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Abstract: When investigating disease etiology, twin data provide a unique opportunity to control
for confounding and disentangling the role of the human genome and exposome. However, using
appropriate statistical methods is fundamental for exploiting such potential. We aimed to critically
review the statistical approaches used in twin studies relating exposure to early life health conditions.
We searched PubMed, Scopus, Web of Science, and Embase (2011–2021). We identified 32 studies
and nine classes of methods. Five were conditional approaches (within-pair analyses): additive-
common-erratic (ACE) models (11 studies), generalized linear mixed models (GLMMs, five studies),
generalized linear models (GLMs) with fixed pair effects (four studies), within-pair difference
analyses (three studies), and paired-sample tests (two studies). Four were marginal approaches
(unpaired analyses): generalized estimating equations (GEE) models (five studies), GLMs with
cluster-robust standard errors (six studies), GLMs (one study), and independent-sample tests (one
study). ACE models are suitable for assessing heritability but require adaptations for binary outcomes
and repeated measurements. Conditional models can adjust by design for shared confounders, and
GLMMs are suitable for repeated measurements. Marginal models may lead to invalid inference. By
highlighting the strengths and limitations of commonly applied statistical methods, this review may
be helpful for researchers using twin designs.

Keywords: children; exposome; genome; health; statistical methods; twin data

1. Introduction

Investigating disease etiology is one of the major goals in the practice of epidemi-
ology. However, controlling for the totality of confounding factors is a big challenge for
investigators aiming to unveil the causal effect of a given exposure on a given disease [1].

Twins share a large number of genes, prenatal, neonatal, and postnatal factors, and
provide a unique opportunity to account for the human genome and exposome [2,3].
In pediatric populations, twin data are particularly useful to shed light on the origin
of associations between fetal and early life exposures and the risk of later diseases. In
particular, if paired (conditional) analyses confirm the associations found through unpaired
(marginal) analyses, there is evidence of a causal pathway; conversely, if paired analyses do
not confirm the associations, they are to be ascribed to shared factors such as the genome
or maternal variables [4,5].

Twin data also allow considering the genome as the exposure of interest [6]. Monozy-
gotic (MZ) twins share 100% of their genes, while dizygotic (DZ) twins share about 50%
of their genes. Therefore, if MZ twins are more similar than DZ twins with regard to the
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outcome of interest, this is indicative of an effect of the genome on that outcome. Con-
versely, non-genetic variability is to be ascribed to the totality of shared and individual
environmental exposures (the exposome) [7].

Using appropriate statistical methods is fundamental for exploiting the potential of
twin data and carrying out valid statistical inference [8]. In 2005, Carlin et al. [9] critically
reviewed the regression approaches for the analysis of twin data, showing that transferring
standard methods to twin data is not straightforward, because they need to account for the
paired structure of the data that induces correlation between observations. Moreover, a
clear awareness of the assumptions underlying each method and the consequent parameter
interpretation is fundamental [9]. Recently, Tan et al. [10] reviewed twin methods used
in epigenetic studies and found that simplistic approaches (disregarding within-pair de-
pendence and potential confounding effects), such as the unpaired t-test, are rare but still
present in the literature, possibly undermining the validity of the evidence base. Similar
works have not been performed with regard to the methods applied in published twin
studies relating exposure to diagnosable diseases in a broader sense.

This research was motivated by the earlyFOOD (“Long-term impact of gestational
and early-life dietary habits on infant gut immunity and disease risk”) project (EU-H2020
Era-Net HDHL-INTIMIC cofounded call “Interrelation of the Intestinal Microbiome, Diet
and Health”). Human microbial colonization is a crucial phase in the early development
of a child. Indeed, a growing body of literature has associated early-life imbalances of
the gut microbiota with several diseases, especially immune-mediated, metabolic, and
neurodevelopmental disorders [11]. Colonization begins at birth when the newborn is
exposed to microbes of primarily maternal origin. Then, it continues to develop under
the influence of maternal antibodies transferred through breastfeeding, dietary-related
metabolites, and environmental factors. In this regard, disentangling the role of different
exposures in the etiology of the aforementioned conditions is of particular importance.
Therefore, we focused on studies assessing the effects of diet or other exposures on the
risk of obesity, allergic and neurodevelopmental disorders, aiming to review the statistical
approaches used and to summarize their strengths and limitations.

2. Materials and Methods

On 12 April 2021, we searched PubMed, Scopus, Web of Science, and Embase, using
combinations of Medical Subject Headings, explosion searches, and free keywords. The
full search strategy is reported in the Supplementary Material S1.

The inclusion criteria were: (1) presence of children aged 0–12 years among the
participants; (2) presence of statistical analyses carried out exclusively on twin pairs;
(3) assessment of diet or other exposures; (4) obesity, asthma, eczema, rhinitis, and neurode-
velopmental disorders were among the study outcomes; (5) publication year from 2011 to
2021; and (6) English language. The exclusion criteria were: (1) out of topic; and (2) case
reports, reviews, or abstracts. The studies identified in the four databases were combined
and duplicates were removed. Three reviewers (S.F., L.M., and S.L.G.) screened the articles
for relevance based on titles and abstracts. The same reviewers screened the full texts of
potentially eligible articles. The following information was extracted from the included
articles: first author and publication year; outcomes; exposures and confounders; study
design (including size and age of the twin sample); statistical methods; and main results.

