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Abstract 

Purpose 

Health-related quality of life (HRQoL) is an important endpoint in cancer clinical trials. Analysis of HRQoL 

longitudinal data is plagued by missing data, notably due to dropout. Joint models are increasingly receiving 

attention for modelling longitudinal outcomes and the time-to-dropout. However, dropout can be informative or 

non-informative depending on the cause.  

Methods 

We propose using a joint model that includes a competing risks sub-model for the cause-specific time-to-dropout. 

We compared a competing risks joint model (CR JM) that distinguishes between two causes of dropout with a 

standard joint model (SJM) that treats all the dropouts equally. First, we applied the CR JM and SJM to data from 

267 patients with advanced oesophageal cancer from the randomized clinical trial PRODIGE 5/ACCORD 17 to 

analyse HRQoL data in the presence of dropouts unrelated and related to a clinical event. Then, we compared the 

models using a simulation study. 

Results  

We showed that the CR JM performed as well as the SJM in situations where the risk of dropout was the same 

whatever the cause. In the presence of both informative and non-informative dropouts, only the SJM estimations 

were biased, impacting the HRQoL estimated parameters. 

Conclusion 

The systematic collection of the reasons for dropout in clinical trials would facilitate the use of CR JMs, which 

could be a satisfactory approach to analysing HRQoL data in presence of both informative and non-informative 

dropout. 

 

Trial registration: This study is registered with ClinicalTrials.gov, number NCT00861094. 

Keywords: 

Joint modelling, Competing risks, Health-related quality of life, Missing data, Clinical trials, Oncology. 
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1. Introduction 

Health-related quality of life (HRQoL) is an important endpoint in cancer clinical trials. HRQoL is a patient-

reported outcome used to investigate the clinical benefit of new treatment strategies in oncology. This endpoint, 

reflecting the patients’ perception of their health status, is measured by self-administered questionnaires collected 

longitudinally throughout the care process. Linear mixed modelling is classically used to analyse HRQoL 

longitudinal data because it is a flexible and powerful approach to assessing the impact of the new treatment 

strategy on quality of life [1, 2]. Nevertheless, HRQoL assessment may be incomplete due to missing or incomplete 

questionnaires. High rates of missing HRQoL data are common in clinical trials, and most studies ignore this 

missing data or do not report the method used to handle them. Notably, when the disease and treatment are 

aggressive and toxic, monotone missing data may occur from dropout due to toxicity, disease progression or death. 

This form of dropout can be informative, leading to a biased estimate of the treatment effect [3]. In order to produce 

valid results in the analysis of the longitudinal outcome, it is crucial to consider the missing data mechanism [4–

6]. 

 

Joint modelling has received much attention in various contexts and can be used to account for informative dropout 

when modelling a longitudinal outcome. The idea is to define two sub-models (a linear mixed model for the 

longitudinal outcome and a survival model for the time-to-dropout) linked through an association structure [7]. 

The association between the two processes is captured using a function of the shared random effects from the 

linear mixed model as a covariate in the survival model.  

In advanced cancer or palliative care, a patient may drop out before the end of the clinical trial due to various 

reasons. On one hand, the HRQoL of the patients is generally related to the occurrence of clinical events (such as 

death or disease progression), leading to informative dropouts that should be taking into account in the analysis 

[8, 9]. On the other end, HRQoL being often relegated to a secondary focus, monotone missing data could arise 

independently from HRQoL. In this situation, a standard joint model (SJM) that assumes the association between 

dropout and HRQoL to be the same whatever the causes of dropout is likely to be inappropriate. Such modelling 

can produce biased estimates of the HRQoL parameters, and therefore unreliable conclusions from the predicted 

trajectories of the mean HRQoL score in the different treatment arms and an incorrect understanding of the 

association between the HRQoL outcome and the dropout process. 
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An alternative, more satisfactory approach would be to use a time-to-dropout model that considers competing 

risks, allowing the study of multiple causes of dropout that have different associations with the longitudinal 

HRQoL outcome. Assuming different types of dropout may also shed new light on the association between dropout 

and HRQoL outcome. Recent developments have extended SJMs, enabling them to consider more complex data, 

such as considering multiple events for the time-to-event model [10, 11]. Although underused in clinical contexts, 

such models appear to be of particular interest to distinguish between different types of dropout [12]. 

 

The aim of this paper is to illustrate the potential of using a competing risks joint model (CR JM) to analyse 

HRQoL longitudinal data in the presence of different types of dropout and investigate the impact of using a SJM 

instead of a CR JM in various situations. Section 2 describes the two joint models. In Section 3, we apply the 

models to data from 267 patients with advanced oesophageal cancer from the randomized clinical trial PRODIGE 

5/ACCORD 17. Section 4 presents a simulation study evaluating the performance of the two joint models 

according to various scenarios and highlights the situations where the SJM may not be suitable. Finally, we 

conclude with a discussion in Section 5. 

