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Seasonal and inter-annual variability in abundance of the main 1 

tropical tunas in the EEZ of Côte d’Ivoire (2000-2019) 2 

Akia S1,2,3*., Amandé M2., Pascual P4. and Gaertner D1,3. 3 

Abstract 4 

The seasonal and inter-annual variability in abundance of the main “local tropical tuna 5 

resources” in the EEZ of Côte d'Ivoire was analysed with catch and effort data from French 6 

and Spanish purse seiners over the period 2000-2019. A seasonal spatio-temporal model 7 

developed by Thorson et al. (2020a) was used to estimate abundance indices for the main 8 

tropical tunas by commercial category (<10kg and >=10kg, which correspond roughly to 9 

maturity stage: immature and mature respectively), and fishing mode (free school sets and 10 

FAD sets). Furthermore, we decomposed the abundance time series into intrinsic mode 11 

functions using the CEEMDAN algorithm. The decomposition procedure made it possible to 12 

filter out the noise in the signal and extract the seasonal and inter-annual components of the 13 

abundance indices. A generalized additive model (GAM) was applied to the abundance 14 

indices to reveal the influences of environmental factors on species abundance and spatio-15 

temporal distribution. Biological interpretations of the seasonal and inter-annual variability in 16 

tropical tuna abundance were made and the possible effects of environmental variables on this 17 

abundance discussed. Our results suggest that there are two main fishing seasons in the EEZ 18 

of Côte d'Ivoire. It was also found that mature yellowfin tunas are abundant between the first 19 

and second quarter of the year while the best season for skipjack occurs between the third and 20 

fourth quarter. In addition, we observed a considerable change over time in the seasonal and 21 

inter-annual variability of tropical tunas in this area. 22 

Keywords: abundance indices, seasonal and inter-annual variation, spatio-temporal vector 23 

autoregressive model (VAST), tropical tuna. 24 

Highlights 25 

• Assessment of the tuna resources in the Exclusive Economic Zone (EEZ) of Côte 26 

d'Ivoire by estimating abundance indices with a seasonal spatio-temporal model. 27 

• Evidence of two marked seasons of abundance in the study area: mature yellowfin 28 

from February to June and skipjack from August to December. 29 

• Differences in behaviour (month of peak abundance, sensitivity to environmental 30 

variables) of tuna caught on Fish Aggregating Devices (FAD) vs tuna caught on Free-31 

Swimming Schools (FSC). 32 

• Similarity between the dynamics of some abundance indices and some environmental 33 

variables. 34 
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1. Introduction  36 
Fishing is of paramount importance in Côte d'Ivoire, as it is one of the main sources of animal 37 
protein for the country's poorest households due to its relatively affordable price compared to 38 
meat. Socio-economically, the tuna industry plays an important role in employment in Côte 39 
d'Ivoire (landing activities, canneries) and exports there. A trade and utilization chain for the 40 
tuna bycatch, called "faux poissons", retained on-board by purse seiners and landed in 41 
Abidjan (Côte d'Ivoire) has been developed since the early 1990s. Romagny et al. (2000) 42 
showed that this sector was of great socioeconomic importance for its actors from landing to 43 
consumption. A recent study has shown that in addition to the great social and economic 44 
importance of this sector for the local population, it contributes substantially towards food 45 
security for the Ivorian people (Monin et al., 2017). Côte d'Ivoire furthermore benefits from 46 
the incomes generated by fisheries agreements concluded with long-distance foreign vessels. 47 

Given the essential role of fisheries, and mainly tuna fisheries, coastal countries have 48 
established fisheries departments to better manage the exploitation of tuna resources in their 49 
EEZ. Due to their highly migratory nature, the management of tuna stocks is carried out at a 50 
large regional scale by Regional Fisheries Management Organizations (RFMOs). Despite the 51 
need to assess the status of tuna resources at the stock level, little information is produced to 52 
know the state of the local resources, thus the coastal countries cannot optimize the 53 
management of their EEZ. In Côte d'Ivoire, there are two main types of tuna fisheries: 54 
industrial and artisanal. Industrial fisheries are dominated by EU purse seiners, with Spain and 55 
France predominant (Failler et al., 2014). Fisheries data for the EU industrial fleet are very 56 
well collected and monitored, and remain the best sources of information on the sector. The 57 
tuna resources of Côte d'Ivoire are mainly exploited by this fleet within the framework of a 58 
fishing agreement between Côte d'Ivoire and the European Union (Failler et al., 2014). The 59 
production of artisanal tuna fishery remains significant, but the data collected on this segment 60 
remain insufficient for a complete analysis of the sector. To date, local abundance of tuna in 61 
the EEZ of Côte d'Ivoire has not been specifically assessed (Cofrepeche, Poseidon, 2012; 62 
Failler et al., 2014). However, the downward trend in the reference tonnage of the EU/CIV 63 
fisheries agreements (supplementary material S1: Table 1:S1) and the global and local effects 64 
of climate change highlight the urgent need for Côte d'Ivoire to study seasonal and inter-65 
annual variation in the tuna resources temporarily found in its EEZ.  66 