3. Results

Figure 1 summarizes the study selection process. We identified 618 articles through
the four electronic databases. After the exclusion of duplicates, 364 articles were screened
based on titles and abstracts, and 52 articles were identified as potentially eligible. Of
them, 20 were excluded following full-text evaluation (Figure 1). Therefore, 32 articles
were included in this review.
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Figure 1. Flow diagram showing the study selection process. * Reasons for exclusion: reviews (n = 
2), abstracts (n = 11), statistical analyses included singletons and twins together (n = 1), different 
outcomes (n = 3), twin mothers (n = 1), adult twins (n = 1), and no statistical analyses (n = 1). 

Table S1 summarizes the characteristics of the included studies. We identified nine 
classes of statistical methods. Thereafter, we will present them from the most complex (the 
most informative) to the most simple (the least informative) one, based on the number of 
model parameters and underlying assumptions. Five were conditional approaches 
(within-pair analyses): additive-common-erratic (ACE) models [12–22], generalized linear 
mixed models (GLMMs) [23–27], generalized linear models (GLMs) with fixed pair effects 
[28–31], within-pair difference analyses [32–34], and paired-sample tests [33,35]. Four 
were marginal approaches (unpaired analyses): generalized estimating equations (GEE) 
models [26,30,36–38], GLMs with cluster-robust standard errors [24,29,31,39–41], GLMs 
[42], and independent-sample tests [43]. 

3.1. ACE Models 
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Figure 1. Flow diagram showing the study selection process. * Reasons for exclusion: reviews
(n = 2), abstracts (n = 11), statistical analyses included singletons and twins together (n = 1), different
outcomes (n = 3), twin mothers (n = 1), adult twins (n = 1), and no statistical analyses (n = 1).

Table S1 summarizes the characteristics of the included studies. We identified nine
classes of statistical methods. Thereafter, we will present them from the most complex (the
most informative) to the most simple (the least informative) one, based on the number
of model parameters and underlying assumptions. Five were conditional approaches
(within-pair analyses): additive-common-erratic (ACE) models [12–22], generalized lin-
ear mixed models (GLMMs) [23–27], generalized linear models (GLMs) with fixed pair
effects [28–31], within-pair difference analyses [32–34], and paired-sample tests [33,35].
Four were marginal approaches (unpaired analyses): generalized estimating equations
(GEE) models [26,30,36–38], GLMs with cluster-robust standard errors [24,29,31,39–41],
GLMs [42], and independent-sample tests [43].

3.1. ACE Models

A univariate ACE model [44] can be presented as:{
Y1j = µ + aA1j + cC1j + eE1j + βx1j + γz1j
Y2j = µ + aA2j + cC2j + eE2j + βx2j + γz2j

, (1)

where Y1j and Y2j are quantitative outcome values in twins 1 and 2, respectively, with
j = 1, 2, . . . , n and n equal to the number of twin pairs. Parameter µ is an intercept, x is an
optional exposure of interest (β quantifies its effect), and z is an optional confounder (γ
quantifies its effect); x and z may also be vectors.

The effect of genome and exposome is accounted for by means of unobserved random
variables, encompassing additive genetic (A1 and A2), common (or shared) environmental
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(C1 and C2), and erratic (or unique) environmental (E1 and E2) factors. The random vari-
ables are assumed mutually independent within the same twin, and to follow a standard
normal distribution. Consequently, a2 is the outcome variance explained by genetic fac-
tors, c2 is the variance explained by shared environmental factors, and e2 is the variance
explained by unique environmental factors (including measurement error). The percentage
genetic contribution (heritability) can be derived as a2/

(
a2 + c2 + e2); percentage environ-

mental contributions can be derived similarly. The ACE model is identified due to the
following assumptions: the correlation between A1 and A2 is 1 in MZ twins and 0.5 in DZ
twins; the correlation between C1 and C2 is 1 (C1 = C2) both in MZ and in DZ twins. All
other pairs of latent variables are assumed independent between twins in the same pair.
Model (1) can be estimated either from individual data or from observed sample sizes,
means, and correlation matrices in MZ and DZ twins.

Only two studies applied model (1) in its plain form [12,14]. In such studies, the
ACE model was applied to binary outcomes using tetrachoric correlations. In children
aged 1 year, Bunyavanich et al. [12] highlighted a predominance of shared environmen-
tal contributions for asthma diagnosis and medication use (84 to 88% through different
models) and a predominance of heritability for asthma hospitalizations (55 to 95%). In
children aged 3 years, they highlighted a substantial genetic contribution for all three
outcomes (34 to 65%). In children aged 3–9 years, Kahr et al. [14] highlighted an overall
contribution of heritability equal to 94% for atopic dermatitis, 54% for asthma, and 43% for
hay fever. Moreover, they did not find significant differences in the genetic contribution
(gene–environment interactions) after stratification by age, sex, gestational age, delivery
mode, and maternal smoking. In this regard, it appears that the authors applied a statisti-
cal test (e.g., a Wald test) to compare independent estimates obtained from the different
sub-groups.