2. Models 

2.1  General presentation and notations 

The joint models used consist of two sub-models: a linear mixed model for the continuous longitudinal HRQoL 

score and a model for the time-to-dropout, linked by an association structure involving common parameters. The 

sub-model for the longitudinal outcome is common to both joint models. The two processes are assumed to be 

conditionally independent given the random effects. In the SJM the dropout is considered the only possible event 

through a survival model. In the CR JM, we consider the dropout as a multiple event through a competing risks 

model to distinguish between two possible causes of dropout.  

 

Let {𝑦!(𝑡), 𝑡 ≥ 0} be the process for the HRQoL score of patient 𝑖 at time 𝑡. We can observe this process as long 

as 𝑡 < 𝑇!, where 𝑇! is the time-to-dropout or the right-censored time (in cases of no dropout). 

2.2  Linear mixed sub-model 

We assume that the observed longitudinal HRQoL score of patient 𝑖 measured at time 𝑡, 𝑦!(𝑡) is composed of the 

unobserved true value 𝑦!⋆(𝑡) and a residual error term 𝜀!(𝑡). More specifically, we use a linear mixed model that 
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includes fixed effects and random subject-specific effects to take into account the repeated measurements on the 

same patient, that is: 

 
𝑦!(𝑡) = 𝑦!⋆(𝑡) + 𝜀!(𝑡)

= 𝑋!#(𝑡)𝛽	 +	𝑍!#	(𝑡)𝑏! + 𝜀!(𝑡)
 (1) 

where 𝑋!(𝑡) and 𝑍!(𝑡) denote the design matrices of the fixed effects 𝛽 and random effects 𝑏!, respectively. The 

random effects are assumed to be normally distributed with mean zero and variance-covariance matrix 𝐷, 

independent of the measurement errors which are assumed to be independent and normally distributed with mean 

zero and variance 𝜎%. 

In our context of clinical trials, we assumed a linear time effect of the HRQoL score which depends on the 

treatment arm and random intercept and slope; that is, the following linear mixed model: 

 𝑦!(𝑡) = 𝛽& + 𝛽'𝑡 + 𝛽%{𝑎𝑟𝑚! × 𝑡} + 𝑏&! + 𝑏'!𝑡 + 𝜀!(𝑡) (2) 

where 𝑎𝑟𝑚! is the arm indicator for patient 𝑖 taking a value of 0 or 1 for the control or experimental treatment arm, 

respectively; 𝛽 = (𝛽&, 𝛽', 𝛽%) is the vector of fixed effects, with 𝛽& the intercept that represents the mean score at 

inclusion (𝑡 = 0), 𝛽' the slope that represents the score change by unit of time in the control arm and 𝛽% the 

interaction parameter that represents the difference between the slopes of the experimental and control arms; and 

𝑏! = (𝑏&!,𝑏'!) is the vector of random effects, with 𝑏&! the random intercept that represents the individual 

deviations from the fixed intercept, 𝑏'! the random slope that represents the individual deviations from the fixed 

slope, and 𝐷 = ;
𝜎(!
% 𝜎(!"

𝜎(!" 𝜎("
% <. 

2.3  Standard joint model (SJM) 

In the SJM, we use a proportional hazards model as the sub-model for the time-to-dropout, with a hazard function 

expressed as:  

 ℎ!(𝑡) = ℎ&(𝑡) exp{𝛼𝑦!⋆(𝑡) +	𝑊!
#𝛾} (3) 

where ℎ& is the baseline hazard function, 𝛼 is the parameter that characterizes the association between the risk of 

dropout and 𝑦!⋆(𝑡) is the current true value of the HRQoL score, 𝑊! denotes the vector of covariates with γ the 

corresponding vector of coefficients. Note that if the association coefficient 𝛼 = 0, the two sub-models are no 

longer linked. Thus, an estimated association coefficient which is not significantly different from zero would 

traduce a non-informative dropout. In this model, the instantaneous risk of dropout is multiplied by the hazard 

ratio exp(𝛼) for one unit increase of the current HRQoL score. 

In our context of clinical trials, we included only the treatment arm as a covariate. The hazard function reduces to: 
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 ℎ!(𝑡) = ℎ&(𝑡) exp{𝛼𝑦!⋆(𝑡) + 𝛾𝑎𝑟𝑚!} (4) 

where the baseline hazard ℎ& is assumed to be parametric, and 𝛾 is the arm effect on the risk of dropout. 

2.4  Competing risks joint model (CR JM) 

In the CR JM, we use a competing risks model as the sub-model for the time-to-dropout to consider two possible 

causes of dropout. We use a proportional hazards model for each competing cause	𝑘 of dropout, 𝑘 = 1,2, that is, 

cause-specific hazard given by: 

 ℎ!)(𝑡) = ℎ&)(𝑡) exp{𝛼)𝑦!⋆(𝑡) + 𝛾)𝑎𝑟𝑚!} (5) 

where the baseline hazard functions ℎ&) are assumed to be parametric, and 𝛼) and 𝛾) denote the association 

parameters and cause-specific arm effects, respectively.  