Given the lack of direct estimates from scientific surveys, commercial catch per unit of 67 
effort (CPUE) is used to derive relative abundance of tuna resources which play an important 68 
role in stock assessment and management (Ricker, 1940; Maunder and Langley, 2004; 69 
Maunder and Punt, 2004). Nominal CPUEs derived from commercial fisheries are greatly 70 
influenced by spatial, temporal, and environmental factors, among others, and need to be 71 
standardized (Fonteneau et al., 1999; Maunder and Punt, 2004). Several methods have been 72 
applied to standardize CPUE including GLMs and GAMs (Campbell, 2004; Katara et al., 73 
2018); machine learning and data mining techniques (Albeare, 2009; Yang et al., 2015), and 74 
spatio-temporal models (Maunder et al., 2020; Thorson et al., 2020b). We use the recent 75 
version of the VAST spatio-temporal model developed by Thorson et al. (2020a). This model 76 
includes annual, seasonal and spatial variations in density and allows us to capture two 77 
important key issues: (i) the standardization of data that are spatially unbalanced over several 78 
seasons and (ii) the identification of inter-annual changes in the seasonal chronology of 79 
population. The three most important tropical tuna species - skipjack tuna (Katsuwonus 80 
pelamis, SKJ), yellowfin tuna (Thunnus albacares, YFT), and bigeye tuna (Thunnus obesus, 81 
BET) - were divided into eight class categories taking into account the species, the maturity 82 
stage (immature and mature), and the two main fishing modes in the purse seine fishery (free 83 
school sets and floating object sets: hereafter referred to as FSC and FOB, respectively [note 84 
that FOB can be natural logs but in the large majority of cases are drifting fish aggregating 85 



 

 

devices known as dFADs]. The categorization of species by school type is legitimate in the 86 
sense that the fishing techniques differ. Fishing on dFADs can be analogous to harvesting and 87 
collecting, and fishing on free schools to searching and hunting. dFADs increase the 88 
catchability of tuna, as compared to sets on free schools by helping fishers locate fish 89 
(reducing search time) and allowing a high percentage of successful sets (Moreno et al., 90 
2007). Free schools are dominated by large yellowfin whereas dFADs schools are mainly 91 
composed of skipjack and juveniles of the two others species. This distinction will enable 92 
evaluation of this aspect in the study area. Several studies have highlighted the major effects 93 
of climatic cycles on the distribution and availability of tuna resources in a local area (Maury 94 
et al., 2001; Lehodey et al., 2006; Ménard et al., 2007; Marsac, 2017). The variability of 95 
climatic conditions can be a non-negligible indicator of the variability in tuna abundance and 96 
spatial distribution and consequently justify the analysis of the relationship between 97 
environmental variables and tuna abundance indices. The following environmental variables 98 
have been selected for this study: sea surface temperature (SST), dissolved oxygen at a depth 99 
of 100 meters (DO2_100), chlorophyll concentration (CHL), sea surface salinity (SSS), mixed 100 
layer thickness (MLD), sea surface height (SSH) and SST-based coastal upwelling index 101 
(CUI_sst). Indeed, some studies showed that upwelling indices are important in explaining the 102 
fluctuations of tuna and tuna-like species abundance (Cury and Roy, 1987; Roudaut, 1999). 103 

To analyse the seasonal and inter-annual variation in the European purse seiners CPUEs in 104 
the Ivorian EEZ, we first estimated the abundance indices using a Thorson et al. (2020a) 105 
seasonal spatio-temporal model. Thereafter, we used a method adapted to analyse non-linear 106 
and non-stationary signals (i.e., the CEEMDAN algorithm), with the aim to decompose the 107 
CPUE series into a finite and exhaustive number of components, called intrinsic mode 108 
functions (IMFs). Finally, we explored the relationships between the estimated abundance 109 
indices and the environmental variables using GAMs. 110 

2. Materials and methods  111 
2.1 Study area 112 
The study area extends between latitudes 1°N and 6°N and longitudes 2°W and 8°W (Fig. 1). 113 
This is the smallest area that includes the 1° square that pass through the Ivorian EEZ. The 114 
area was selected to facilitate future comparisons with data collected by 1° square degrees and 115 
to avoid boundary effects. This area is characterized by a seasonal surface temperature signal 116 
due to the presence of two cool seasons, each associated with the coastal upwelling (Morlière, 117 
1970). The main cold season takes place in winter between July and September. Winter 118 
cooling is then intensified on the coast by upwelling that brings nutrient-rich water to the 119 
surface. A second cooling occurs along the coast in January-February; this second cold season 120 
is low-amplitude and short-lived (between one and two months; Cury and Roy, 1987)              121 

2.2 Catch and effort data 122 
Catch and effort data for EU purse seiners operating in the EEZ of Côte d’Ivoire from 2000 to 123 
2019 were compiled and managed by the Tuna Observatory (Ob7) of the French National 124 
Research Institute for Sustainable Development (IRD, UMR MARBEC), and the Spanish 125 
Institute of Oceanography (IEO) for the French and the Spanish fleets respectively. The raw 126 
logbook data produced by the skippers were corrected by the T3 methodology regarding total 127 
catch per set (to account for the difference between reported catch at sea and landed catch) 128 
and species composition (based on port size sampling), see Pallarés and Hallier (1997) and 129 
Duparc et al. (2020), to generate the level 1 logbook database used in this paper. The 130 
commercial size category was used as a discriminant factor at the maturity stage of bigeye and 131 
yellowfin tuna. Commercial categories 2 and 3 (tuna >=10 kg) are classified as mature and 132 
category 1 (tuna <10 kg) is classified as immature (except for skipjack which belongs to this 133 



 