The moderated ACE model [45] offers a formal way of assessing gene–environment
interactions by allowing parameters (including the intercept) to be linear functions of one
or more moderators. Using this model in children aged 3 and 12 years, Robbers et al. [20]
highlighted a lower heritability of internalizing/externalizing problems in children from
divorced families (3 to 51%) than in children from non-divorced families (34 to 60%). In
children aged 7, 10, and 12 years, Lamb et al. [16] found no shared environmental influences
on internalizing/externalizing problems (quantitative scales). Moreover, they found lower
heritability of internalizing/externalizing problems in twins exposed to different teachers
(26 to 56%) than in twins exposed to the same teacher (67 to 82%). They also found higher
heritability of externalizing problems in boys (47 to 82%) than in girls (55 to 75%). In
children aged 4 years, Schrempft et al. [21] found that heritability of Body Mass Index
(BMI) was significantly higher in higher-risk home environments (86%) than in lower-risk
ones (39%). Moreover, they found a significantly lower effect of shared environmental
factors on BMI in high obesogenic home environments (0%) than in low obesogenic home
environments (34%). They also fit a scaled model allowing different sizes of variance
components between moderator subgroups but fixing their percentage contributions to
be equal. However, according to the likelihood-ratio tests performed, the scaled model
generally led to a deterioration in the model fit.

When sex is the moderator, the gene–environment interaction is referred to as quanti-
tative sex-limitation [46]. In this case, genetic and environmental effects on the outcome
are assumed greater in one sex than in the other one. If, however, different subsets of genes
(or shared environmental factors) are assumed to influence the outcome in boys and in
girls, it is referred to as qualitative sex-limitation [46]. Clues of qualitative sex-limitation
can be provided by a lower opposite-sex dizygotic (OSDZ) correlation. In this case, the
correlation between A1 and A2 (or between C1 and C2) in the OSDZ group is expected
to be <0.5 (or <1), and is estimated as a free parameter. Quantitative and qualitative sex-
limitation models were applied by Silventoinen et al. [22], who found the lowest heritability
of body mass index (BMI) at 4 years of age (40%) and increased heritability at 19 years
of age (75%). Evidence of quantitative and qualitative (genetic) sex-limitation was found
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through likelihood-ratio tests carried out for each age (from 1 to 19 years): age-specific
patterns of genetic/environmental contributions were similar in boys and girls, and genetic
correlations within OSDZ pairs were generally <0.5.

An important extension of model (1) is the multivariate ACE model. Here we present
the Cholesky decomposition representation of the bivariate case [47]:

Y1j = µy + ay Ay
1j + cyCy

1j + eyEy
1j + βyx1j + γyz1j

Y2j = µy + ay Ay
2j + cyCy

2j + eyEy
2j + βyx2j + γyz2j

W1j = µw + ayw Ay
1j + cywCy

1j + eywEy
1j + aw Aw

1j + cwCw
1j + ewEw

1j + βwx1j + γwz1j

W2j = µw + ayw Ay
2j + cywCy

2j + eywEy
2j + aw Aw

2j + cwCw
2j + ewEw

2j + βwx2j + γwz2j

(2)

where Y and W are different quantitative outcomes, with specific intercepts and covari-
ate effects. There are twice as many latent random variables as in model (1), and the
assumptions about their variances and covariances remain similar. For W, the variance
explained by heritable factors is now a2

yw + a2
w, and environmental contributions can be

derived similarly. Two meaningful pieces of information can be derived from model (2).
The first one is the fraction of the correlation (r) between Y and W that can be attributed
to common genetic factors: FRa = ayayw/

(
ayayw + cycyw + eyeyw

)
. The second one is

the correlation between genetic components of Y and W (i.e., the “genetic correlation”):

ra = ayayw/
√

a2
y

(
a2

yw + a2
w

)
. Similar indicators can be derived for environmental factors.

In children aged 4–7 years, Faith et al. [13] estimated heritability of BMI, waist circum-
ference (WC), and per cent body fat (BF) to be 89%, 73%, and 90%, respectively. Then, a
bivariate ACE model highlighted that energy compensation ability (COMPX) was corre-
lated with BF (r = −0.24) due to a unique environmental correlation (re = −0.27). In twins
aged 8–17 years, Ning et al. [19] found that heritability ranged from 56 to 71% for BMI
and from 24 to 56% for WC, with substantial contributions of common genetic effects to
correlations (FRa) between BMI and WC (37 to 91%). They also found higher genetic effects
in older children and in girls, but this appears to have been assessed through univariate
models. Indeed, multivariate analysis of gene–environment interaction and sex-limitation
is not straightforward [46]. Interestingly, Llewellyn et al. [17] applied a bivariate ACE
model to repeated measurements of BMI in children at 4 and 10 years. They found that her-
itability increased significantly from 43 (age 4) to 82% (age 10), and that genetic correlation
between BMI at the two ages was ra = 0.58.