In our context of clinical trials, we considered two types of dropout: dropouts unrelated (𝑘=1) or related (𝑘=2) to 

a clinical event such as death or disease progression. The underlying idea is that the latter are likely to be 

informative, in contrast with the former. 

3. Application 

3.1  Data description 

The clinical trial PRODIGE 5/ACCORD 17 was a randomized phase 2/3 trial that included 267 patients with 

advanced oesophageal cancer and compared the chemoradiotherapy regimens of FOLFOX (n=134) and 

fluorouracil–cisplatin (n=133). The analysis for the primary efficacy endpoint of the phase 3 in the intent-to-treat 

population (n=267) showed no difference in progression-free survival between the two treatment arms [13]. 

The secondary endpoints were overall survival, endoscopic complete response, time-to-treatment failure, 

occurrence of grade 3 or 4 toxicities and quality of life. HRQoL was assessed using the European Organisation for 

Research and Treatment of Cancer (EORTC) Quality of Life Questionnaire (QLQ-C30 version 3.0) [14]. The 

QLQ-C30 is a self-administered questionnaire composed of 30 items evaluating five functional scales, nine 

symptomatic scales and the global health status/quality of life (GHS/QoL) scale. For each scale, a standardized 

score from 0 to 100 can be calculated according to the EORTC QLQ-C30 scoring manual [15]. A high score for 

the functional and GHS/QoL scales reflects high functional capacities and a good level of HRQoL. Conversely, a 

high score for the symptom scales reflects high levels of symptoms and a poor level of HRQoL. The questionnaire 

was completed at eight evaluations defined in the protocol: at inclusion, during treatment at months 1.25, 3 and 4 

(first evaluation of treatment efficacy) and during follow-up at months 6, 12, 24 and 36.  
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Four dimensions of the QLQ-C30 were pre-specified in the protocol as targeted dimensions. First, the objective 

was to compare GHS/QoL levels (QL scale) between treatment arms; this was followed by comparisons of physical 

functioning (PF scale), pain (PA scale) and fatigue (FA scale). Analysis of the HRQoL scores using linear mixed 

models showed no difference between the two regimens [16]. However, this analysis did not account for potentially 

informative dropout. 

3.2  Application of the joint models 

All analyses were performed in the evaluable intent-to-treat population: the evaluable population for a given scale 

included patients with at least one available HRQoL score from any measurement time. We analysed the four 

scales of interest included as secondary endpoints for the analysis of HRQoL, namely QL, PF, PA and FA. The 

evaluable intent-to-treat population reduces to 252 for the QL scale (experimental arm: n=130; control arm: n=122) 

and 254 for the PF, PA and FA scales (experimental arm: n=131; control arm: n=123). 

Intermittent missing data of score were assumed to be missing at random. Monotone missing data of score were 

assumed to be missing not at random, that is, assimilated to a dropout event at the last HRQoL evaluation which 

was taken into account in a joint model analysis. Specifically, the purpose of this application was to analyse the 

evolution of the HRQoL scores taking into account two possible causes of dropout and their association with 

HRQoL. 

We applied the two joint models described in Section 2 to each of the four scales of interest: first, we applied the 

SJM in Equation (4), for which dropout is considered the only possible event; then, we applied the CR JM in 

Equation (5) to distinguish between two causes of dropout – i.e., whether the dropouts were unrelated (cause 1) or 

related (cause 2) to death or disease progression (assessed by RECIST version 1.0) [17]. In the two models, the 

longitudinal scores followed Equation (2). 

Dropouts were attributed to cause 2 if death or progression occurred between the last evaluation visit with an 

available score and the subsequent planned visit, and attributed to cause 1 otherwise.  

The estimates of the joint models were obtained by likelihood maximization using the function jointModel() from 

the R package JM (R software, version 3.4.0) [18, 19]. The argument CompRisk was set to TRUE to fit a CR JM 

instead of a SJM. In both joint models, we used a cubic B-splines approximation for the log baseline hazard 

function with five internal knots placed at the quantiles of the observed event times (QL: 1.23, 2.98, 3.99, 9.43 
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and 16.14 months; versus PF, PA and FA: 1.35, 3.22, 4.07, 9.66 and 16.20 months). The integrals over the random 

effects were approximated using a nine-point adaptive Gauss–Hermite quadrature. 

3.3  Results 

No patient had a complete longitudinal profile (i.e., 8 available scores out of the 8 planned assessment visits) in 

the QL scale, and only 1 in the PF, PA, and FA scales. The amount of HRQoL evaluations by scale is more fully 

described in Supplementary Table 1. Overall, 95% of patients (QL: 240/252; PF, PA and FA: 242/254) dropped 

out before the last planned questionnaire and 5% of patients (QL: 12/252; PF, PA, and FA: 12/254) completed the 

last planned questionnaire, generating right-censored times-to-dropout. Among the total dropouts, 57% (137/240 

for QL and 139/242 for PF, PA and FA) were attributed to cause 1 and 43% (103/240 for QL and 103/242 for PF, 

PA and FA) were attributed to cause 2. The results of the SJM and CR JM are summarized in table 1. 

