the second system, c “ 0 or d “ 0 and so a “ 0 or b “ 0 because if none of them was
zero we would get by division member to member from a2b “ ´c2d and ab2 “ ´cd2 that
ad´ bc “ 0. It results that the isotropy subgroup of x3 ` y3 is

"ˆ

1 0
0 1

˙

,

ˆ

0 1
1 0

˙*

.

Finally the third system leads to

a “ c “
1
3
?

2
and b “ ´d “

˘1
3
?

2
?

3
.

This last calculation gives 3. For the points 1. and 2. we recall that for a group G acting on
a set E, there is a one to one correspondence between the orbit of a point m P E and the set
G{Gm of the left (or right) classes of G modulo the isotropy subgroup Gm of m. Moreover,
because here G is a Lie group acting smoothly on a manifold E this one to one correspondence
is a smooth immersion. In our case, because G “ GL2pRq is a 4-dimensional Lie group and
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the set E is the space H3 of homogeneous polynomial functions of degree 3 a 4-dimensional
vector space, we get in the first case that the orbit O1

3 XH3 is an immersed submanifold of
dimension 2 in a space of dimension 4 and so cannot be open. On the other hand, for the orbit
O2

3 XH3, we obtain that its dimension is 4 in the 4-dimensional vector space H3 and so it is
an open subset of H3. ˝

Corollary 12 O2
3 is an open subset of pC8pU,Rq, dq.

Proof Indeed we have seen in the proposition 2 that the application

T3 : C8pU,Rq Ñ H3, H ÞÑ T3pHq

is continuous. So, because by its very definition O2
3 “ T´13 pO2

3 XH3q, it is open since O2
3 XH3

is itself open. ˝

Let us define the polynomial functions P,Q P Rrts by the formulas P ptq “ Hp1, tq and
Qptq “ Hpt, 1q. We can notice that Qptq “ t3P p1{tq. Then, as the following lemma says, the
separability of H expressed by the special form p˚q of H, can be translated using the type of
roots belonging to the polynomial functions P and Q.

The next result will be very useful in what follows but its proof is just elementary calcu-
lations based upon a discussion of different cases and left to the reader.

Lemma 13
Let H be a non zero homogeneous polynomial with degree 3. If H is separable then at least

one of the two polynomial functions P or Q defined above has its degree equal to 3 and has
either a triple real root or only one real root and two (non real) conjugated complex roots.

Remark 3 Using the previous result we can get another proof that the function H defined by
Hpx, yq “ x2y does not belong to S. Indeed in this case, with the notations introduced above,
neither P ptq “ t nor Qptq “ t3P p1{tq “ t2 have their degree equal to 3.

The statement of the previous lemma can be easily generalized to any function H such
that dpHq “ 3. Indeed,

Lemma 14 Let H be a function with a 2-jet zero and belonging to O3. If H is separable then
T3pHq can be written as

T3pHq “ αpax` byq3 ` βpcx` dyq3.

Proof Indeed the terms of degree ě 4 do not contribute in the discussion according to the
proposition 3. ˝

Many functions belonging to O3 and not to S can be obtained also using the next result:

Proposition 15 If a, b, c are three distinct real numbers then the homogeneous polynomial
function Hpx, yq “ py ´ axqpy ´ bxqpy ´ cxq does not belong to S.

12



Proof Indeed in this case P and Q have three distinct real roots a, b, c so it cannot belong
to S. ˝

Proposition 16
1. Let be H a function with a vanishing 2-jet at O. Then,

H P O1
3 ñ H R S̊.

2. O2
3 Ă S̊.

Proof
1. Let H be a function with a vanishing 2-jet at O and such that H P O1

3 X S. Then
T3pHq “ pax ` byq3 for some real numbers a, b such that pa, bq ­“ p0, 0q. Let us assume for
example that a ­“ 0. For ε ą 0 let us denote

Hε :“ H ` εpax` byqpax` by ´ εyqpax` by ` εyq.

Then Hε is ε-close to H and

T3pHεq “ pax` byq
3 ` εpax` byqpax` by ´ εyqpax` by ` εyq.

If we denote X “ ax` by then

T3pHεq “ X3 ` εXpX ´ εyqpX ` εyq “ Xpp1` εqX2 ´ ε3y2q.

If we consider the polynomial Qεptq :“ T3pHεqpt, 1q, then it has three distinct real roots,
corresponding to the roots of linear equations

at` b “ 0, at` b “
ε3{2
?

1` ε
, at` b “ ´

ε3{2
?

1` ε
,

namely

´
b

a
´

ε3{2

a
?

1` ε
, ´

b

a
, ´

b

a
`

ε3{2

a
?

1` ε
.