The extension of model (2) to more than two outcomes requires including additional
equation pairs with additional random variables (in a cumulative fashion), so that parame-
ters like ayw, cyw and eyw are obtained for each outcome pair. Using a multivariate ACE
model in children aged 3 months, Llewellyn et al. [18] found weak correlations between
weight and slowness in eating (r = 0.22), satiety responsiveness (r = 0.23), and appetite
size (r = 0.30), and that common genetic effects explained about 40% of these correlations.
Finally, in children aged 5 years, Kan et al. [15] found high heritability of BMI (79%) and
weak correlations between BMI and food responsiveness (r = 0.20) and external eating
(r = 0.10). Since the different contributions to correlation (FRa, FRc, and FRe) were in
opposite directions, these were not reported by the authors.

In all the aforementioned studies, the whole genome (accounted for by random vari-
ables A) and the exposome (accounted for by random variables C and E) were themselves
the exposures of interest (no study aimed to estimate parameter β for a specific exposure).
The reported effects were in the form of a variance (or correlation) component and can be
considered indicative of a causal pathway to the outcomes. This would be especially true
as all the studies accounted for several confounders/effect modifiers by regressing them
out prior to analyses, inclusion in the model, or stratification (Table S1).
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3.2. GLMMs

A GLMM can be expressed as:

g
[
E
(
Yij
∣∣bj
)]

= µ + bj + βxij + γzij, (3)

where g is a known link function that relates the expected value of the outcome (belonging
to the exponential class of distributions) to the linear predictor, Yij is the outcome value
in twin i (i = 1, 2) of pair j, and bj is a pair-level random effect, generally assumed
to be normally distributed with 0 mean and variance equal to σ2

b . Interpretation of β
and γ changes according to whether g is identity (mean difference), logarithmic (log-
relative risk, RR), or logistic (log-odds ratio, OR). Using model (3), Pimpin et al. [27] found
that daily % of total energy from proteins (%Epro) at 21 months was associated with
overweight/obesity status at 36 months (OR = 1.10). Similarly, Pimpin et al. [25] found
that % dairy protein intake at 21 months was associated with overweight/obesity status at
36 months (OR = 1.12). Ha et al. [23] found that postnatal exposures to O3 were significantly
associated with developmental delays at 8, 12, 18, 24, 30, and 36 months (RR = 1.014 to
1.173). Moreover, they found that postnatal exposures to PM2.5 were significantly associated
with personal-social developmental delays up to 18 months (RR = 1.052 to 1.120). Finally,
model (3) was used by Jackson et al. [24] to confirm the results obtained through a different
method.

An extension of model (3) suitable for repeated measurements (e.g., for growth models)
can be obtained by adding an individual-level random intercept and, possibly, a random
slope for the time indicator, with a structure of variance/covariance between them. Using
this extension, Pimpin et al. [27] found that %Epro was associated with BMI (β = 0.043)
and weight (β = 0.052) in children aged between 21 and 60 months. Similarly, Pimpin
et al. [25] found that % dairy protein intake was associated with BMI (β = 0.040) and
weight (β = 0.046). Yeung et al. [26] found that infertility treatments were not associated
with developmental delays in children aged between 4 and 36 months. Finally, Ha et al. [23]
found that prenatal exposure to O3 was significantly associated with communication delays
(RR = 1.025) between 8 and 36 months.

Since GLMMs include pair effects, shared confounders are adjusted for by design.
Therefore, the effects sizes reported in the aforementioned studies may be considered
indicative of a causal pathway from the exposures of interest to the outcomes. This would
be especially true as all the studies explicitly accounted for several confounders (both
shared and individual-level ones) by inclusion in the model (Table S1).

3.3. GLMs with Fixed Pair Effects

A GLM with fixed pair effects (bj) can be defined as:

g
[
E
(
Yij
)]

= bj + βxij + γzij. (4)

In this case, parameters bj are estimated through dummy variables. Using this model
in twins aged 9–16 years, Örtqvist et al. [29] found no association between fetal growth and
lung function. In children aged 4 years, Leong et al. [31] found no association between the
number of antibiotic courses during early childhood (0–24 months) and BMI/obesity status.
For binary outcomes, conditional logistic regression allows eliminating the need to estimate
the strata parameters bj. Through this model, Örtqvist et al. [29] found a strong association
between fetal growth and abnormal FEV1 (OR = 5.57) in twins aged 9–16 years. In children
up to 18 years, Li et al. [28] found an increased risk of ever being obese associated with
untreated infection in the first year of life compared with no infection (OR = 1.55). Finally,
in children aged 3–10 years, Slob et al. [30] found that antibiotic use in the first 2 years of life
was consistently associated with an increased risk of asthma in two cohorts (OR = 1.54 and
OR = 2.00), while inconsistent results were found in the two cohorts for eczema (OR = 0.99
and OR = 1.67).
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Since this class of models includes pair effects, the effects sizes reported in the afore-
mentioned studies may be considered indicative of a causal pathway from the exposure
to the outcome. This would be especially true in two of the four aforementioned studies
where several individual-level confounders were included in the model [30,31]. However,
it should be pointed out that in one study [31], model (4) was applied to a binary outcome
using a standard logistic regression with dummy variables for the pair effects. In this case,
the estimator of β is severely biased, and using conditional logistic regression is much more
recommended (see Discussion).