 

category and was not divided by maturity stage). We know from the literature5 that 50% size 134 

at maturity is reached around 100cm fork length (that is to say around 20kg) for yellowfin and 135 
bigeye. However, for the sake of simplicity we used the conventional “size” commercial 136 
categories reported in purse seiners logbooks by European skippers (category 1: <10kg; 137 
category 2: 10 to 30kg; category 3: >30kg). All sets per boat and per day were combined and 138 
assigned to the centroids of these activities. The total number of sets per day per boat has been 139 
filtered and days with unrealistic data (over 5 sets per day per boat) deleted. Given that free 140 
schools are detected at random at the surface of the sea, the unit of effort associated with this 141 
fishing mode was expressed as the searching time (i.e., the time spent on the fishing ground 142 
less the duration of all setting operations). In contrast, many dFADs are not encountered 143 
randomly, specifically when they are equipped with a GPS buoy and continuously tracked 144 
remotely by the purse seiner. In such a case we used the number of dFADs sets as a 145 
measurement of the fishing effort. The data were then divided into eight categories according 146 
to the species, the maturity stage and the fishing mode. Only catch and effort data from sets 147 
conducted out in the study area were selected in this study. 148 

2.3 Environmental data 149 
Six candidate environmental variables were extracted from the EU's Copernicus Marine 150 
Environment Monitoring Service (CMEMS) (https://marine.copernicus.eu/) at a monthly 151 
mean resolution (Table 1): sea surface temperature (SST), sea surface height (SSH), 152 
chlorophyll concentration (CHL), salinity (SSS), mixed-layer thickness (MLD), and dissolved 153 
oxygen at a depth of 100 meters (DO2_100). The spatial resolution of the model grid for SSS, 154 
SSH, SST, and MLD is 1/12º (0.083º x 0.083º, about 8 km), while the spatial resolution for 155 
CHL, DO2_100 is 1/4º (0.25º x 0.25º, about 24 km). 156 

2.4 Coastal upwelling index (CUI_SST)  157 
A seventh environmental variable, the monthly SST-based coastal upwelling index 158 
(CUI_SST) was calculated for the Ivorian EEZ. The SST-based coastal upwelling indices are 159 
obtained by taking the thermal difference (ΔT) between the coast and the offshore SST at the 160 
same latitude. In practice, CUI_SST has been defined as the thermal difference between cold 161 
coastal waters and warmer offshore waters at the same latitude (Benazzouz et al., 2014). The 162 
general formulation is as follows: 163 

 CUISST (lat, time) = SSToffshore (lat, time) − SSTcoastal (lat, time)                                                         (1)                                         164 

The general calculation formula is very simple, but the challenge is to study the best way to 165 
define the coastal and offshore zones and to correctly extract the two thermal references to be 166 
used for the calculation. The resulting SST-based coastal upwelling index is characterized by 167 
a seasonal signal with peaks in the first and third quarter of the year (Fig. 2). 168 

2.5 Methods 169 
2.5.1 The seasonal spatio-temporal model 170 
We applied a vector-autoregressive spatio-temporal delta-generalized linear mixed model to 171 
the catch and effort data, using the R package VAST (Thorson, 2019). Recently, VAST has 172 
been expanded to account for seasonal and inter-annual variability (Thorson et al., 2020a). 173 
This allows an understanding how species distribution and abundance varies within a year by 174 
month or season, and also within a month or season across years. It offers reasonable 175 
performance even when data are not fully available for one or more combinations of years and 176 

                                                           
5 See ICCAT manual, chapter 2 at https://www.iccat.int/en/iccatmanual.html 



 

 

seasons, which is common in commercial catch data. In order to work at a finer scale 177 
temporal resolution (monthly, bi-monthly, quarterly…), the estimates in year-season t are 178 
shrunk towards predicting density in adjacent year-seasons (t-1 and t+1), as well as towards 179 
estimating density in other seasons in a given year and density in other years for a given 180 
season. This specification implies that the model includes a “main effect” for a season and 181 
year, as well as an autocorrelated “interaction” of season and year. We present below a brief 182 
summary of the principal parameters and philosophy of the model but readers are encouraged 183 
to refer to supplementary materials S2 for more technical details.   184 

The VAST model is being implemented using the Poisson-link delta model as 185 

recommended by Thorson (2018). The Poisson-link delta model includes the probability �� 186 

that sample i encounters a given species [i.e. Pr (� > 0)], and also the expected measurement 187 

ri given that species is encountered, Pr (� ∣ � > 0): 188 

 189 

Pr(� = ��) = � 1 − ��  if � = 0
�� × ��� ∣ ��, ��� �  if � > 0,                                                                                 (2) 190 

 191 

where we specify a lognormal distribution for positive catches. This Poisson-link delta model 192 

predicts encounter probability pi and positive catch rate �� by modeling two log-linked linear 193 

predictors, log (#�) and log($�) for each sample i; #� and $� are then transformed to yield �� 194 

and �� : 195 

�� = 1 − exp(−(� × #�) , �� = )*×+*
,*

× $� ,                                                                             (3) 196 

 197 

where (� is the area-swept offset for sample i. This model structure is designed so that 198 

expected density .� is the product of encounter probability and positive catch rate and also the 199 

product of transformed linear predictors (i.e .� = �� ∗ �� = #� ∗ $�). These predictors can be 200 

interpreted as numbers-density ni (with units numbers per area) and average weights wi (with 201 

units biomass per number). #� always enters via the product (� ∗ #� such that #� is expressed 202 
as density. We consider effort as a catchability factor in the model. The Poisson-link delta 203 
model is useful relative to other delta models because both linear predictors use a log-link 204 
function so that all effects are additive in their impact on the predicted log-density. 205 
Specifically, we specify that:  206 