It results from the proposition 15 that Hε does not belong to S, so H R S̊.
2. By the very definition of O2

3, a function H belonging to O2
3 is such that T3pHq is in

the orbit of x3 ` y3 and so, according to the theorem 17 below, we get that up to a change of
coordinates H can be considered as H “ x3` y3 and so belongs to S. So O2

3 Ă S and because
O2

3 is open we get O2
3 Ă S̊. ˝

In the previous proof we used the next theorem that we can find in the references [8, 3,
11, 5]. More precisely, for example in [5], one can find it in chapter 15, theorem 15.1 or, in the
paper [11], stated in the theorem 3.1 p 364. Let us outline that the singularity which appears
here is called a D4-singularity or hyperbolic umbilic. Recall that this singularity can be viewed
as well as x3 ` y3 or x3 ` xy2 (see the point 3 of Proposition 11 above).

Theorem 17 Let H be a function of two variables with a vanishing 2-jet at O. If T3pHq “
x3`xy2, then it exists a change of variables ϕ in a neighborhood of O such that H ˝ϕpu, vq “
u3 ` uv2.
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Corollary 18 If H has its 3-jet at O equal to zero then H does not belong to S̊.

Proof Indeed, if the 3-jet of H at O is zero then for all ε ą 0 the function Hε :“ εx2y`H
is ε-close of H and cannot belong to S. ˝

The following theorem summarizes the previous results:

Theorem 19 For n “ 2 we have S̊ “ AMO YO
2
3 “ O1 YO2 YO

2
3.

4.2 The case where the number of variables is greater than 3

The case of a sufficiently great number of variables (n ě 3) is based on a simple inequality,
true in this case and false for n “ 2, as we will see in the lines below.

In order to deal with this case we need to introduce some objects and notations. Let us
denote by Hk the vector space of real homogeneous polynomials of degree k with n indetermi-
nates (we consider the polynomial zero as homogeneous of degree k). For r P N and I Ă v1, nw
let us denote

Ar,I “

#

x1P1 ` ¨ ¨ ¨ ` xrPr `
ÿ

iPI

x3i { where Pi P H2

+

.

The set Ar,I is an affine subspace of H3 of dimension rnpn`1q
2 .

Now let us denote by ϕr,I the function defined on GLpRnq ˆAr,I by ϕr,IpA,P q “ P pAXq
and

Ωr :“
ď

IĂv1,nw

Impϕr,Iq.

Lemma 20 If H is a function singular at the origin, belonging to O2prqXS, then T3pHq P Ωr.

This lemma remains true for r “ 0 and, in this case, the notation O2p0q will denote by
extension the space E2 of functions H with T2pHq “ 0.

Proof By the very definition of the set S, if H P S then there is a change of variables
px1, ¨ ¨ ¨ , xnq ÞÑ pu1, ¨ ¨ ¨ , unq and n smooth functions H1, ¨ ¨ ¨ , Hn, each of them depending only
on one variable, such that H can be written in a neighborhood of the origin as

Hpx1, ¨ ¨ ¨ , xnq “ H1pu1q ` ¨ ¨ ¨ `Hnpunq.

Because the 1-jet of H is zero at the origin we get, using proposition 3, that the first derivative
at 0 of the functions Hi vanish.

We also know that the rank of the Hessian of H at the origin is the same as those of
the Hessian at the origin of the function H1pu1q ` ¨ ¨ ¨ `Hnpunq in the variables pu1, ¨ ¨ ¨ , unq.
By reindexing the variables ui if necessary, we can assume that the Taylor expansions of the
functions Hi at the origin have the form:

@i P v1, rw Hipuiq “ αiu
2
i ` α

1
iu

3
i ` ¨ ¨ ¨ with αi ­“ 0 and @i P vr ` 1, nw Hipuiq “ α1iu

3
i ` ¨ ¨ ¨

For each 1 ď i ď n the Taylor expansion at the order 1 of ui can be written

ui “
n
ÿ

j“1

aijxj `
ÿ

1ďp,qďn

bipqxpxq ` ¨ ¨ ¨

14



The equality

Hpx1, ¨ ¨ ¨ , xnq “
i“r
ÿ

i“1

αiu
2
i ` α

1
iu

3
i `

n
ÿ

i“r`1

α1iu
3
i ` ¨ ¨ ¨

implies that the polynomials T2pHq and T3pHq are given by

T2pHq “
r
ÿ

i“1

αi

˜

n
ÿ

j“1

aijxj

¸2

and

T3pHqpx1, ¨ ¨ ¨ , xnq “ 2
i“r
ÿ

i“1

αi

˜

n
ÿ

j“1

aijxj

¸˜

ÿ

1ďp,qďn

bipqxpxq

¸

`

n
ÿ

i“1

α1i

˜

n
ÿ

j“1

aijxj

¸3

.

Let us denote I “ ti P v1, nw { α1i ­“ 0u and a1ij “ pα
1
iq
1{3aij if i P I and a1ij “ aij if i R I.