3.4. Within-Pair Difference Analyses

When g is the identity function, a within-pair difference model can be derived from
(and is formally equivalent to) model (4) by taking differences between twins 1 and 2:

E
(
Y1j − Y2j

)
= β

(
x1j − x2j

)
+ γ

(
z1j − z2j

)
. (5)

This model was applied by Bogl et al. [32] in twins aged 11 years or older, who
found that increasing energy intake was associated with increasing BMI (β = 0.13 for a
100-kcal/d increase). Of note, other authors simply analyzed correlations between outcome
and exposure differences. In children aged 3 months, Tripicchio et al. [34] used Pearson’s
correlation and found that parental restriction to eat was positively associated with BMI
(r = 0.31), while it was negatively associated with an energy compensation ability scale
(COMPX, r = −0.27). Moreover, parental pressure to eat was negatively associated with
BMI (r = −0.40), BF (r = −0.38), and WC (r = −0.40). Dubois et al. [33] used Spearman’s
correlation and found negative (positive) associations between intake of carbohydrates
(fats) at 9 years and BMI at 12, 13, and 14 years.

As for model (4), parameter β in model (5) represents a within-pair effect of the
exposure, and may be considered indicative of a causal pathway to the outcome. However,
only one study [32] included an individual-level confounder (height) in the model.

3.5. Paired-Sample Tests

If all the twin pairs are discordant on a binary exposure (x1j = 1 and x2j = 0), a
paired-sample test can be applied. Particularly for a quantitative outcome, and in the
absence of individual-level confounders (γ = 0), performing a paired t-test is equivalent to
testing β in model (5), which becomes:

E
(
Y1j − Y2j

)
= β. (6)

Similarly, a paired-sample test can be performed if all the twin pairs are discordant
on a binary outcome. Through Wilcoxon signed-rank tests, Dubois et al. [33] found that
heavier female twins consumed more grain products than their leaner female co-twin.

Moreover, in twins aged 4–18 years, Bilenberg et al. [35] found that twins scoring high
on a scale of attention-deficit/hyperactivity disorders (ADHD) had significantly higher
PnPs14 RFU-score (a maternal transplacentally-acquired antibody) than lower-scoring
co-twins (mean difference was 0.08).

Although paired-sample tests account by design for shared confounders, individual-
level confounders cannot be accounted for. Therefore, the associations reported in the
aforementioned studies may not be indicative of a causal pathway from the exposure to
the outcome if parameter γ is not 0 in model (5).

3.6. GEE Models

A GEE model can be expressed as:

g
[
E
(
Yij
)]

= µ + βxij + γzij, (7)
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where Y1j and Y2j are assumed to be correlated for each j, and the unknown correlation
is to be estimated. Since there are no pair effects, Equation (7) is a marginal rather than a
conditional model, as all the previous ones were [48].

Using GEE models in children aged 9 or 12 years, Gong et al. [37] found that ADHD
and autism spectrum disorders were not significantly associated with exposure to PM10
and NOx during pregnancy, and during the first/ninth year of life. In children aged
18–22 months, Boghossian et al. [36] found that antenatal corticosteroids (ANS) were
associated with a lower risk of neurodevelopmental impairment (NDI) or death among
non-small for gestational age infants (RR = 0.89), and a higher risk among small for
gestational age infants (RR = 1.62). Moreover, ANS were associated with a higher risk of
NDI/death among infants of mothers with diabetes (RR = 1.55). In children aged 3–7 years,
Johnson et al. [38] found positive associations between BMI and the frequency of maternal
non-verbal encouragements/discouragements and temporary discouragements during a
laboratory meal. Using GEE models, Yeung et al. [26] and Slob et al. [30] found similar
results than in their conditional analyses (GLMMs and conditional logistic regression,
respectively).

Since Equation (7) is a marginal model, parameter β represents a population-averaged
effect. However, GEE models yield essentially the same estimates of β as in GLMMs
with identity link function and in log-linear models. Conversely, studies using logistic
regression [26,30,37] may have provided attenuated estimates of the within-pair effects
(see Discussion). When several confounders are included in the model (as in all the
aforementioned studies), the degree of attenuation decreases, and the reported associations
may be considered indicative of a causal pathway.

