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PknB is an essential serine/threonine protein kinase required for myco-

bacterial cell division and cell-wall biosynthesis. Here we demonstrate that

overexpression of the external PknB_PASTA domain in mycobacteria results

in delayed regrowth, accumulation of elongated bacteria and increased sensi-

tivity to b-lactam antibiotics. These changes are accompanied by altered

production of certain enzymes involved in cell-wall biosynthesis as revealed

by proteomics studies. The growth inhibition caused by overexpression of

the PknB_PASTA domain is completely abolished by enhanced concentration

of magnesium ions, but not muropeptides. Finally, we show that the addition

of recombinant PASTA domain could prevent regrowth of Mycobacterium
tuberculosis, and therefore offers an alternative opportunity to control replica-

tion of this pathogen. These results suggest that the PknB_PASTA domain is

involved in regulation of peptidoglycan biosynthesis and maintenance of

cell-wall architecture.
1. Introduction
Serine/threonine protein kinases (STPKs) are widely distributed in Gram-

positive and Gram-negative bacteria [1]. Mycobacterium tuberculosis, the causative

agent of tuberculosis, possesses 11 STPKs [2] and two of them, PknA and PknB,

are indispensable for growth in laboratory culture [3–5], while PknE [6], PknG

[7,8] and PknH [9] have been implicated in M. tuberculosis virulence. The essential

PknB kinase belongs to a distinct family of STPKs found only in Gram-positive

bacteria [10]. The important feature of these kinases is the presence of the

so-called PASTA (penicillin-binding protein and serine/threonine kinase

associated) domains in the surface-exposed region [11]. In Firmicutes, PASTA-

domain-containing kinases are not essential for growth. In Staphylococcus
aureus, an Stk1 mutant was impaired in virulence and had higher resistance to

Triton X-100 and fosmidomycin [12], while in S. pneumoniae StkP kinase was

important for competence, biofilm formation and virulence [13]. More detailed

investigation of the role of StkP in S. pneumoniae established that it has a crucial

role in coordinating cell division and peptidoglycan synthesis during growth

[14]. By contrast, PrkC in Bacillus subtilis was shown to be important for survival

in stationary phase. A prkC deletion mutant had a significantly lower optical den-

sity in stationary phase compared with the wild-type bacilli [15]. However, in

http://crossmark.crossref.org/dialog/?doi=10.1098/rsob.150025&domain=pdf&date_stamp=2015-07-01
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Figure 1. Schematic representation of PknB constructs and strains generated in this study. Kinase, N-terminal kinase domain (aa 1 – 279); TM, transmembrane
region (aa 331 – 354); TM-PASTA, penicillin and serine or threonine kinase-associated domain (aa 331 – 627); MYC-HIS, His-Tag; PASTA (aa 354 – 627).
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later studies it was demonstrated that PrkC regulated a novel

muropeptide-mediated germination pathway [16] and poss-

ibly remodelling of the cell wall via controlling expression of

YocH muralytic enzyme [17].

In Streptomyces coelicolor, a PASTA domain containing

kinase PknB regulates carbon flux and antibiotic pro-

duction, and is not essential for growth [18]. In

Corynebacterium glutamicum, PknB is also dispensable for

growth, and a significant change in replication and cell

shape could only be detected in mutants missing several

STPKs [19]. In this bacterium, PknB apparently regulates

polymerization of FtsZ; however, the precise mechanism

and biological significance of this observation require

further investigation.

Mycobacteria appear to be a unique bacterial group in

which PknB is essential for growth [3–5]. Its overexpression

or partial depletion in M. smegmatis and M. bovis BCG

caused dramatic alterations of cellular morphology and

growth inhibition; the enzymatic activity of PknB was

demonstrated to be essential for the observed effects [4,5].

Over the past decade, great progress has been achieved in

the identification of PknB substrates [10]. They include pro-

teins from various functional categories: cell-wall

enzymes—InhA [20], PbpA [21] and MabA [22]; regulatory

proteins—SigH [23], GarA [24] and FhaA [25]; and proteins

involved in cell division—Wag31 [4] and MviN [26]. Also,

PknB regulates an ‘oxygen-mediated replication switch’,
and hence transition to dormancy and resuscitation [27].

Therefore, it is not surprising that PknB has been considered

as a critical drug target for development of anti-tuberculosis

antimicrobials. Possible application of PknB kinase inhibitors

for killing of M. tuberculosis was investigated. Yet only

limited success has been achieved, mainly because of poor

penetration of these agents into mycobacterial cells [28].

PknB consists of several domains (figure 1); functions for

some of them have been established, while the precise role of

others remains unknown [29]. The components of PknB

include a conserved catalytic kinase domain, a juxtamem-

brane part attached to a membrane-spanning region and

surface-exposed sensory component, consisting of PASTA,

designated as PknB_PASTA domain [30,31]. PASTA domains

have been proposed to recognize growing strands of nascent

peptidoglycan and activate STPKs. Structural studies showed

that B. subtilis PASTA domain binds synthetic muropeptides

at relatively high affinity, with the presence of the diaminopi-

melic acid in the muropeptide being crucial for this binding

[32]. The PknB_PASTA domain from mycobacteria can also

bind synthetic muropeptides; however, it remains unclear

whether this binding influences activation of PknB, bacterial

growth and resuscitation [33].