 207 

log(#�) =208 

0+∗(1�)234
56)7896)9:+

�+;67<6,;       = 
>+∗ (?�)234
@,);�)A

�)�+ 6BB6<;

 C+D∗ (?�, E�)2FF3FF4
 =    @6)9:+

9,);�)A 6BB6<;     = 
 C+G∗ (?�, H�)2FF3FF4
  56)7
9,);�)A 6BB6<;      = 
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 210 
  211 

log($�) =212 

0Q∗ (1�)234
56)7896)9:+
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  (5)                                                                      213 

The French purse seiners were targeting mainly free schools while the Spanish purse 214 
seiners were targeting drifting FADs. This difference in fishing strategy is less pronounced in 215 
the recent years as the use of dFADs-fishing increased in both fleets. There is likely also a 216 
vessel size category component in the choice of the fishing strategy. Both covariates (flag and 217 
vessel size category [carrying capacity]) have been introduced in the analysis as catchability 218 
covariates as suggested by Thorson (2019). 219 



 

 

Key model parameters for abundance indices are density predicted, area-weighted density 220 
sum, and abundance-weighted mean density. The model estimates the density prediction per 221 
year at each fine spatial resolution: 222 
.(?, 1) = #(?, 1) × $(?, 1)

= exp S0+∗(1) + >+∗ (?) + C+D∗ (?, E) + C+G∗ (?, H) + I+∗ (?, 1) + J +
∗ U

× exp S0Q∗ (1) + >Q∗ (?) + CQD∗ (?, E) + CQG∗ (?, H) + IQ∗ (?, 1) + J Q
∗ U

                    (6)              223 

 224 

We use density to calculate the total abundance for the entire domain as the area-weighted 225 

sum of density . (?, 1) predicted at a fine spatial resolution: 226 
 227 

V(1) = ∑  +Y9Z[ ((?).(?, 1)                                                                                                         (7) 228 

 229 

where #9 is the number of fine-scale predictions and (9 is the spatial area associated with 230 
each prediction. See the supplementary material S2 for more details on the model, its 231 
implementation and results. 232 

2.5.2 Statistical analyses 233 
We decomposed the abundance indices into intrinsic mode functions to extract their seasonal 234 
and inter-annual components using the Complete Ensemble Empirical Mode Decomposition 235 
with adaptive noise (CEEMDAN) algorithm. The CEEMDAN algorithm belongs to the broad 236 
family of Empirical Mode Decomposition (EMD) algorithms (Huang et al., 1998). Torres et 237 
al. (2011) introduced this algorithm as a variation of the EEMD algorithm (Wu and Huang, 238 
2009) that allows exact reconstruction of the original signal and better spectral separation of 239 
intrinsic mode functions. We used the package "Rlibeemd" (Luukko et al., 2016) to 240 
decompose the eight abundance indices using the CEEMDAN algorithm. See the 241 
supplementary material S1 for more details on the CEEMDAN algorithm application. 242 

The seasonal and inter-annual components of the abundance indices estimated in this 243 
paper are extracted from the CEEMDAN intrinsic mode functions (IMFs). The residual 244 
component represents the long-term component (inter-annual component), and the IMFs with 245 
annual frequency represent the seasonal (intra-annual) component. Three types of time series 246 
in the different IMFs can be observed: (i) some sub-annual (periodic) time series showing at 247 
least two local minimum and two local maximum by year (ii) the annual (periodic) time series 248 
that had no more than three local peaks (maximum + minimum) and (iii) some supra-annual 249 
(periodic) time series. In situations when there was more than one annual frequency 250 
component, we considered the average between them to construct the seasonal component. 251 
The seasonal component was used for two purposes in this study. First, we calculated the 252 
average abundance per season (month or two months in the case of immature yellowfin tuna 253 
caught on dFADs) over the entire study period. This allowed us to have the average seasonal 254 
factors. Then, we examined the dynamics of seasonality over the entire study period. The 255 
packages seasonal (Sax and Eddelbuettel, 2018) and forecast (Hyndman and Khandakar, 256 
2008) were used for plotting the inter-annual variation of the seasonalities of each abundance 257 
index. 258 

A Principal Component Analysis (PCA) was used to understand the common variability 259 
of the environmental variables used and to characterize environmental conditions of tropical 260 
tunas in the EEZ of Côte d'Ivoire. 261 

GAMs (Hastie and Tibshirani, 1987) were used to study the links between the abundance 262 
indices by category and the environmental factors because they make it possible to take into 263 
account the non-linearity of such relationships (Maury et al., 2001). GAMs allowed the 264 
quantification of the percentage of deviance that can be explained by habitat, and to determine 265 



 

 

the relative contribution of the environmental variables. All statistical analyses were 266 
conducted with R 4.2. (R Core Team, 2019). The packages FactoMineR 1.34 (Husson, 2008) 267 
and mgcv 1.8–31 (Wood, 2017) were used for PCAs and for GAMs, respectively. The entire 268 
data processing and analysis procedure is summarized in Fig.3. 269 