3.7. GLMs with Cluster-Robust Standard Errors

A GLM with cluster-robust standard errors can be expressed as model (7), but no
correlation parameter is estimated. Since ignoring pairwise dependence induces a bias in
the standard error estimates, these are corrected through sandwich estimators [49]. Using
this approach in children aged 4 years, Petkovsek et al. [41] found that, in females, the effect
of prenatal smoking on externalizing behavioral problems was stronger in children with
higher genetic risk (β for interaction = 0.36). In twins aged 12–23 years, Palmer et al. [40]
found that prenatal smoking significantly increased the frequency of conduct disorders
(β = 0.43) and inattention (β = 0.85). In children aged 4–7 years, Jackson et al. [24] found
that the effect of a short duration of breastfeeding on conduct problems was stronger in
children with higher genetic risk (β for interaction = 0.095). Örtqvist et al. [29] found that
fetal growth was associated with post-bronchodilator FEV1 (β = −0.16) and abnormal
FEV1 (OR = 1.27). In children aged 9–12 years, Castellheim et al. [39] found that lifetime
general anesthesia was significantly associated with ADHD scores (β = 1.02). Finally,
Leong et al. [31] found that antibiotic use was associated with increasing BMI (β = 0.018)
and obesity (OR = 1.09) in children aged 4 years.

Since pair effects were not included in these models, shared confounders were not
adjusted for by design. Therefore, despite the inclusion of several covariates, the effects
sizes reported in the aforementioned studies may not be considered indicative of a causal
pathway from the exposures of interest to the outcomes. Of note, Leong et al. [31] found
that the reported associations disappeared after including pair effects in the model.

3.8. GLMs

A plain GLM can be expressed as model (7), but neither correlation parameters
nor cluster-robust standard errors are provided. Using this approach in children aged
6 years, González-Valenzuela et al. [42] found that cesarean birth was associated with
verbal (OR = 2.83), non-verbal (OR = 2.55), and global (OR = 3.69) delays, and with general
intelligence difficulties (OR = 2.62). Although several covariates were included in the
models, the reported associations may not be considered indicative of a causal pathway
from the exposure to the outcome.
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3.9. Independent-Sample Tests

Using independent-sample tests (Chi-square tests) in children aged 2–10 years, Zaf-
man et al. [43] found that delivery order (length of exposure to the maternal vaginal–fecal
microbiome) was not associated with asthma and obesity indicators. Since confound-
ing effects were totally disregarded in this case, the reported associations should not be
considered indicative of a causal pathway from the exposure to the outcome.

4. Discussion

We reviewed the statistical approaches used in twin studies relating exposure to
childhood obesity, allergic, and neurodevelopmental disorders. We identified 32 studies
published between 2011 and 2021, and nine classes of statistical approaches. Five were
conditional approaches (within-pair analyses), while four were marginal approaches (un-
paired analyses). We provided a description of the identified statistical methodologies,
highlighting the differences and connections among them.

Twinning was disregarded in two studies [42,43], where independent-sample tests
and a plain GLM were applied. In this regard, ignoring the correlation between obser-
vations leads to sub-optimal effect-size estimators (they are not the best linear unbiased
estimators–BLUE–in linear regression) and biased standard error estimators, invalidat-
ing inference [50]. In particular, this leads to overestimating parameter uncertainty for
individual-level covariates and to underestimating parameter uncertainty for shared co-
variates [51]. Moreover, unless many confounders are included, these models may not be
appropriate to unveil causal relationships between the exposures and outcomes.

Six studies [24,29,31,39–41] adopted a “corrective” approach by adjusting the standard
errors through sandwich estimators. In this case, however, the effect-size estimators remain
sub-optimal. Conversely, five studies [26,30,36–38] adopted a “preventive” approach, i.e.,
the GEE model. In the absence of unmeasured or disregarded confounding, GEE models
provide optimal effect-size estimators (they are BLUE in linear regression), and correct
standard error estimators [9,48].

Whereas all the aforementioned approaches are “marginal”, all the other identified
approaches are “conditional”, since their parameters represent outcome differences as-
sociated with an exposure difference within a twin pair [4,5]. Consequently, conditional
models adjust by design for shared confounders, i.e., the genome and the twin-identical
exposome, and may be more appropriate to unveil causal relationships.

Two studies [33,35] applied the simplest form of conditional analysis, i.e., paired-
sample tests; however, this approach provides no way to adjust for individual-level con-
founders. Conversely, three studies [32–34] carried out within-pair difference analyses,
which have the potential to adjust for individual-level confounders by the inclusion of
additional difference terms in the model. However, only Bogl et al. [32] included the differ-
ence in an individual-level confounder (height) in their model, while simple correlation
coefficients were used in the other two studies [33,34]. Within-pair difference models
cannot be applied if the link function is different from the identity.

GLMs with fixed pair effects can be applied in more general settings. This model
was applied to a quantitative outcome in two studies [29,31] as “a way to control for a
greater amount of unmeasured confounding” [31] compared to linear regression with
robust standard errors. Only in one study [31], model (4) was applied to a binary out-
come (logistic regression) using dummy variables for the pair effect. However, in this
case, the estimator of β is severely biased, and using conditional logistic regression is
much more recommended [52]. Conditional logistic regression was, indeed, used in three
studies [28–30].