In this study, we investigated whether the extracellular

PknB_PASTA domain itself plays a distinct role in mycobacter-

ial growth, and therefore can be potentially used as a drug

target or a novel chemotherapeutic agent. The results presented
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here suggest that the PASTA domain probably recognizes

growing peptidoglycan strands, and regulates production of

penicillin-binding proteins and distribution of proteins

involved in division and generation of septum. Furthermore,

our data indicate that the interactions of the PknB_PASTA

domain with the cell wall are important, and that its abundance

may serve as a controlling mechanism for the integrity of the cell

wall and bacterial growth.
hing.org
Open

Biol.5:150025
2. Material and methods
2.1. Bacterial strains and growth media
Mycobacterium smegmatis mc2155, M. bovis BCG Glaxo strain

and M. tuberculosis H37Rv were grown in Sauton’s medium or

Middlebrook 7H9 (Becton, Dickinson and Company) medium

supplemented with Albumin-Dextrose Complex (designated as

supplemented 7H9 medium). M. smegmatis was also grown in

Lysogeny broth (LB) with addition of 0.05% (w/v) Tween 80

to prevent bacterial aggregation. All bacterial strains were culti-

vated at 378C with shaking in BD Falcon conical tubes or in

conical flasks. Where needed, antimicrobials were added at the

following concentrations (mg ml21): hygromycin 50; kanamycin

50; tetracycline 0.02.

Bacterial growth was followed by measurement of absor-

bance at 580 nm in a Jenway spectrophotometer. Growth of

M. smegmatis in various media was performed using a Bioscreen

Growth Analyser as described previously [34]. Presented Bio-

screen data are mean values of two independent experiments

done in quintuplicate. Three independent transformants were

used for all growth experiments. Viability was assayed by esti-

mation of colony-forming unit (CFU) on 7H10 agar (Becton,

Dickinson and Company). Supernatants were prepared from

logarithmic phase cultures of M. tuberculosis (OD580 ¼ 0.6–0.8)

grown in Sauton’s medium, filter sterilized twice and used

for experiments immediately. For dose-dependency experiments

culture supernatants were freeze-dried and reconstituted

in sterile water. For low-magnesium control experiments

concentration of MgSO4 in Sauton’s medium was 0.2 mM.

2.2. Microscopy
Mycobacterium smegmatis bacilli were mounted on PBS and

observed by phase contrast microscopy using a Diphot 300

inverted microscope with a 100 W mercury light source.

Images were recorded using a 12/10 bit, high-speed Peltier-

cooled CCD camera (FDI, Photonic Science) using IMAGE-PRO

PLUS (Media Cybernetics) software. Labelling of nascent peptido-

glycan was done as described previously [35]. Briefly,

mycobacteria were grown in Sauton’s medium in the presence

of 20 ng ml21 of tetracycline to exponential growth phase

(OD600 � 0.5). A mixture of Vancomycin-BODIPY (Life Technol-

ogies) and unlabelled vancomycin (1 : 1) was added to cultures to

the final concentration of 2 mg ml21, followed by a 2 h incubation

at 378C with shaking. Bacteria were washed twice with PBS

containing 0.1% Tween 80 and used for fluorescence microscopy.

2.3. Generation PknB constructs for overexpression
studies

The pknB gene and its variants (electronic supplementary

material, table S1) were amplified from M. tuberculosis H37Rv
DNA and cloned into the BamHI and SpeI sites of the pMind

plasmid [36] (for details of primers see electronic supplementary

material, table S2). Constructs were confirmed by sequencing

and electroporated into M. smegmatis or M. tuberculosis. Over-

expression of pknB or its variants was induced by the addition

of tetracycline and confirmed by qRT-PCR.

2.4. Preparation of muropeptides
Peptidoglycan from Escherichia coli and mycobacteria was iso-

lated and purified as described previously [37,38]. For growth

assays peptidoglycan (2 mg) was digested with mutanolysin,

lysozyme, RpfB or MltA at 378C for up to 72 h. Muramidases

were used at the final concentration of 100 mg ml21. Peptido-

glycan digestion with mutanolysin and MltA was carried out

in buffer containing 80 mM NaH2PO4, pH 4.8; with lysozyme

in 25 mM NaH2PO4, pH 6.0; and with RpfB in 40 mM sodium

citrate, pH 6.5. The presence of muropeptides was confirmed

by HPLC. In separate experiments, peptidoglycan was soni-

cated three times for 30 s, briefly spun down at 100g to

remove big fragments and used for growth assays. Synthetic

muropeptides were prepared as described previously [39].

2.5. Determination of minimum inhibitory
concentration for selected antimicrobials

Tests were performed in 96-well microtitre plates using a

dilution method [40]. Briefly, M. smegmatis (1 � 105 CFU)

was inoculated in 100 ml of Sauton’s medium supplemented

with kanamycin and tetracycline, and a range of concentrations

of antimicrobial tested. Plates were incubated for three days at

378C. MIC was determined as the lowest concentration at

which no visible growth was detected after 3 days of incu-

bation. Fresh antimicrobial stocks were prepared for each

experiment; four independent experiments were done.

2.6. Effect of recombinant PASTA protein on growth
of Mycobacterium tuberculosis

Recombinant PASTA was purified as described previously [31]

and filter sterilized prior to growth experiments. Mycobacteria

(103 cells ml21) were inoculated in 16-well microtitre plates

containing supplemented 7H9 medium with different concen-

tration of sterile rPknB_PASTA. For each concentration four

replicates were inoculated. Sealed plates were incubated at

378C without shaking. Optical density was measured after 15

and 25 days of incubation. The experiment was repeated

twice. Similar results were obtained when mycobacteria were

grown in Falcon tubes or conical plastic flasks. M. tuberculosis
stationary phase culture was stored at 48C for two months

and 2 � 104 cells ml21 were inoculated in conical flasks. The

flasks were incubated at 378C for up to 12 weeks. Optical

density was measured at regular intervals using a Jenway

spectrophotometer. The assay was performed in triplicate,

three times.