[insert Table1] 

Results of the sub-model for the time-to-dropout 

Both models found that there was no effect of the treatment arm on the risk of dropout (non-significant 𝛾 for the 

SJM and non-significant 𝛾' and 𝛾% for the CR JM) for the four analysed dimensions. The SJM detected a significant 

association between the current HRQoL score and the risk of dropout for three scales: QL (𝛼G = −0.016, 𝑝 =

0.050), PF (𝛼G = −0.019, 𝑝 = 0.001) and FA (𝛼G = 0.013, 𝑝 = 0.007), suggesting an informative dropout. For 

example, a decrease of 10 points in the current PF score corresponded to an increase of exp(10 × 0.019) = 1.21 

(95% CI = 1.11 – 1.35) in the instantaneous risk of dropout. The CR JM found a significant association between 

the current HRQoL score and the risk of dropout only for the PF and FA scales, where only dropout due to cause 

1 was associated with the current HRQoL score: PF (𝛼G' = −0.024, 𝑝 = 0.001) and FA (𝛼G' = 0.016, 𝑝 = 0.011). 

For example, a decrease of 10 points in the current PF score corresponded to an increase of exp(10 × 0.024) =

1.27 (95% CI = 1.11 – 1.49) in the instantaneous risk of dropout unrelated to clinical event. In fact, these results 

suggest that for the PF and FA scales, dropout from cause 1 (unrelated to death or progression) was informative 

whereas dropout from cause 2 (related to death or progression) was non-informative. By contrast, the CR JM did 

not detect any association between the risk of dropout and the HRQoL for the QL or PA scales. Note that because 

of a smaller number of events when dividing the dropout events into two categories, the width of the confidence 

intervals of the cause-specific parameters from the CR JM were larger than the corresponding parameters from the 

SJM. 

 

Results of the sub-model for the longitudinal outcome 
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Both the SJM and CR JM found a similar and significant increase in the score over time for the QL scale (SJM: 

𝛽Q' = 0.311, 𝑝 = 0.034; CR JM: 𝛽Q' = 0.313, 𝑝 = 0.031) and a decrease in the score over time for the PF scale 

(SJM: 𝛽Q' = −0.512, 𝑝 = 0.017; CR JM: 𝛽Q' = −0.505 , 𝑝 = 0.017). In addition, neither of the two models 

detected a significant difference between the HRQoL score trajectories of the two treatment arms. Globally, the 

estimates of the two models were very similar, even in the PF and FA scales where the dropouts from only cause 

1 had been found informative. As an illustration, one can see that the predicted trajectories from the SJM and the 

CR JM were almost superimposed (see Figure 1).  

[insert Fig. 1] 

Fig. 1 Predicted HRQoL trajectories for the four dimensions of the EORTC QLQ-C30 (QL, PF, PA and FA) 

according to the SJM and CR JM 

4. Simulation study 

We conducted a simulation study to evaluate the performance of the joint model that considers competing risks of 

dropout. We compared the estimated parameters of the CR JM with those of the SJM (which does not account for 

different causes of dropout) using bias and variance criteria derived from a series of 1000 generated datasets of 

500 patients equally assigned to two treatment arms.  

4.1 Data generation 

The data generation was based on the clinical trial PRODIGE 5/ACCORD 17 (see Section 3).  

We considered seven planned HRQoL assessment times 𝑡*, 𝑗 = 1,… , 7, at: inclusion (𝑡* = 0), 1.5, 3, 6, 12, 24 and 

36 months. For each patient 𝑖, the actual HRQoL assessment times 𝑡!* were uniformly distributed around the 

planned ones (i.e., more or less a value proportional to the difference between the last and the next planned 

assessment): 𝑡!&= 0 and 𝑡!* = 𝑡* ± 𝑥 where 𝑥 = 𝑘 ∗ (𝑡*+' − 𝑡*) ∗ 𝑈 with 𝑈 ∼ 𝑈(−1, 1) a random variable 

distributed on (−1, 1)	and 𝑘 = 0.5 to concentrate the simulated value 𝑡!* around 𝑡* without overlapping with other 

simulated values for the same patient 𝑖. 

At each HRQoL assessment time for patient 𝑖, 𝑡!*, we generated the longitudinal outcome following the linear 

mixed model (1) with, 𝛽' = −0.5, 𝛽% = 1, 𝜎 = 13, 𝜎(! = 12, 𝜎(" = 1.5 and	𝜌 = −0.3 where 𝜌 =
,#!"

,#!	,#" 	
 is the 

correlation coefficient between the two random effects. We furthermore set the fixed intercept 𝛽& to 0 in order to 

avoid numerical convergence issues. This does not affect the other parameters and corresponds to a situation where 
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the considered outcome is the centred HRQoL score variable, calculated as the HRQoL score at time 𝑡 minus the 

mean HRQoL score at inclusion. 