3. Results 270 
Supplementary material S2 presents the estimated abundance indices and the decomposition 271 
of each abundance index into intrinsic mode functions using the CEEMDAN algorithm. All 272 
these results were analysed to obtain the factors related to the seasonal and inter-annual 273 
variation in the abundance of tropical tunas in the area of the EEZ of Côte d'Ivoire. 274 

3.1 Seasonality of abundance indices 275 
Mature yellowfin tuna captured on FSC and skipjack tuna captured on dFADs in the Ivorian 276 
EEZ are the categories showing the most obvious seasonality (Fig. 4). The seasonality of the 277 
tuna fisheries in the EEZ of Côte d’Ivoire is largely due to these two species. Two main tuna-278 
abundance seasons can be identified. The first, characterized by an abundance of mature 279 
yellowfin tuna, takes place between March and July, and the second, characterized by an 280 
abundance of skipjack tuna, takes place between August and December (Fig. 4; Table 2). 281 
Some shrinkage of the seasonality factor is evident for SKJ on FSC, with amplitude ranging 282 
from 23 at the start of the study period to almost 5 over the last years (Fig. 5). The seasonality 283 
of the other abundance indices is almost constant throughout the study period (Fig. 5; Fig. 6).  284 

3.2 Inter-annual variations of abundance indices 285 

For sets on dFADs, there is a general downward trend in abundance indices for the majority 286 
of the categories (Fig. 7). The abundance indices for mature bigeye tuna show a downward 287 
trend from 2000 to 2009 and an upward trend since 2009.          288 

For sets on FSC, there is an overall downward trend in the abundance indices for 289 
immature yellowfin tuna and skipjack tuna from 2000 to 2016/2017 and an upward trend from 290 
2016/2017 onwards (Fig. 7). Mature yellowfin tuna increase over the study period. Mature 291 
bigeye tuna tend to increase from 2000 to 2006, then decrease to a local minimum in 2014 292 
and increase from 2015 to 2019. Mature yellowfin tuna is the predominant category in the 293 
FSC species composition. 294 

3.3 Environmental variability in the study area (PCA results) 295 

The criterion of Kaiser (1960) enables the selection of the first three axes that represent 82.9% 296 
of the total variability contained in the environmental variables. PCA showed correspondence 297 
between chlorophyll concentration (CHL), coastal upwelling index (CUI_sst) and sea surface 298 
salinity (SSS), which were strongly correlated to the positive semi axis of the first principal 299 
component, and opposed to sea surface temperature (SST) and sea surface height (SSH) 300 
(Table 3; Fig. 8). The first principal component (Dim 1), explained 53.6% of the global 301 
variability of the data, highlights the great difference in environmental conditions between the 302 
primary cold season characterized by the upwelling phenomena and the primary warm season. 303 
From the projection of the months over the first two axes, it can be seen that July, August, and 304 
September are on the positive semi axis of the first principal component (Dim1), and April 305 
and May are on the negative semi axis of that first component (Supplementary material S1: 306 
Fig. 9:S1). 307 

The second component of this PCA explained 16.2% of the global variability of the data. 308 
It was strongly correlated to the mixed-layer thickness (MLD) on the positive semi-axes 309 
(Table 3). This second component (Dim 2) was interpreted as a mixed layer depth gradient. 310 
From the projection of the months over the first two axes, it can be seen that June is on the 311 



 

 

positive semi axis of the second principal component (Dim2) (Supplementary material S1: 312 
Fig. 9:S1). 313 

The third component of this PCA explained 12.3% of the global variability of the data 314 
(Fig. 8). It was strongly correlated to the dissolved oxygen at a depth of 100 meters 315 
(DO2_100) on the positive semi-axis (Table 3). This third component (Dim 3) was interpreted 316 
as a dissolved oxygen gradient which is a sub-surface variable.  317 

3.4 Results of GAM models  318 
All environmental variables were significant in terms of explaining the variability of skipjack 319 
abundance indices. There are however some differences between the abundance on FSC that 320 
is better explained by dissolved oxygen at a depth of 100 meters (DO2_100), salinity, sea 321 
surface temperature (SST), chlorophyll concentration (CHL) and mixed-layer thickness 322 
(MLD), while abundance indices on dFADs are better explained by dissolved oxygen at 100 323 
meter depth (DO2_100) (Table 4).  324 

Abundance index for adult yellowfin tunas on dFADs is explained by sea surface height 325 
(SSH), sea surface temperature (SST), chlorophyll concentration (CHL) and coastal upwelling 326 
index (CUI_sst) while abundance on FSC is linked to sea surface temperature (SST) only, 327 
with a higher proportion of the deviance explained for dFADs (Table 4).  328 

Only the dissolved oxygen at a depth of 100 meters (DO2_100) better explains abundance 329 
indices for juvenile yellowfin tunas (on dFADs and on FSC). It must be stressed that the 330 
deviance explained by environmental factors on the abundance on dFADs is higher than those 331 
FSC (Table 4). 332 

For mature bigeye tunas, abundance indices on dFADs are better explained by sea surface 333 
temperature (SST) and chlorophyll concentration (CHL) while for FSC sea surface 334 
temperature (SST) and mixed-layer thickness (MLD) are the two environmental factors that 335 
most impact on the abundance. 336 