2.7. Transcriptional profiling
Total RNA was isolated from 10 ml of mycobacterial cultures

from exponential growth phase using the TRIzol method

[41]. DNA contamination was removed with Turbo DNA-

free DNAase (Ambion) before cDNA was generated using
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Superscript Reverse Transcriptase II (Invitrogen) and gene-

specific primers (electronic supplementary material, table S2).

Q-PCR was performed in a Corbett Rotor Gene 6000 real-

time thermocycler using Absolute QPCR SYBR Green mix

(Thermo) and gene-specific primers. Levels of expression

were normalized to 16 s rRNA [42].

2.8. Protein electrophoresis and Western blot
Mycobacteria were collected by centrifugation, washed in PBS

and resuspended in buffer containing 50 mM Tris–HCl, pH

8.0 and 150 mM NaCl. Bacteria were lysed in FastPrep-24

Instrument (MP Biomedicals, UK) using glass beads. Lysates

were centrifuged at 14 000g for 20 min to separate soluble and

insoluble fractions. Proteins were separated, using 12% SDS

PAGE and transferred on nitrocellulose membrane. Primary

antibodies were anti-polyhistidine antibodies (Sigma); alka-

line-phosphatase conjugate anti-mouse antibodies were used

as secondary antibodies. Sigma Fast BCIP/NBT was used as a

substrate to visualize recognized proteins.

2.9. Isolation of membrane protein fraction
for proteomics analysis

Membrane fractions were prepared as described previously

[43]. Briefly, M. smegmatis TMP and MIND strains were inocu-

lated in 2 l conical flasks containing 500 ml Sauton’s medium.

The cultures were incubated at 378C with shaking (200 r.p.m.)

for 3 h. Cultures from two flasks were used for preparation of

membrane fractions of each strain. The bacteria were harvested

by centrifugation at 6000g for 20 min and washed with PBS.

The pellets were resuspended in 10 ml of extraction buffer con-

taining 50 mM Tris–HCl, pH 8.0, 150 mM NaCl, 10 mM MgCl2
and stirred on ice for 10 min. The cell suspension was sonicated

before adding 100 mg of DNase I per gram of cells and stirring

on ice for 5 min to decrease viscosity. The suspension was cen-

trifuged at 25 000g for 25 min at 48C. The pellet was discarded

and the supernatant centrifuged at 100 000g for 60 min at 48C.

After discarding supernatant the pellet was carefully resus-

pended in 100 mM sodium carbonate buffer, pH 11.5 and

centrifuged at 100 000g for 60 min. The centrifugation

and resuspension in carbonate buffer steps were repeated a

minimum of three times before a final resuspension and cen-

trifugation step using sterile MilliQ water. The membrane

fractions were resuspended in 1 ml sterile deionized water

and freeze-dried.

2.10. Analysis of membrane proteins
Proteomics was carried out by the University of Leicester

Proteomics Facility (PNACL, University of Leicester, http://

www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/

cbs/protein-and-dna-facility/pnacl). Trypsin digestion of mem-

brane proteins was performed using a filter-aided sample

preparation method [44]. LC–MS/MS was carried out using

an RSLCnano HPLC system (Dionex, UK) and an LTQ-

Orbitrap-Velos mass spectrometer (Thermo Scientific). Peptides

were eluted from the trap column at a flow rate of 0.3 ml min21

and through a reverse-phase PicoFrit capillary column (75 mm

i.d. � 400 mm) containing Symmetry C18 100 Å media

(Waters, UK) that was packed in-house using a high-pressure

device (Proxeon Biosystems, Denmark) over a period of 4 h,
with the output of the column sprayed directly into the nano-

spray ion source of the LTQ-Orbitrap-Velos mass spectrometer.

The raw data file obtained from each LC–MS/MS acqui-

sition was processed using Proteome DISCOVERER (v. 1.4.0.288,

Thermo Scientific), searching each file in turn using MASCOT

[45] (v. 2.2.04, Matrix Science) against the UniProtKB-

Swissprot database. The peptide tolerance was set to

10 ppm and the MS/MS tolerance was set to 0.02 Da. Fixed

modifications were set as carbamidomethyl (C) and variable

modifications set as oxidation (M). A decoy database search

was performed. The output from Proteome DISCOVERER was

further processed using SCAFFOLD Q þ S4 (v. 4.0.5, Proteome

Software, Portland, OR, USA). For quantitative experiments

the digested peptides were labelled with the TMTsixplex

Label Reagent kit (Life Sciences) according to the manufac-

turer’s instructions. SCAFFOLD Qþ (v. 4.3.4, Proteome

Software) was used to quantify Label Based Quantitation

(iTRAQ, TMT, SILAC) peptide and protein identifications.

Both protein and peptide identifications were accepted if

they could be established at greater than 95.0% probability

and contained at least two identified peptides. Peptide prob-

abilities from X! Tandem were assigned by the Peptide

Prophet algorithm [46] with SCAFFOLD delta-mass correction.

Peptide probabilities from MASCOT were assigned by the

SCAFFOLD Local FDR algorithm. The mass spectrometry pro-

teomics data have been deposited to the ProteomeXchange

Consortium via the PRIDE partner repository with the

dataset identifiers PXD002120 and 10.6019/PXD002120.

2.11. Analytical gel-filtration
Fifty microlitres of PknB_PASTA at a concentration of 50 mM

were injected on a S75 10/300 column (GE Life Science) at a

0.4 ml min21 flow rate. The column was equilibrated with

25 mM Tris–HCl (pH 8.5), and 100 mM NaCl with or without

25 mM MgSO4. For the injection in the column in the buffer

without MgSO4, the protein was pre-incubated with 5 mM

EDTA. In the case of gel-filtration in the presence of MgSO4,

the protein was pre-incubated with 25 mM MgSO4.