For each patient 𝑖, we generated the observed time-to-dropout 𝑇! such as 𝑇! = 𝑚𝑖𝑛(𝑇'! , 𝑇%! , 𝐶!) with 𝑇)! the times-

to-dropout for each cause 𝑘 = 1, 2 and 𝐶! the censoring time. The censoring time 𝐶! was 𝑡!-, the last evaluation of 

patient 𝑖. The two cause-specific event times were generated under the CR JM (5) following the method developed 

to simulate complex survival data, such as time-to-event data from a joint model, and implemented in the R 

package simsurv [20, 21]. We assumed Weibull baseline cause-specific hazard functions expressed as ℎ&'(𝑡) =

ℎ&%(𝑡) = 𝜙𝑡.+'exp	(𝛾&) with 𝜙 = 3 (shape parameter) and 𝛾& = −9 (log of the scale parameter).  

4.2 Estimation 

The estimates of the joint models were obtained by likelihood maximization using the function jointModel() from 

the R package JM (R software, version 3.4.0) [18, 19]. The log baseline hazards were approximated using a cubic 

B-splines with one internal knot placed at the median of the observed event times. The integrals over the random 

effects were approximated using a five-point adaptive Gauss–Hermite quadrature. 

4.3 Evaluations criteria 

For each parameter 𝜃, we calculated the following evaluations criteria: the mean estimated parameter �̅�, the relative 

bias (�̅� − 𝜃) 𝜃⁄ , the root mean square error (RMSE) ab�̂� − 𝜃c%ddddddddddd and the coverage rate defined as the percentage 

of times where 𝜃 falls within the confidence interval of �̂�. 

4.4  Scenarios 

We considered five scenarios by varying the strength of the association 𝛼) and the intensity of the arm effect 𝛾) 

on the cause-specific risk of dropout, 𝑘=1, 2. In order to facilitate comparison between scenarios, the parameters 

describing the HRQoL trajectories remained unchanged under all scenarios.  

 

[insert Fig.2] 

Fig. 2 Representation of the mean longitudinal outcome from the linear mixed sub-model (a) and hazard functions 

from the competing risks sub-model given the mean longitudinal outcome (b) used in the five scenarios of the 

simulation study where Scenario 1: 𝛼' = −0.05, 𝛼% = −0.05, 𝛾' = −0.70, 𝛾% = −0.70; Scenario 2: 𝛼' = 0.00, 

𝛼% = −0.05, 𝛾' = 0.00, 𝛾% = −0.70; Scenario 3: 𝛼' = 0.05, 𝛼% = −0.05, 𝛾' = 0.00, 𝛾% = 0.00; Scenario 4: 
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𝛼' = 0.05, 𝛼% = −0.05, 𝛾' = 0.70, 𝛾% = −0.70; and Scenario 5: 𝛼' = 0.00, 𝛼% = −0.05, 𝛾' = 0.70, 𝛾% =

−0.70 

 

Figure 2 shows the mean trajectories of the longitudinal HRQoL outcomes and the mean hazard functions from 

the CR JM used to generate the data in the five scenarios. 

 

In Scenario 1, the two causes of dropout were equivalent. The cause-specific risks of dropout were equally and 

negatively associated with the current true HRQoL outcome, where a decrease of 10 points in the HRQoL outcome 

corresponded to an increase of 1.65 in the instantaneous risk of dropout (𝛼' = 𝛼% = −0.05). 

The arm effect was equal whatever the cause and corresponded to lower risks in the experimental arm (𝛾' = 𝛾% =

−0.70). 

Scenario 2 was identical to Scenario 1 for cause 2 (𝛼% = −0.05 and 𝛾% = −0.70), whereas for cause 1 the 

association was null (𝛼' = 0), corresponding to non-informative dropout, and the risk of dropout was the same in 

both arms (𝛾' = 	0). 

In Scenario 3, dropouts from causes 1 and 2 were considered to be informative, with cause-specific risks of dropout 

oppositely associated with the current true HRQoL outcome (𝛼' = 0.05 and 𝛼% = −0.05). There was no arm 

effect on the risk of dropout whatever the cause (𝛾' = 𝛾% = 0).  

In Scenario 4, the dropouts were considered to be inversely informative, as in Scenario 3 (𝛼' = 0.05 and 𝛼% =

−0.05). There were opposite arm effects on the risk of dropout for the two causes (𝛾' = 0.70 and 𝛾% = −0.70).  

In Scenario 5, dropout from cause 2 was also negatively associated with the current true HRQoL outcome (𝛼% =

−0.05) but dropout from cause 1 was treated as non-informative (𝛼' = 0). Again, there were opposite arm effects 

on the risk of dropout for the two causes of dropout (𝛾' = 0.70 and 𝛾% = −0.70). 

 

4.5  Simulation results 

Table 2 describes dropout occurrence in the five different scenarios.  