4. Discussion  337 
The need for coastal countries to evaluate their local resources is gaining importance. 338 
Andriamahefazafy (2020) highlighted that the inability for coastal countries to evaluate their 339 
tuna resources was frustrating for their governments. This highlights their willingness and 340 
need to gain an idea of the variability of the abundance of tuna transiting their EEZs as a 341 
complement to the regional assessments carried out by tuna RFMOs. We assess the “local 342 
tuna stocks” in the EEZ of Côte d'Ivoire by estimating abundance indices. The abundance 343 
indices obtained by using VAST served as inputs to other methods to characterize their 344 
seasonal and inter-annual variability. In this study, for the sake of simplicity, we used the term 345 
“local tuna stock” somewhat inappropriately, because tuna are migratory so the stock concept 346 
is more complex than a spatial boundary. We agree with Amon Kothias and Bard (1993) 347 
when they define the tuna resources of Côte d'Ivoire as a component of the tropical Atlantic 348 
tuna stocks. The estimated abundance indices are therefore interpreted as the tuna outflow 349 
remaining in the study area at a given time. In addition, the study area is imperfectly assigned 350 
to the Ivorian EEZ, but the selected area extends beyond the Ivorian EEZ and considers 351 
boundary effects. One of the major limitations of this study is the selection of the fishery. 352 
Several fleets and gear types exploit the tuna resources of the Ivorian EEZ, but our study was 353 
limited to the French and Spanish purse seiners. This choice enhances consistency due to the 354 
relatively better quality and availability of the data, but interpretations may be affected by 355 
gear selectivity. It is important to consider these factors in the conclusions of this research, but 356 
as far as we know, this study is the first to estimate a local abundance of tunas with such 357 
levels of disaggregation (maturity level and school type) in the Gulf of Guinea region.  358 

Another major limitation of this study is the use of commercial catch and effort 359 
information to estimate abundance indices. The relationship between standardized CPUEs and 360 



 

 

real abundance can be subject to hyperdepletion or hyperstability, depending on the fishing 361 
gear (Hilborn and Walters, 1992; Walters, 2003). Tropical purse seine tuna fisheries rely on 362 
many factors such as the concentration of schools in clusters (Fonteneau et al., 2017, 2008; 363 
Orensanz et al., 1998), and on the continuous introduction of technological developments 364 
(e.g., FADs equipped with echosounders) that contribute to the increase in vessels’ fishing 365 
power (Fonteneau et al., 1999; Torres-Irineo et al., 2014). However, due to the difficulties in 366 
obtaining information on new fishing technology introduced on board each vessel, the 367 
conventional standardization methods do not really capture the impact of these factors. We 368 
know that the estimated abundance indices in this paper are not immune to the biases from 369 
which the approximation of abundance by standardized CPUE suffers. However, we have 370 
chosen to disaggregate the data by school type and maturity stage to avoid some biases. 371 

With regards to the effects of the environmental conditions on tuna resources, studies have 372 
shown that in comparison with other tuna species, skipjack tuna vertical movements are 373 
limited and restricted to surface waters because they have a limited tolerance to low levels of 374 
dissolved oxygen and very low temperatures (Graham and Dickson, 2004). The fact that the 375 
dissolved oxygen at a depth of 100 meters, MLD and SST better explain the variability in 376 
skipjack catch rate is due in part to this species-specific characteristic. Our results showed that 377 
the peak season of skipjack tuna in Côte d’Ivoire (August – December) coincides with the 378 
presence of upwelling, rich in nutrients, during the third quarter of the year. Skipjack tuna are 379 
most concentrated inside the EEZ of Côte d’Ivoire during the months with low SST and high 380 
CHL (i.e. from August to December with a peak in September) (supplementary material S1: 381 
Fig. 2:S1 and Fig. 9:S1). Bard et al. (1988) suggested that the equatorial migration of skipjack 382 
tuna is particularly driven by foraging and thus driven by particularly productive zones. The 383 
delay of 1-2 months from the peak of the upwelling to the peak of skipjack abundance 384 
provides further evidence confirming these general aspects already analysed in the Gulf of 385 
Guinea. Indeed, Mendelssohn and Roy (1986) found that higher concentrations of skipjack 386 
occur when there was an upwelling one month prior to fishing, followed by a relative 387 
warming of the waters two weeks prior to fishing. Our results reinforce this observation while 388 
highlighting the differences observed between dFADs and FSC fishing. Mature yellowfin 389 
tuna are most concentrated inside the EEZ of Côte d’Ivoire during the months with high SST 390 
and high SSH (i.e., from March to July with a peak in April - May) (supplementary material: 391 
Fig. 2: S1 and Fig. 9:S1). Several studies have shown that there is significant yellowfin 392 
spawning activity in the Gulf of Guinea from December through April (ICCAT, 2019). The 393 
seasonality of adult yellowfin tuna in this study is consistent with previous findings in this 394 
sub-area of the Gulf of Guinea. The peak in abundance is due to a mixture of genetic 395 
migrations related to reproduction which takes place in the first quarter of the year in the 396 
study area (Albaret, 1977) and trophic migrations related to the enrichment of the study area 397 
in food generated by the presence of coastal upwelling which takes place from January to 398 
February (Binet, 1976). In conclusion, the seasonality of tuna abundance in the EEZ of Côte 399 
d'Ivoire is consistent with the patterns of tropical tuna characteristics observed at regional 400 
scales and a function of local environmental conditions (Mendelssohn and Roy, 1986). 401 