Although GLMs with fixed pair effects adjust by design for shared confounders, the
associated parameters are not identifiable if included in the model. Conversely, GLMMs
can incorporate shared covariates, simply leading to a lower heterogeneity captured by
the random intercept [48]. As a result, estimates of β from GLMMs are quite robust with
respect to the omission of shared covariates [48]. Using a GEE rather than a GLMM
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approach leads essentially to the same estimate of β in models with identity link function
and in log-linear models [9,48]. Conversely, logistic regression estimated through the GEE
approach generally yields attenuated estimates of β, and the degree of attenuation increases
when shared covariates are omitted [48]. Five studies applied a GLMM [23–27]; of note,
all but one [17] of the studies including repeated measurements of the outcome applied a
GLMM [23,25–27].

Finally, ACE models were applied by eleven studies [12–22]. These models keep
the advantages of all the previous models, but in addition, they can disentangle the
contribution of the genome and the exposome. However, such models may appear difficult
to implement and to interpret, and their extension to longitudinal data through mixed-effect
modelling is not straightforward [53]. In this review, only one study [17] applied an ACE
model to repeated measurements, using its bivariate extension. In ACE models, genetics
is often the exposure of interest, while shared and individual covariates are incorporated
into C and E, respectively. In this review, covariates were included in the ACE model
only in one study [12], while they were regressed out prior to analyses (or considered as
potential moderators) in almost all the other studies. Table 1 summarizes the strengths and
limitations of the aforementioned methods and dedicated libraries for implementation in
the R software.

Table 1. Classes of statistical methods used in the reviewed studies.

Class of Methods Strengths Limitations R Libraries

ACE models

- Confounders can be included
- Optimal inference
- Shared confounders are

adjusted for by design
- Genetic contribution can be

estimated

- Require adaptations for
binary outcomes and repeated
measurements

umx
lavaan

OpenMx

Generalized linear
mixed models
(GLMMs)

- Suitable for binary outcomes
- Confounders can be included
- Optimal inference
- Shared confounders are

adjusted for by design
- Suitable for repeated

measurements

- Genetic contribution cannot
be estimated

lme4
nlme

MASS

GLMs with fixed pair
effects

- Suitable for binary outcomes
- Individual-level confounders

can be included
- Shared confounders are

adjusted for by design

- Shared confounders cannot be
included

- Estimators may be
sub-optimal

- Unsuitable for repeated
measurements

- Genetic contribution cannot
be estimated

stats

Within-pair difference
analyses

- Individual-level confounders
can be included

- Optimal inference
- Shared confounders are

adjusted for by design

- Unsuitable for binary
outcomes

- Shared confounders cannot be
included

- Unsuitable for repeated
measurements

- Genetic contribution cannot
be estimated

stats
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Table 1. Cont.

Class of Methods Strengths Limitations R Libraries

Paired-sample tests
- Optimal inference
- Shared confounders are

adjusted for by design

- Require a binary exposure
- Require adaptations for

binary outcomes
- Confounders cannot be

included
- Unsuitable for repeated

measurements
- Genetic contribution cannot

be estimated

stats

Generalized
estimating equations
(GEE) models

- Suitable for binary outcomes
- Confounders can be included
- Optimal inference

- Shared confounders are not
adjusted for by design

- Require adaptations for
repeated measurements

- Genetic contribution cannot
be estimated

gee
geepack

Generalized linear
models (GLMs) with
cluster-robust
standard errors

- Suitable for binary outcomes
- Confounders can be included
- Optimal standard error

estimators

- Sub-optimal effect-size
estimators

- Shared confounders are not
adjusted for by design

- Unsuitable for repeated
measurements

- Genetic contribution cannot
be estimated

sandwich

Generalized linear
models (GLMs)

- Suitable for binary outcomes
- Confounders can be included

- Sub-optimal inference
- Shared confounders are not

adjusted for by design
- Unsuitable for repeated

measurements
- Genetic contribution cannot

be estimated

stats

Independent-sample
tests - Suitable for binary outcomes

- Require a binary exposure
- Confounders cannot be

included
- Sub-optimal inference
- Shared confounders are not

adjusted for by design
- Unsuitable for repeated

measurements
- Genetic contribution cannot

be estimated

stats

In practical applications, the best (or sufficient) approach to use may depend on
the research needs, data structure, and desired parameter meaning. ACE models can
accommodate for most of the research needs, including the assessment of heritability, but
they require adaptations for binary outcomes and repeated measurements. GLMMs are
a valid choice if assessing heritability is not a research need, and they would be the best
choice to accommodate for binary outcomes and repeated measurements. GLMs with fixed
pair effects and within-pair difference analyses are good (and substantially equivalent)
approaches when the effects of shared confounders do not need to be explicitly quantified,
but only the former can accommodate for binary outcomes (conditional logistic regression
is recommended). If either the outcome or the exposure is binary, and confounding effects
are assumed to be marginal (e.g., if the twins are substantially identical except that for
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the exposure of interest), paired-sample tests can be a valid alternative to more complex
models. The use of GEE models (marginal models) for logistic regression should only
be limited to situations in which the researchers are interested in estimating population-
averaged effects rather than within-pair effects. In these cases, however, the twin design is
not strictly needed, and is not more useful than a singleton study (except that for increasing
the sample size). Finally, GLMs should never be used in a twin study, since they may lead
to sub-optimal inference. Figure 2 provides a summary of recommendations regarding
which types of models researchers should favor under different conditions (research needs,
data structure, and desired parameter meaning).