2.12. Nuclear magnetic resonance experiments
All nuclear magnetic resonance (NMR) experiments were

carried out at 208C on Bruker Avance III 700 (1H–15N double

resonance experiments) or Avance III 500 (1H–13C–15N

triple-resonance experiments) spectrometers equipped with

5 mm z-gradient TCI cryoprobe, using the standard pulse

sequences. NMR samples consist of approximately 50 mM
15N-labelled protein dissolved in 10 mM phosphate buffer

(pH 6.8), 100 mM NaCl, with 5% D2O for the lock prepared

as described elsewhere [31].
3. Results
3.1. The external PASTA domain is important

for PknB function
It has been previously shown that overexpression of enzy-

matically active PknB in mycobacteria results in growth

inhibition and alteration of bacterial shape [4]. Additionally,

the external PknB_PASTA domain is indispensable for func-

tional complementation of PknB conditional mutants of

http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/protein-and-dna-facility/pnacl
http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/protein-and-dna-facility/pnacl
http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/protein-and-dna-facility/pnacl
http://www2.le.ac.uk/colleges/medbiopsych/facilities-and-services/cbs/protein-and-dna-facility/pnacl
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Figure 2. Effect of pknB and pknB-DPASTA overexpression on growth of
M. smegmatis. Mycobacteria (5 � 106) from early stationary phase were
inoculated in 100-well honeycomb plates, containing various media and incu-
bated in Bioscreen Growth analyser at 3788888C with shaking for 5 days in the
presence of tetracycline. Presented data are mean values of 5 replicates from
two independent experiments. Standard deviations were 10% or less of
average values and are not shown for clarity.
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M. smegmatis and M. tuberculosis [47]. However, the precise

role of the PknB_PASTA domain in regulation of mycobacter-

ial growth and peptidoglycan biosynthesis remains unclear.

In our initial experiments, we investigated growth patterns

of M. smegmatis overexpressing pknB.

A full-length pknB or its truncated form missing the region

encoding the external PASTA domain ( pknB-DPASTA) was

cloned into pMind plasmid [36], containing a tetracycline-regu-

lated promoter (figure 1; electronic supplementary material,

table S1). The plasmids were transformed into M. smegmatis
and the resultant strains, designated as PknB1 ( pknB), PknB5

( pknB-DPASTA) and MIND (empty plasmid), grew similarly in

all media tested in the absence of the inducer tetracycline (data

not shown). However, addition of tetracycline to the PknB1 or

PknB5 strains affected growth in liquid medium (figure 2).

This inhibitory effect was probably caused by the induction of

expression of pknB and pknB-DPASTA from the pMind plasmid.

When grown in the presence of tetracycline, PknB1 and PknB5

expressed the pknB versions from pMind at relatively high

level, corresponding to 1% (+0.3%) of all 16s-rRNA transcripts

as judged by quantitative RT-PCR; no expression of the target

gene was detected in mycobacteria in the absence of tetracycline.

Interestingly, overexpressing the pknB versions resulted in

different growth characteristics. In all media, the PknB1 strain

had a longer apparent lag phase (time to detectable turbidity)

and slower growth rate (figure 2; electronic supplementary

material, table S3), indicating that overexpression of the trun-

cated PknB missing the external PASTA domain was less toxic

than overexpression of the full-length kinase.

To further investigate the role of the PknB_PASTA domain

in bacterial growth directly, we cloned the pknB region encoding

the membrane-anchored external domain of M. tuberculosis
(designated as tmp, figure 1) into the pMind plasmid and

transformed this plasmid into M. smegmatis. In the absence of

tetracycline, both MIND and TMP strains grew similarly

(figure 3a, filled symbols) and their cDNA analysed by q-RT-

PCR contained similar levels of tmp transcripts. However,

addition of tetracycline led to overexpression of the tmp
transcript (reaching 9.6+0.8% from the total 16 s rRNA tran-

scripts) in the TMP strain, which resulted in growth inhibition,

especially in Sauton’s medium (electronic supplementary

material, table S3; figure 3a, open symbols). The TMP strain

required a longer time to initiate bacterial growth, but its

growth rate was identical to the one observed in the MIND con-

trol strain. This phenotype was highly reproducible and did not

change after passage in vitro (electronic supplementary material,

figure S1). Expression of the PASTA domain without the trans-

membrane domain (PknB13), the transmembrane domain on its

own (PknB9) or the transmembrane domain with one PASTA

unit (PknB10; figure 1) had no significant effect on bacterial

growth (figure 3b). Strains overexpressing the PASTA domain

with two or three PASTA units (PknB11 and PknB12, respect-

ively) displayed a marginal growth defect. All PASTA variants

were expressed at similar levels according to qRT-PCR

(data not shown). We generated Myc-6xHis-tagged versions of

TMP (designated as TMPH strain; electronic supplementary

material, table S1) and of the soluble PASTA domain (desig-

nated as PknB14) and investigated their localization by

western blot. TMPH was detected in the envelope fraction,

while PknB14 was found in the cytoplasm M. smegmatis
(figure 3c,d). Importantly, TMPH and TMP strains showed no

difference in growth under all conditions described here (data

not shown). These results confirm that only the surface-exposed
domain containing four PASTA units significantly impaired

mycobacterial growth.