The recent stock assessments of Atlantic tropical tunas have revealed that (1) yellowfin 402 
tuna is not overfished and not subject to overfishing, (2) bigeye tuna has been overfished 403 
since 1994 and overfishing has been undergoing since 1997, and (3) skipjack tuna are not 404 
likely overfished and not subject to overfishing (ICCAT, 2019). When stocks are overfished, 405 
one can expect a reduction in biomass, the impact of which is greater at the periphery of the 406 
spatial distribution of the stock (e.g., in the EEZ of Côte d’Ivoire) than in the core area, as 407 
postulated by the McCall’s basin hypothesis (MacCall, 1990). For bigeye, the tropical tuna 408 
species most impacted by exploitation, our results suggest a declining trend during the first 409 
decade and an increasing trend from 2009 onwards on dFADs and 2014 on FSC components. 410 



 

 

The overall trend of bigeye caught on FSC varies slightly from 2000 to 2017 followed by a 411 
sudden increase in the last two years (Fig. 3 S1). It is very unlikely to see such an abrupt 412 
change in the abundance of a long-lived species such as bigeye. The resulting overall trend 413 
could be due to a change in catchability compared to previous years. We reserve the right to 414 
interpret it as a change in the abundance of this species. However, since bigeye is rare in this 415 
area, a peak in moderate catches could generate such observations. The situation is somewhat 416 
different for catches on dFADs. More specific analyses could help better understand the 417 
phenomenon observed in the abundance indices of mature bigeye tuna in this study area. The 418 
situation is different for yellowfin and skipjack as both species show a general downward 419 
trend, with the exception of yellowfin captured on FSC. As we have seen, CHL and SST are 420 
responsible for seasonality in abundance indices of skipjack and mature yellowfin. The global 421 
trend of these variables over the study period could have affected the overall dynamics of the 422 
abundance of both species. Indeed, there is an overall upward trend in SST, and a downward 423 
trend in the coastal upwelling index and chlorophyll concentration over the years (Fig. 9). 424 
Future analyses more specific to this topic will explain the similarity between trends in these 425 
variables and those of some abundance indices estimated in this paper.  426 

Several studies have examined the difference between the behaviour of tropical tuna 427 
captured on dFADs or on FSC, and differences in several biological parameters and migrating 428 
patterns have been reported (Hallier and Gaertner, 2008). Ménard et al. (2000) suggested that 429 
the dFADs fishery may have wide-ranging effects on the migration of tuna in general and on 430 
the productivity of skipjack in particular. Coming back to the results of the univariate analysis 431 
of the relationship of tuna abundance with environmental variables (Table 5, Table 5), the 432 
importance of the dissolved oxygen at 100 meter depth (DO2_100) on the abundance of 433 
skipjack can be seen by the percentage of the variance explained: 35.7% on FSC against only 434 
23.3% on dFADs.  435 

In addition, CHL explains 9.58% of the catches on FSC but very little (0.14%) on dFADs. 436 
Consequently, as skipjack caught on dFADs are comparable in size with individuals caught 437 
on FSC, this suggests that dFADs decrease the dependence of skipjack on several 438 
environmental factors that is to say modify its habitat. Moreover, the peak abundance of 439 
skipjack catches on dFADs take place one to two months before the peak abundance of 440 
catches on free school in a period which could be less favourable in terms of habitat. Some 441 
differences in deviance explained (by environmental variables) were also observed between 442 
catches on dFADs and catches on FSC for the other categories studied.  443 

Our results suggest that, at the same level of maturity for the same species, the effect of 444 
environmental variables on abundance indices differ between dFADs and FSC. These 445 
differing effects of environmental variables on tuna abundance have been observed in several 446 
studies (Druon et al., 2017; Zainuddin et al., 2019) without reaching a definitive conclusion 447 
on how large is the effect of dFAD use on tuna populations. 448 

5. Conclusion 449 
This study highlighted the details of local resources of regionally managed highly migratory 450 
species like tropical tunas. General trend and seasonality of such local resources has been 451 
assessed and analysed. In an international context where competitiveness is at stake, such 452 
analyses with complementary characteristics are essential to better take advantage of the share 453 
of global resources over which a country has some rights. This study constitutes one of the 454 
proofs of the possibility for some coastal countries to evaluate the variations in abundance of 455 
tunas in the waters under their jurisdiction in addition to the broad-scale patterns which are 456 
analysed within RFMOs. It revealed changes in abundance indices over the study period (Fig. 457 
7); reductions in amplitude of the seasonality for some combination of species-size categories 458 
(Fig. 5) and differences in peak abundance and sensitivity to environmental variability 459 



 

 

between dFADs and free school fishing (Tables 4 and 5). For skipjack, our results indicate 460 
that dFAD-associated schools are less dependent on the variation of several environmental 461 
factors than free schools. Our results suggest a strong relationship between the dynamics of 462 
some environmental variables and the abundance indices for skipjack and adult yellowfin 463 
tunas. This study made it possible to isolate the particularities of the local resource and thus to 464 
lay the first bases for possible analyses of the influence of global phenomena (overfishing, 465 
climate change, etc.) on the local resource at the EEZ level, thus providing the basis for future 466 
management measures. 467 
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Tables and figures 502 

 503 

Tables 504 

 505 

Table 1 : 506 

Summary of the candidate environmental variables included in this study 507 

Variable 

acronym 

Variable name Unit 

SST Sea surface temperature °C 

SSH Sea surface height meter 

CHL  Chlorophyll concentration mg. m-3 

DO2_100 Dissolved oxygen concentration at 100 meters of depth mmol.m-3 

SSS Salinity PSU 

MLD Mixed layer thickness meter 

CUI_sst Coastal upwelling index  °C 

 508 

 509 

 510 

Table 2 : 511 

Summary of the seasonal variability of abundance indices in the EEZ of Côte d’Ivoire (2000-512 
2019). 513 