[insert Table 2] 

In Scenario 1, we observed all planned measures of the longitudinal outcome (right-censored time-to-dropout) in 

12.7% of the patients, whereas in the other scenarios all patients (or almost all) dropped out. Dropouts due to 

causes 1 and 2 were equally distributed in Scenarios 1 and 3, and more unbalanced in Scenarios 2, 4 and 5, where 

more dropouts from cause 1 occurred. Table 3 provides the mean results of the 1000 simulations.  
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[insert Table 3] 

Figure 3 gives a graphical representation of the distribution of the estimated 𝛽', 𝛽% and association parameters. 

[insert Fig. 3] 

Fig. 3 Boxplots of the distributions of the association parameters, 𝛽Q' and 𝛽Q% for the standard joint model (SJM) 

and the competing risks joint model (CR JM) in the presence of dropouts from two causes, C1 and C2, for the five 

scenarios considered in the simulation study 

 

In Scenario 1, the parameters of the hazard functions were the same whatever the cause. Thus, the CR JM used to 

generate the data can reduce to a SJM with, in particular, 𝛼 = 𝛼' = 𝛼% and 𝛾 = 𝛾' = 𝛾%. There were almost zero 

biases for the estimates of the hazard parameters with both the SJM and CR JM (𝛼Gd = −0.050, 𝛼Gd' = −0.050, 𝛼Gd% =

−0.050 and 𝛾G̅ = −0.696, 𝛾G̅' = −0.691, 𝛾G̅% = −0.699). The slope (𝛽') and interaction (𝛽%) parameters of the 

longitudinal sub-model were also with very small or minimum bias and with coverage rates close to 95% for both 

the SJM and CR JM. The RMSE were similar in both models. Finally, in Scenario 1, for which a competing risks 

sub-model was not necessarily useful, both models performed similarly.  

We will now comment on the results for Scenarios 2, 3, 4 and 5 obtained from the SJM for the association 

parameter, the parameter of the arm effect on the risk of dropout, and the longitudinal sub-model parameters. In 

these scenarios, the estimates from the CR JM were close to the simulated values, with a coverage rate close to 

95%, and had smaller biases and RMSE than the SJM. In Scenarios 2, 3, 4 and 5, the SJM gave an estimate for the 

association parameter 𝛼 that was between the two simulated values for each cause, 𝛼' and 𝛼%. In Scenarios 3 and 

4, where there were opposite cause-specific associations, the SJM estimated an association that was between 𝛼' 

and 𝛼%, suggesting no association with the longitudinal outcome. In Scenarios 2 and 5, where there was no 

association for cause 1 and a negative association of -0.05 for cause 2, the SJM estimated an association closer to 

𝛼' than to 𝛼%: 𝛼Gd = −0.017 in Scenario 2 and 𝛼Gd = 0.007 in Scenario 4.  

 

In a similar way to that of the association parameter, the SJM estimated a 𝛾 parameter between the simulated 

values for each cause, 𝛾' and 𝛾%. However, in all the scenarios where the arm had an effect on at least one cause 

of dropout – that is, in Scenarios 2, 4 and 5 – the estimated value was not in the middle of 𝛾' and 𝛾% but was closer 

to 𝛾', even when the cause-specific effects were opposite. In the latter cases, the SJM suggested a risk of dropout 

that was a little more important in the experimental arm than in the control arm (Scenario 4: 𝛾G̅ = 0.152, Scenario 
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5: 𝛾G̅ = 0.213), whereas this risk was much more important for dropouts due to cause 1 (𝛾' = 0.7), and, in contrast, 

less important for dropouts due to cause 2 (𝛾% = −0.7).  

 

When the effect parameters of the time-to-dropout sub-model differed according to the dropout causes of dropout, 

SJM tended to incorrectly estimate the estimations of the longitudinal sub-model (𝛽' and 𝛽%).  

Using the SJM, the relative bias for 𝛽' varied from -11.5% in Scenario 3 to -18.9% in Scenario 4, and for 𝛽% from 

-8.3% in Scenario 2 to -24.6% in Scenario 4. By comparison, the maximal relative bias using the CR JM was -

0.5% (for both 𝛽' and 𝛽%) in Scenario 3. In the worst case – that is, in Scenario 4 – the coverage rates from the 

SJM were 87% for 𝛽' and 71% for 𝛽%. The bias of 𝛽' corresponded in Scenarios 2, 3, 4 and 5 to an overestimation 

of the HRQoL level in the control arm and the bias for 𝛽% to an underestimation of the HRQoL improvement in 

the experimental arm compared with the control arm. The consequence of the misestimation of 𝛽' and 𝛽% on the 

predicted HRQoL score trajectories in the two arms can be appreciated in figure 4.  

[insert Fig. 4] 

Fig. 4 Simulated trajectories of the health-related quality of life (HRQoL) score and predicted trajectories from 

the mean estimates of the standard joint model (SJM) and competing risks joint model (CR JM) by treatment arm 

for the five scenarios considered in the simulation study, the CR JM-predicted trajectories (blue lines) are 

superimposed on the simulated trajectories (black lines) 

 

The SJM-predicted trajectory is above the simulated trajectory in the control arm and below the simulated 

trajectory in the experimental arm. The CR JM-predicted trajectories are superimposed on the simulated 

trajectories. 