The matrix A “ pa1ijq1ďi,jďn is invertible because the matrix paijq1ďi,jďn is itself invertible.
Let us denote b1ipq “

2αi

pα1iq
1{3 bipq if i P I and b1ipq “ 2αibipq if i R I and let us define the

matrices B1i “ pb
1
ipqq1ďp,qď and Bi “t A´1B1iA

´1. Finally if we denote by Pi the polynomials
of H2 defined by

Pipx1, ¨ ¨ ¨ , xnq “
t XBiX where X “

¨

˚

˝

x1
...
xn

˛

‹

‚

, and P “
r
ÿ

i“1

xiPi`
ÿ

iPI

x3i ,

we get the equality T3pHq “ ϕr,IpA,P q proving that T3pHq belongs to Ωr. ˝

Lemma 21 If r ă pn´1qpn´2q
3pn`1q then the set Ωr has no interior point.

Proof
If r ă pn´1qpn´2q

3pn`1q then the dimension n2 ` rnpn`1q
2 of the affine space MnpRq ˆ Ar,I is

strictly less than npn`1qpn`2q
6 which is the dimension of H3. As ϕr,I is a differentiable map

defined on the open set GLpRnq ˆAr,I of MnpRq ˆAr,I with values in H3, then Impϕr,Iq has
measure zero [8, 13].

It follows that the set Ωr has measure zero because it is a finite union of the sets Impϕr,Iq,
so it has no interior point. ˝

Theorem 22
1. If rn is the largest integer such that rn ă

pn´1qpn´2q
3pn`1q then

S̊ Ă O1 YO2pnq YO2pn´ 1q Y ¨ ¨ ¨ YO2prn ` 1q.

2. For r ď n´ 2, O2prq Ć S̊.
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Proof
1. Let us prove that if H R O1 Y O2pnq Y O2pn ´ 1q Y ¨ ¨ ¨ Y O2prn ` 1q then H R S̊.

So we suppose that H P E1 X O2prq where 0 ď r ď rn (we recall that E1 denotes the set of
singular function at the origin so Oc1). Because the set Ωr has no interior point in H3 we can
find some polynomial Q, close enough to T3pHq, such that Q R Ωr. In this case the function
H̃ :“ H ´ T3pHq ` Q is close enough to H, belongs to E1 X O2prq and T3pH̃q “ Q R Ωr. It
results from the lemma 20 that H̃ does not belong to S and so H R S̊.

2. Let be H P O2prq defined by H “ x21`¨ ¨ ¨`x
2
r . Now, because r ď n´2 we can define

for all ε ą 0 the function Hε :“ H ` εx2r`1xr`2. Let us verify that Hε is not separable. First
of all if r “ 0, it results from the Proposition 4. So let us assume r ě 1 and write around O

x21 ` ¨ ¨ ¨ ` x
2
r ` εx

2
r`1xr`2 “ H1pu1q ` ¨ ¨ ¨ `Hnpunq.

Because the 1-jet at O of Hε is zero and T2pHεq ­“ 0, we know from proposition 3 that the
1-jets of all the Hi are vanishing. Moreover the type of the quadratic form defined by the 2-jet
is invariant by change of coordinates so, without loss of generality we can suppose that for
1 ď i ď r we have Hipuiq “ u2i ` opu

2
i q and that for i ě r ` 1 we have Hipuiq “ Opu3i q. Now,

according Morse lemma we can even assume that for 1 ď i ď r, Hipuiq “ u2i and so

x21 ` ¨ ¨ ¨ ` x
2
r ` εx

2
r`1xr`2 “ u21 ` ¨ ¨ ¨ ` u

2
r `Hr`1pur`1q ` ¨ ¨ ¨ `Hnpunq,

with Hipuiq “ αiu
3
i ` ¨ ¨ ¨ for i ě r ` 1. Let us go back to the notations used in the lemma 20

for all 1 ď i ď n, so

ui “
n
ÿ

j“1

aijxj `
ÿ

1ďp,qďn

bipqxpxq ` ¨ ¨ ¨

By identification we get

x21 ` ¨ ¨ ¨ ` x
2
r “

i“r
ÿ

i“1

˜

n
ÿ

j“1

aijxj

¸2

p˚q

and

εx2r`1xr`2 “ 2
i“r
ÿ

i“1

˜

n
ÿ

j“1

aijxj

¸˜

ÿ

1ďp,qďn

bipqxpxq

¸

`

n
ÿ

i“r`1

αi

˜

n
ÿ

j“1

aijxj

¸3

p˚˚q.

Equality p˚q implies that aij “ 0 for 1 ď i ď r and j ě r ` 1. Then the identity p˚˚q implies
that

εx2r`1xr`2 “
n
ÿ

i“r`1

αi

˜

n
ÿ

j“r`1

aijxj

¸3

.

Because the matrix paijqr`1ďi,jďn is invertible, the function εx2r`1xr`2 becomes separable
leading to a contradiction with the proposition 4.

Finally, using this result for small enough ε we deduce that H does not belong to S̊.
˝

Remark 4 As we have already stated in the introduction of this section 4, a straightforward
consequence of the theorems 19 and 22 is that the separable flat functions are in SzS̊.
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