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 12 of 15 
 

 

ited to situations in which the researchers are interested in estimating population-aver-
aged effects rather than within-pair effects. In these cases, however, the twin design is not 
strictly needed, and is not more useful than a singleton study (except that for increasing 
the sample size). Finally, GLMs should never be used in a twin study, since they may lead 
to sub-optimal inference. Figure 2 provides a summary of recommendations regarding 
which types of models researchers should favor under different conditions (research 
needs, data structure, and desired parameter meaning). 

 
Figure 2. Summary of recommendations regarding which types of models researchers should favor under different con-
ditions (research needs, data structure, and desired parameter meaning). 1 Conditional logistic regression is recommended. 
2 Accommodated for through the use of dummy variables. 3 Either the outcome or the exposure mustable t be binary. 4 

Only in models with identity link function and in log-linear models. 

Among other methods for twin data, DeFries–Fulker regression was only mentioned 
by Petkovsek et al. [41]. ADE models were only mentioned by Faith et al. [13]. ACE models 
accounting for correlated errors and “twin confusion” were only mentioned by Lamb et 
al. [16]. ACDE models [44] and ACE models for categorical outcomes [54] were never 
mentioned. Incomplete records were generally excluded, and the issue of missing value 
imputation appears to have been only addressed in one study [26]. Indeed, imputation 
methods for correlated data might be less popular than standard approaches; in general, 
likelihood approaches (such as GLMM) have shown to be robust to the “missing com-
pletely at random” assumption, while non-likelihood marginal models (such as GEE mod-
els) have not [55]. 

Twin studies also have disadvantages. First, generalizability to singleton populations 
may not always be possible [56]. In this regard, twins may differ from singletons in several 
aspects: twins tend to have older parents, to be born preterm, and to have lower birth-
weight and specific disorders. Moreover, as pointed out by Bilenberg et al. [35], the genetic 
control may reduce the exposure contrast, and larger sample sizes may be required. How-
ever, due to the relative rarity of twins, gathering a large sample size may not be easy. 
Finally, experimental trials involving twins are statistically inefficient if all the twins in 
the same pair are allocated to the same treatment arm (the treatment becomes a shared 
covariate, leading to large standard errors) [8]. 

Figure 2. Summary of recommendations regarding which types of models researchers should favor under different condi-
tions (research needs, data structure, and desired parameter meaning). 1 Conditional logistic regression is recommended.
2 Accommodated for through the use of dummy variables. 3 Either the outcome or the exposure mustable t be binary.
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Among other methods for twin data, DeFries–Fulker regression was only mentioned
by Petkovsek et al. [41]. ADE models were only mentioned by Faith et al. [13]. ACE models
accounting for correlated errors and “twin confusion” were only mentioned by Lamb
et al. [16]. ACDE models [44] and ACE models for categorical outcomes [54] were never
mentioned. Incomplete records were generally excluded, and the issue of missing value
imputation appears to have been only addressed in one study [26]. Indeed, imputation
methods for correlated data might be less popular than standard approaches; in general,
likelihood approaches (such as GLMM) have shown to be robust to the “missing completely
at random” assumption, while non-likelihood marginal models (such as GEE models) have
not [55].

Twin studies also have disadvantages. First, generalizability to singleton populations
may not always be possible [56]. In this regard, twins may differ from singletons in several
aspects: twins tend to have older parents, to be born preterm, and to have lower birthweight
and specific disorders. Moreover, as pointed out by Bilenberg et al. [35], the genetic control
may reduce the exposure contrast, and larger sample sizes may be required. However,
due to the relative rarity of twins, gathering a large sample size may not be easy. Finally,
experimental trials involving twins are statistically inefficient if all the twins in the same
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pair are allocated to the same treatment arm (the treatment becomes a shared covariate,
leading to large standard errors) [8].

This review has some limitations that should be acknowledged. Study outcomes in the
search strategy were limited to obesity, asthma, eczema, rhinitis, and neurodevelopmental
disorders. Therefore, the distribution of statistical methods captured in this review may
not generalize to the broader twin literature. Moreover, although we have used the general
keyword “expos*” in the search strategy, we limited to search this term in titles and
abstracts; therefore, as with all reviews, we might not have identified all the relevant
articles. Finally, the characteristics of the included studies were sometimes difficult to
identify and to extract (e.g., the number of twin pairs by zygosity) and, in some cases, they
were inferred by the reviewers (e.g., based on tables).

5. Conclusions

In conclusion, twin data provide a unique opportunity to control for confounding and
disentangling the role of the human genome and exposome when investigating disease
etiology. Although rare, sub-optimal (GLMs with fixed pair effects for binary outcomes)
or simplistic (plain GLMs and independent-sample tests) approaches were still present
in the twin-study literature, possibly undermining the validity of the evidence base. By
highlighting the strengths and limitations of commonly applied statistical methods, this
review may be helpful for researchers using twin designs.
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