5. Discussion 

This article focuses on the analysis of longitudinal HRQoL data in clinical trials where patients are likely to drop 

out during treatment or follow-up. In a previous work, we had compared the use of a SJM taking into account 

dropout with a linear mixed model on the HRQoL data from the clinical trial PRODIGE 5/ACCORD 17. In the 

present work, we first compared on the same data the use of a CR JM that distinguishes between two causes of 

dropout with a SJM that treats all the dropouts equally. We then compared the CR JM and the SJM on simulated 

data. 
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In the simulation study, we showed that the CR JM performed as well as the SJM in situations where the risk of 

dropout was the same whatever the cause. However, in situations where two different risks of dropout coexisted, 

the SJM provided biased estimates. The estimates of the effect parameter on the risk of dropout were between the 

values of the cause-specific parameters. In particular, when the two types of dropout were informative and 

oppositely associated with the current true HRQoL outcome, the SJM estimated a null association parameter, 

suggesting non-informative dropout. The misspecification of the time-to-dropout sub-model that did not 

distinguish between the dropouts resulted in biased estimates of the HRQoL parameters. In particular, the 

difference between the slopes of the HRQoL trajectories of the two arms was underestimated. In contrast with the 

SJM, the CR JM performed well in all scenarios; these results being expected since the CR JM served to generate 

the data. 

 

In our application, we found the same pattern as in the simulation study: the parameters estimated by the SJM 

were between the two cause-specific parameters estimated by the CR JM. The CR JM captured supplementary 

information about the dropout and revealed that only one cause of dropout was associated with the current HRQoL 

score. Unexpectedly, it was not dropout related to death or progression that was associated with the HRQoL 

outcome. This may be due to a lack of reliability concerning the cause of dropout. Indeed, the cause of dropout 

was constructed a posteriori, since the protocol did not include collecting the reasons for dropout. Another 

explanation is that a non-negligible proportion of dropout unrelated to death or progression could actually be 

informative. Death and progression are generally well documented, but other events, not documented, could be 

related to HRQoL. The systematic collection of the reasons for missing HRQoL data in clinical trials would allow 

a better attribution of the cause of dropout and facilitate the use and the interpretation of CR JMs. 

Recommendations exist to limit the occurrence of missing data and some authors encourage documenting why the 

data are missing [22, 23]. This could guide the choice of analysis strategy while only 50% of clinical trials use 

adequate methods for handling missing data [24, 25].  

As in previous analyses using linear mixed models, no significant difference between the HRQoL score trajectories 

of the two treatment arms was detected [6, 16]. Note that we assumed a linear trend for the HRQoL trajectories 

for readability and comparability with the simulation study. However, flexible trajectories could be considered, 

for example using B-splines [26]. 
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In conclusion, the competing risks joint modelling is a satisfactory approach to distinguishing between informative 

and non-informative dropouts in order to obtain valid results for the longitudinal analysis of HRQoL in clinical 

trials. Moreover, it offers a better understanding of the association between the HRQoL outcome and the dropout 

process than a standard joint modelling. Nevertheless, the cause of dropout can be unknown or unreliable in 

practice. Collecting the reasons for missing data in clinical trials would allow a better attribution of the cause of 

dropout and facilitate the use and interpretation of competing risks joint models.  
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Figure 2 
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Figure 3 
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Figure 4 
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Table 1 

 

  

 

  SJM CR JM 
  Estimate [CI 95%] p Estimate [CI 95%] p 
QL (n=252)      
Linear mixed sub-model for the 
longitudinal outcome 

     

 !! 0.311 [0.02; 0.60] 0.034 0.313 [0.03; 0.60] 0.031 
 !" 0.166 [-0.21; 0.54] 0.383 0.170 [-0.20; 0.54] 0.363 
Survival sub-model for the time-to-
dropout 

     

 " -0.019 [-0.28; 0.24] 0.884   
 "!   -0.050 [-0.39; 0.29] 0.772 
 ""   0.079 [-0.43; 0.59] 0.763 
 # -0.016 [-0.03; 0.00] 0.050   
 #!   -0.016 [-0.04; 0.00] 0.126 
 #"   0.001 [-0.03; 0.03] 0.951 
PF (n=254)      
Linear mixed sub-model for the 
longitudinal outcome 

     

 !! -0.512 [-0.93;-0.09] 0.017 -0.505 [-0.92;-0.09] 0.017 
 !" 0.078 [-0.41; 0.56] 0.753 0.075 [-0.41; 0.56] 0.763 
Survival sub-model for the time-to-
dropout 

     

 " -0.050 [-0.31; 0.21] 0.699   
 "!   -0.087 [-0.42; 0.25] 0.614 
 ""   0.083 [-0.43; 0.59] 0.751 
 # -0.019 [-0.03;-0.01] 0.001   
 #!   -0.024 [-0.04;-0.01] 0.001 
 #"   0.012 [-0.01; 0.03] 0.258 
PA (n=254)      
Linear mixed sub-model for the 
longitudinal outcome 