Overproduction of the PknB_PASTA domain also influ-

enced cellular morphology. Microscopic examination of the

strains revealed accumulation of elongated TMP cells of irregu-

lar shape (figure 4b, left panel), similar to cells with partially

depleted PknB [4], suggesting that the overexpressed PASTA

domain possibly interfered with the PknB function. Further-

more, Vancomycin-BODIPY labelling revealed anomalous

distribution of nascent peptidoglycan in TMP mycobacteria

(figure 4b, middle panel). While in control MIND cells newly

synthesized peptidoglycan was mainly localized at the poles

and mid-cell (figure 4a), TMP cells displayed a diffused staining

across the entire cell surface (figure 4b). We also observed signifi-

cant proportions of unlabelled or weakly labelled TMP cells

(figure 4b). TMP mycobacteria tend to aggregate, suggesting a

modified cell surface, delayed cell separation or increased lysis.

3.2. Elevated Mg2þ ion level eliminates TMP-mediated
growth inhibition

The results described above support the functional importance

of the PknB_PASTA domain for PknB activity. The structural
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Figure 3. Effect of PknB_PASTA overexpression on M. smegmatis growth. (a) Comparative growth kinetics of M. smegmatis strains in Sauton’s medium. The same inocu-
lum (approx. 2 � 106 cells per well) was used to seed induced (þtetracycline) and control cultures, respectively. (b) Overexpression of non-secreted PASTA domains or
transmembrane domain on its own does not affect mycobacterial growth. (c) Detection of PknB_TM-PASTA-6 � HIS in membrane fraction of M. smegmatis strains by
western blotting. (d ) Detection of the PASTA domain missing the transmembrane region in cytoplasmic fraction of M. smegmatis strains by Western blotting.
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studies of the PknB_PASTA suggested that this domain could

dimerize beacuse of conformational flexibility between the

different PASTA domains [31]. It was proposed that the bind-

ing of putative ligands could induce the dimerization of

kinase domains and consequent trans-activation of PknB [31].

Thus, the PASTA domain could serve as a receptor for signal-

ling molecules (e.g. muropeptides) and activate bacterial

resuscitation and growth, employing the mechanism pre-

viously proposed for B. subtilis spore germination [16,39].

The PknB_PASTA domain missing the functional kinase

domain may compete with the native PknB for the ligands

and dysregulate the PknB-mediated signalling pathways.

Therefore, we investigated whether culture supernatant from

growing mycobacteria (potentially containing the putative

ligand) would eliminate the growth defect caused by TMP

overexpression. Indeed, the growth inhibition was abolished

by the addition of culture supernatant in a dose-dependent

manner (figure 5a). Further tests showed that the active

compound was a low-molecular-weight chemical resistant

to heating and it was present in Sauton’s medium prior to
exposure to bacteria (data not shown). Eventually, we demon-

strated that the active entity was Mg2þ from MgSO4 or MgCl2.

Elevated concentration of Mg2þ could completely abolish the

inhibition by PASTA-domain overexpression (figure 5b) and

the dose-dependent effect of conditioned medium was largely

because of increased Mg2þ concentrations (data not shown).

Supernatants obtained from cultures grown in lower-MgSO4

(0.2 mM) medium had only a moderate growth-stimulatory

effect on both control and TMP strains (figure 5c). The increa-

sed Mg2þ concentration did not influence expression of tmp
( p . 0.05, t-test) and the production of TMPH, a His-tagged ver-

sion of TM-PASTA (data not shown). Magnesium also improved

growth of PknB1 and PknB5 strains (data not shown).

To investigate whether the PknB_PASTA domain was

able to bind Mg2þ ions, we used NMR methodology [31].

A 15N-labelled sample of recombinant PknB_PASTA (50 mM)

was titrated with increasing amounts of MgCl2 (or MgSO4)

up to 50 mM. The ion binding with either a lateral chain or

the protein backbone would generate chemical-shift pertur-

bation on the 1H–15N resonance measured in the HSQC



(a)

(b)

Figure 4. Overexpression of PknB_PASTA results in alteration of bacterial mor-
phology and vancomycin labelling. Mycobacteria from logarithmic growth phase
were labelled with Vancomycin-BODIPY conjugate, washed and mounted in PBS
and examined using a Diphot 300 inverted microscope. Three independent fields
for each strain are shown. Bars indicate 5 mm. (a) MIND and (b) TMP. Left panel,
phase contrast; middle panel, fluorescence microscopy; right panel, merged
images. Arrows indicate labelled peptidoglycan.
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experiment [48]. However, no chemical-shift perturbation was

observed in the PknB_PASTA upon addition of MgCl2 or

EDTA, suggesting a lack of interaction between the protein

and Mg2þ ions (electronic supplementary material, figure S2),

and the addition of MgSO4 to recombinant PASTA did not

change the oligomerization state of recombinant PASTA (elec-

tronic supplementary material, figure S3). These results show

that the ameliorating effect of Mg2þ on TMP-mediated

growth inhibition was indirect.

3.3. Muropeptides do not eliminate TMP-mediated
growth inhibition

In separate experiments, we tested the effects of muropeptides

on the growth inhibition in the TMP strain. We used peptidogly-

can from E. coli digested with various muramidases, sonicated
or RpfB-digested peptidoglycan from M. smegmatis, and syn-

thetic muropeptides, N-acetylglucosamine, N-acetylmuramic

acid and N-acetylglucosaminyl–N-acetylmuramic acid (elec-

tronic supplementary material, table S4). We only observed a

minor reduction in the duration of lag phase of TMP strain

from 65 to 52 h in the presence of relatively high concentrations

of digested or sonicated peptidoglycan (0.5 mg ml21 and

higher). The observed reduction in lag phase did not depend

on the type of peptidoglycan used. Synthetic muropeptides,

previously employed for germination of B. subtilis spores [39],

did not reduce growth inhibition at any concentration tested

(10 pM–50 mM) and did not stimulate growth of

M. smegmatis (figure 5d). Among other divalent metals tested

Ca2þ improved the TMP growth; however, it could not be

used at concentrations above 5 mM because of poor solubility.

Since Mg2þ ions are known to stabilize the cell wall and are

frequently used for cultivation of bacteria with defective cell

walls [49], we investigated whether the TMP strain was more

susceptible to various antimicrobials compared with control.
3.4. Overexpression of PknB-PASTA increases sensitivity
of Mycobacterium smegmatis to b-lactam
antibiotics and alters the abundance of
cell-wall proteins

We tested minimum inhibitory concentrations (MIC) of various

antimicrobial agents for PknB1, TMP and MIND strains. MIC of

rifampicin (inhibition of transcription), ethambutol (arabinoga-

lactan biosynthesis) and streptomycin (protein biosynthesis)

were identical in all the strains tested (table 1). However,

the TMP strain was remarkably more sensitive to several

b-lactam antibiotics: meropenem, ampicillin and clavulanate,

an inhibitor of b-lactamase. In the presence of sub-inhibitory

concentration of clavulanate (100 mM), MIC of meropenem for

the TMP strain decreased below 0.15 mM compared with

6.5 mM in the control strain. Interestingly, overexpression of

PknB did not alter antimicrobial susceptibility, suggesting

that the PknB-PASTA domain on its own may perturb peptido-

glycan synthesis, causing higher sensitivity to b-lactams. The

perturbation of peptidoglycan synthesis could also explain

the prolonged lag phase observed in the TMP strain. To address

this possibility, membrane proteins isolated from the MIND

and TMP strains in lag phase were investigated.

In total, we identified 1071 proteins in the membrane

fractions of both strains using LTQ-Orbitrap-Velos mass spec-

trometry. The TMPH strain had 90 proteins specific for this

sample and 95 proteins were detected in the MIND strain

only. The majority of proteins (886) were identified in both

strains. Importantly, production of the PknB_PASTA domain

in the membrane fraction was confirmed by detection of 22

unique fragments with 86% peptide coverage in the TMPH

strain (electronic supplementary material, table S5). Most of

the proteins detected (705) were assigned as hypothetical with

unknown function, while 267 were predicted as membrane or

cell-surface proteins. This result confirms that the extraction

procedure selectively enriched the membrane proteins. A high

number of membrane proteins implicated in transport of

metals, nutrients and enzymes was found in the membrane

fractions of both strains. Next, peptides were labelled

using the TMPsixplex kit to compare the relative abundance

of membrane proteins in TMP and MIND (electronic
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Figure 5. Culture supernatant and high concentration of Mg2þ abolish the inhibitory effect caused by PknB-PASTA overexpression. (a) Culture supernatants abolish growth-
inhibitory effect of PknB_TM-PASTA overexpression in a dose-dependent manner. Relative concentration of culture supernatant added is expressed as ‘fold concentration’. A
value of onefold corresponds to undiluted culture supernatant. The apparent lag phase was calculated as a period of time when culture reached OD600 nm 0.1. (b) Mg2þ

(10 mM) relieves growth inhibition of TMP in a manner comparable with undiluted culture supernatant. (c) Effect of low Mg2þ supernatant on apparent lag phase of TMP
strain. (d ) Effect of synthetic muropeptides on growth of M. smegmatis. Mycobacteria from early stationary phase were washed in Sauton’s medium twice and 5 � 106

bacteria were inoculated in Sauton’s medium, containing culture supernatant or synthetic muropeptides at final concentration of 10 mM. MPP, MurNAc-pentapeptide; DPP,
GlcNAc-MurNAc-peptapeptide; ADPP, GlcNAc-1,6 anhydromuramyl-pentapeptide; TPP, tetra-saccharide-peptide; SN, 50% (v/v) culture supernatant. GlcNAc, N-acetylgluco-
samine; MurNAc, N-acetylmuramic acid; pentapeptide, L-Ala-g-D-Glu-m-DAP-D-Ala-D-Ala. (b,d ) Presented data are mean values of 5 replicates from two independent
experiments. Standard deviations were 10% or less of average values and are not shown for clarity. SN, media were supplemented with culture supernatant.
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supplementary material, table S5). We focused our analysis on

cell division proteins and enzymes involved in cell-wall bio-

synthesis. Most cell division proteins were equally present in

the TMP and MIND strains (data not shown). However,

CwsA was more abundant in the TMP strain (table 2). The pre-

cise function of CwsA is unknown but it has been shown to

interact with CrgA, which is annotated as an inhibitor of

septum formation [50,51]. CrgA was detected only in the mem-

brane fractions of TMP but not in those of MIND, and its

relative abundance could not be calculated. Another CrgA

interaction partner, Wag31, was detected at similar levels in

both strains. Interestingly, the TMP strain had more enzymes

involved in biosynthesis of mycolyl-arabinogalactan (table 2;

electronic supplementary material, table S5), including

several mycolyl- and galactofuranosyl-transferases. Regarding

peptidoglycan-related enzymes, the levels of two metallo-

b-lactamases, L,D-transpeptidase LdtB and D-alanyl-D-alanine

carboxypeptidase DacB1, were increased in the TMP membrane

fraction (table 2). Complete data are available via ProteomeX-

change with identifier PXD002120. Collectively these results

may suggest that the overexpression of the PASTA domain

influences the biosynthesis and architecture of mycobacterial

cell wall.
3.5. The addition of recombinant PASTA protein
abolishes growth of Mycobacterium tuberculosis