     

 !! -0.214 [-0.58; 0.15] 0.247 -0.207 [-0.57; 0.16] 0.262 
 !" -0.210 [-0.69; 0.27] 0.392 -0.237 [-0.72; 0.24] 0.334 
Survival sub-model for the time-to-
dropout 

     

 " -0.069 [-0.32; 0.19] 0.599   
 "!   -0.087 [-0.42; 0.25] 0.610 
 ""   0.071 [-0.44; 0.59] 0.787 
 # 0.008 [0.00; 0.02] 0.185   
 #!   0.008 [-0.01; 0.02] 0.342 
 #"   0.000 [-0.02; 0.02] 0.992 
FA (n=254)      
Linear mixed sub-model for the 
longitudinal outcome 

     

 !! -0.223 [-0.56; 0.12] 0.200 -0.222 [-0.57; 0.13] 0.215 
 !" -0.235 [-0.70; 0.22] 0.316 -0.238 [-0.70; 0.22] 0.313 
Survival sub-model for the time-to-
dropout 

     

 " -0.033 [-0.29; 0.22] 0.797   
 "!   -0.068 [-0.40; 0.27] 0.693 
 ""   0.073 [-0.44; 0.58] 0.778 
 # 0.013 [0.00; 0.02] 0.007   
 #!   0.016 [0.00; 0.03] 0.011 
 #"   -0.007 [-0.03; 0.01] 0.471 
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Table 2 

 

  

 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

% Median 
time % Median 

time % Median 
time % Median 

time % Median 
time 

No dropout 12.70  0.18  0.00  0.00  0.04  
Dropout  14.05  14.18  12.80  12.28  13.06 
 cause 1 43.71 14.06 57.59 15.13 49.96 12.80 59.00 11.84 62.92 13.39 
 cause 2 43.59 14.05 42.23 13.15 50.04 12.80 40.99 12.93 37.04 12.56 
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Table 3 

 

	
   SJM CR JM 
Scenario  Value Mean Rel. Bias (%) RMSE Cov. Rate (%) Mean Rel. bias (%) RMSE Cov. Rate (%) 

1 "! -0.5 -0.494 -1.1 0.147 94 -0.497 -0.6 0.147 94 
 "" 1 1.000 0.0 0.167 96 0.999 -0.1 0.167 96 
 # - -0.050 0.7 0.005 95 - - - - 
 #! -0.05 - - - - -0.050 0.0 0.007 94 
 #" -0.05 - - - - -0.050 -0.3 0.006 94 
 $ - -0.696 -0.6 0.126 94 - - - - 
 $! -0.7 - - - - -0.691 -1.3 0.161 95 
 $" -0.7 - - - - -0.699 -0.1 0.159 95 
2 "! -0.5 -0.434 -13.3 0.160 92 -0.499 -0.3 0.144 94 
 "" 1 0.917 -8.3 0.194 93 0.999 -0.1 0.177 95 
 # - -0.017 - - - - - - - 
 #! 0 - - - - 0.000 0.0 0.004 95 
 #" -0.05 - - - - -0.050 0.2 0.007 96 
 $ - -0.298 - - - - - - - 
 $! 0 - - - - 0.004 0.4 0.132 94 
 $" -0.7 - - - - -0.699 -0.2 0.174 94 
3 "! -0.5 -0.443 -11.5 0.157 92 -0.497 -0.5 0.148 94 
 "" 1 0.886 -11.4 0.215 89 0.995 -0.5 0.184 96 
 # - 0.000 - - - - - - - 
 #! 0.05 - - - - 0.051 2.6 0.007 96 
 #" -0.05 - - - - -0.051 2.7 0.008 96 
 $ - 0.005 0.5 0.101 94 - - - - 
 $! 0 - - - - 0.003 0.3 0.165 94 
 $" 0 - - - - 0.009 0.9 0.162 95 
4 "! -0.5 -0.406 -18.9 0.178 87 -0.498 -0.4 0.149 93 
 "" 1 0.754 -24.6 0.319 71 0.997 -0.3 0.194 95 
 # - 0.007 - - - - - - - 
 #! 0.05 - - - - 0.051 2.2 0.007 95 
 #" -0.05 - - - - -0.051 2.7 0.008 95 
 $ - 0.152 - - - - - - - 
 $! 0.7 - - - - 0.709 1.3 0.153 94 
 $" -0.7 - - - - -0.702 0.2 0.182 95 
5 "! -0.5 -0.424 -15.1 0.165 91 -0.498 -0.4 0.146 94 
 "" 1 0.886 -11.4 0.218 90 0.998 -0.2 0.185 95 
 # - -0.016 - - - - - - - 
 #! 0 - - - - 0.000 0.0 0.004 95 
 #" -0.05 - - - - -0.050 0.1 0.008 94 
 $ - 0.213 - - - - - - - 
 $! 0.7 - - - - 0.713 1.8 0.126 94 
 $" -0.7 - - - - -0.715 2.2 0.200 95 

	