The results described above suggest that overexpression of

the PknB_PASTA domain can be employed for growth inhi-

bition and increase of susceptibility to antimicrobials in

medically important pathogen M. tuberculosis. We therefore

investigated whether the PknB_PASTA domain would have

a similar effect in M. tuberculosis. We transformed pMind

pknB7 and empty pMind plasmids (electronic supplementary

material, table S1) into M. tuberculosis H37Rv and investi-

gated growth of the resultant strains (TMP and MIND) in

the presence of tetracycline. As shown in figure 6a, overex-

pression of the external membrane attached PASTA (TMP)

indeed inhibited initiation of M. tuberculosis growth. We

next studied if addition of recombinant PASTA protein con-

taining PASTA units only (residues 354–626, designated as

rPASTA) may alter the growth. We noted that the addition

of rPASTA to M. tuberculosis resulted in growth defect at con-

centration of 10 mg ml21 (figure 6b) and increased apparent

lag phase from 5 to 14 days. This growth inhibition was

temporary and the cultures eventually produced normal

growth, while addition of recombinant PASTA to logarithmic



Table 1. Effect of PknB-PASTA overexpression on antimicrobial susceptibility of M. smegmatis.

strain

minimum inhibitory concentration against antibiotic (mM)

rifampicin streptomycin ethambutol meropenem clavulanate meropenem1clavulanatea ampicillin

MIND 1.2 0.4 2.5 13 – 19.5 .1000 6.5 – 13.0 140 – 170

PknB1 1.2 0.4 2.5 13 – 19.5 .1000 6.5 – 13.0 140 – 170

TMP 1.2 0.4 2.5 6.5 150 – 200 0.13 30 – 45
aClavulanate was added at a concentration of 100 mM.

Table 2. Cell-wall enzymes and proteins differently abundant in TMP compared with MIND.

M. tuberculosis
protein

M. smegmatis
protein protein description

ratio TMP/MIND
log2-fold

Rv0014c MSMEG_0028 His-Tagged TM-PASTA 5.9

Rv0008c MSMEG_0023 cell-wall protein CwsA 1.0

Rv3804c MSMEG_6398 FbpA mycolyl transferase 1.0

Rv3790 MSMEG_6382 DprE1 decaprenylphosphoryl-b-D-ribose 20oxidase 0.9

Rv3577 MSMEG_6071 metallo-b-lactamase 0.9

Rv0129c MSMEG_3580 FbpB mycolyl transferase 0.6

Rv3782 MSMEG_6367 galactofuranosyl transferase 0.8

Rv3808c MSMEG_6403 galactofuranosyl transferase 0.8

Rv3265 MSMEG_1826 dTDP-RhA:a-D-GlcNAc-diphosphoryl polyprenol, a-3-L-rhamnosyl transferase 0.7

Rv0906 MSMEG_5638 metallo-b-lactamase 0.6

Rv2518c MSMEG_4745 LdtB L,D-transpeptidase 0.6

Rv0237 MSMEG_0361 glycosyl hydrolase 0.6

Rv3330 MSMEG_1661 DacB1D-alanyl-D-alanine carboxypeptidase 0.5

Rv2748c MSMEG_2690 DNA translocase FtsK 0.5

Rv2171 MSMEG_4239 conserved lipoprotein 20.8

Rv2721c MSMEG_2739 transmembrane alanine and glycine-rich protein 20.5
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phase culture had no effect on growth (data not shown).

However, the growth-inhibitory effect of rPASTA was more

pronounced in experiments when mycobacteria were stored

at 48C for two months (figure 6c). We found that these cells

retained culturability and produced normal growth both in

liquid and solid media. Nevertheless, their growth initiation

was significantly delayed by addition of rPASTA at concen-

tration 10 mg ml21. The mycobacteria were not killed by

rPASTA and after two-month incubation generated normal

stationary phase culture (figure 6c). In all experiments, control

buffer did not have any inhibitory effect. These results suggest

that the PASTA domain may directly interfere with myco-

bacterial regrowth and, therefore, presents a plausible target

for the design of specific drugs altering bacterial regrowth

and resuscitation.
4. Discussion and conclusion
PknB has been shown to regulate bacterial division, growth

and cell-wall biosynthesis [10]. The data presented in this

study suggest that the PknB-mediated signalling pathway

can be targeted through the external PknB_PASTA
domain. Overexpression of the PknB_PASTA domain

delayed the regrowth of both M. tuberculosis and M. smegma-
tis. The growth inhibition was ameliorated by addition of

high concentrations of Mg2þ but not by muropeptides.

Mg2þ ions are crucial for all living organisms, and the con-

centration may vary, reaching as high as 20 mM in

eukaryotic [52] and a massive 100 mM in prokaryotic cells

[53]. In Gram-negative bacteria magnesium ions stabilize

the outer membrane [54] and are found in high concen-

trations in the cell wall of Gram-positive bacteria, which

bind divalent ions to their teichoic acids [54]. Mycobacteria

do not possess teichoic acids and the binding of Mgþ2 ions

has not been studied in the mycobacterial cell wall in detail,

although Mg2þ ions improved growth of mycobacteria in

media with low pH [55]. Growth of B. subtilis mutants miss-

ing certain peptidoglycan binding proteins was improved at

high Mg2þ levels, suggesting that divalent metals may com-

pensate growth defects due to altered peptidoglycan

biosynthesis [56].

The precise mechanism of the magnesium effect on

growth of the TMP strain is unknown. Mg2þ ions may stabil-

ize the cellular membrane and protein complexes associated

with the membrane disturbed by overexpression of
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Figure 6. PknB_PASTA reduces growth of Mycobacterium tuberculosis. (a) Overexpression of PknB_PASTA domain delays growth initiation. Mycobacteria (approx.
1 � 106) were inoculated in supplemented 7H9 medium containing hygromycin and tetrocycline. (b) Effect of different concentrations of rPASTA on M. tuberculosis
growth. Mycobacteria (103 cells ml21) were inoculated in supplemented 7H9 medium containing different concentration of sterile rPASTA. The optical density was
measured after 21 days of incubation. (c) Regrowth of stored M. tuberculosis was delayed by the addition of rPASTA. M. tuberculosis (2 � 104 cells ml21) was
inoculated in supplemented 7H9 medium. Buffer was used as control and rPASTA was added at final concentration of 10 mg ml21. (b,c) Each data point is
an average value of 3 biological replicates, error bars indicate standard deviations. Experiments were performed three times and results of one typical experiment
are shown.

rsob.royalsocietypublishing.org
Open

Biol.5:150025

10

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

01
 J

un
e 

20
22

 

PknB_PASTA domain, although it is also possible that

Mg2þ ions directly bind to the growing strands of stems of

peptidoglycan and promotes their polymerization. Further

dissection of molecular mechanisms underlying the inhibi-

tory effect of PknB_PASTA overexpression will facilitate

our understanding of the biological function of PknB and

its extracellular domain, as well as the roles of Mg2þ ions in

cell-wall architecture. Three possible scenarios may explain

the observed effects associated with overexpression of

PknB_PASTA (figure 7). (i) The overexpressed PknB_PASTA

competes for the ligand (peptidoglycan) with a native PknB,

and therefore interferes with the PknB-mediated signall-

ing pathway (figure 7a). (ii) The PknB_PASTA domain

interacts with penicillin-binding proteins and dysregulates

peptidoglycan biosynthesis (figure 7b). (iii) Finally, highly

abundant PknB_PASTA may directly disrupt the structure

of peptidoglycan by binding to the growing strand, and

physically prevent extension and cross-linking (figure 7c).

The regulatory function of PknB (phosphorylation of

cell-wall enzymes and division factors) is evolved to coordinate

cell-wall biosynthesis and division. In fact, a recently publi-

shed study established that PknB coordinated assembly of

peptidoglycan synthesizing complex via recruiting FhaA and
phosphorylating MviN, a protein essential for mycobacterial

growth [26].

In Listeria monocytogenes the inactivation of a PASTA-

containing kinase, a homologue of PknB, resulted in increased

susceptibility to b-lactam antimicrobials [57], as in the TMP

strain, which presumably shows high susceptibility to

b-lactam antimicrobials because of partial inactivation of PknB

function. However, while the PknB mutant lyses and is not

able to grow, the TMP strain only shows an initial impairment

of growth in the form of a prolonged lag phase, but is able to

grow normally in exponential phase. Thus, other factors apart

from interference with PknB function may contribute to the

growth phenotype of the TMP strain.

A possible direct interaction of PknB_PASTA with penicil-

lin-binding proteins is in accordance with recent findings that

the PASTA domain of StkP kinase from S. pneumoniae was

able to bind penicillin-binding protein 2� [58]. We also

cannot exclude that the PASTA domain changes the architec-

ture of the cell wall by interacting directly with peptidoglycan

(figure 7c), as was previously observed in vitro [16,59]. The

results presented in this study may suggest that the over-

expressed PknB_PASTA domain interacts with growing

strands of peptidoglycan and possibly physically interferes
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Figure 7. Schematic representation of possible mechanisms of PknB_PASTA-
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with its cross linking (figure 7c), culminating in higher

susceptibility of the overexpressing strain to meropenem, clavu-

lanate and ampicillin. Meropenem has been shown to inhibit

both DD-carboxypeptidase and LD-transpeptidase activities

[60], and in combination with clavulanate it is highly active

against growing and persisting mycobacteria [61].
Our findings are consistent with the previously proposed

peptidoglycan-sensing role of PknB_PASTA [11,30]. Further

investigation is required to clarify whether the PknB_PASTA

domain recognizes the specific structures present in the region

of peptidoglycan growth and therefore activates dimerization

of the catalytic domains, or whether it plays a more structural

role in supporting growing peptidoglycan and ensuring proper

localization of PknB. Strains overexpressing truncated forms of

the PASTA domain did not have pronounced growth defect

(figure 3b), suggesting that four PASTA units and the transmem-

brane region are required for PknB functionality. Removal of the

transmembrane part resulted in mislocalization of the PASTA

domain. Although the precise role of the individual PASTA

units awaits elucidation, our data are consistent with the previous

observation that the truncated PknB missing one or more PASTA

domains was not able to complement the conditional pknB
mutant [47]. It is also remains unclear whether the PASTA

domain can sense short muropeptides released by mycobacteria

during growth. In our experiments, we obtained a very modest

effect of peptidoglycan on the growth inhibition caused by

PASTA overproduction and no stimulation of growth or resusci-

tation by externally added muropeptides. It is possible that

specific muropeptides are required for activation of PknB and

subsequent resuscitation, as muropeptides have been shown to

possess resuscitation-stimulatory activity [62]. It is conceivable

that the PASTA domain may be directly involved in resuscitation

by sensing in vivo rearrangement of peptidoglycan, possibly

because of the action of resuscitation-promoting factors [34,63]

and other muramidases, and regulation of cell-wall biosynthesis.

Additional experiments on monitoring rearrangement of pepti-

doglycan and interaction between the external PASTA domain

and stem peptidoglycan, using solid-state NMR [64] and

probes for microscopy of living bacteria such as highly sensitive

atomic force microscopy cantilevers [65] will allow us to establish

the precise PknB-mediated sensing mechanism.
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