Period Seasonal factor 
(Peak-lowest) 

Peak 

month 
Peak abundance 

season 
Low abundance 

season 
Change in seasonality 

over the study period 

Mat_BET_FdADs 21.03 August June-October Novemb-May Slight shrinkage 

Mat_BET_FSC 7.73 June April-October Novemb-March Almost constant 

SKJ_FAD 492.3 October August-Decem January-July Almost constant 

SKJ_FSC 11.97 December/
April 

October-Decem/ 
March-May 

May-September Shrinkage 

Imm_YFT_ dFADs 42.9 October July-December January-June Almost constant 

Imm_YFT_FSC 8.95 November August-Septem January-July Almost constant 

Mat_YFT_dFADs 90.2 August June-September November-April Almost constant 

Mat_YFT_FSC 177.13 April March-July October-January Almost constant 

 514 

 515 

 516 



 

 

Table 3: 517 

Correlation between variables and dimensions (Dim1), square cosine (cos), contribution 518 
(contrib) and eigenvalue (inertia) of the first three principal components from the PCA 519 
analysis for the environmental variables selected in the study. 520 

Variable Dim.1 contrib Cos2 Dim.2 contrib Cos2 Dim.3 contrib Cos2 

SST -0.90 21.62 0.811 -0.059 0.309 0.004 -0.095 1.044 0.009 

SSS 0.654 11.40 0.428 0.431 16.34 0.186 0.386 17.36 0.149 
MLD  0.195 1.015 0.038 0.907 72.40 0.823 -0.223 5.815 0.05 
CHL 0.914 22.27 0.835 -0.171 2.56 0.029 0.093 1.018 0.009 
CUI_sst 0.820 17.95 0.673 -0.280 6.918 0.079 0.073 0.623 0.005 
DO2_100 -0.516 7.093 0.266 0.08 0.561 0.006 0.797 74 0.635 
SSH -0.836 18.646 0.7 0.102 0.909 0.01 0.034 0.135 0.001 

% Inertia  53.58   16.24   12.62  

 521 

 522 

 523 

 524 

Table 4 : 525 

Generalized additive models (univariate) of the eight categories of tuna as functions of seven 526 
environmental variables. Deviance explained (in percentage) of log (abundance indices) by 527 
each variable are shown. The symbol * means that the coefficient is significant at 5% (p-value 528 
<0.05) 529 

Variable SKJ_FAD SKJ_FS YFT_Mat 

FAD 
YFT_Mat     

FSC 
YFT_Imm 

FAD 
YFT_Imm 

FSC 
BET_Mat 

FAD 
BET_Mat 

FSC 

SST 1.60 12.8* 25.5* 25.7* 1.87 2.14* 37.7* 18.1* 

DO2_100 25.1* 32.7* 7.72* 3.94e-05 30.6* 19.8* 17.7* 3.13* 

SSH 1.28 5.29* 31.9* 1.85* 3.23* 4.99* 20* 10* 

CHL  0.32 12* 24.6* 1.46 0.84 4.05* 31.8* 8.6* 

SSS 0.81 13.2* 8.91* 4.46* 0.01 3.87* 17* 11.3* 

MLD 2.92* 11* 4.61* 4.26* 0.65 0.72 4.32* 18.1* 

CUI_sst 0.14 9.58* 15* 2.24* 7.29e-06 0.63 16* 7.22* 
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Table 5: 535 

Summary of the relationships between environnemental variables and abundance indices. 536 
Only factors with explained deviance higher than 10% have been selected and ranked by 537 
decreasing order of explained deviance (e.g. Mature BET on FSC, SST > MLD > SSS > 538 
SSH). 539 

Species Fishing on dFADs Fishing on FSC 

SKJ DO2_100 D02_100 ; SSS ; SST ; CHL ; MLD 

Mature YFT SSH ; SST ; CHL and CUI_sst SST 

Immature YFT DO2_100 DO2_100 

Mature BET SST ; CHL ; SSH ; DO2_100 ; SSS ; CUI_sst SST ; MLD ; SSS and SSH 
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Figures 562 

 563 

Fig. 1. The EEZ of Côte d’Ivoire and the study area. The area of interest is the square area 564 
defined in this figure. 565 

 566 

 567 

Fig. 2. Seasonal variations in the SST-based coastal upwelling index in the Ivorian EEZ 568 



 

 

 569 

  
Fig. 4. Average monthly changes in abundance indices for eight categories of tropical tuna 570 
analyzed for the 2000-2019 period. 571 

• Using VAST to 
estimate abundance 
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variables

PREDICT

Fig. 1. Schematic representation of the methodology used in this study 



 

 

 572 

Fig. 5. Interannual variations in monthly abundance indices of skipjack and mature bigeye 573 
tuna. The curves observed for each month correspond to the interannual variability of 574 
abundance over that month and the horizontal dashes correspond to the monthly average (in 575 
trend) over the study period.  576 
 577 

 578 

Fig. 6. Interannual variations in monthly abundance indices of yellowfin tuna. The curves 579 
observed for each month correspond to the interannual variability of abundance over that 580 
month and the horizontal dashes correspond to the monthly average (in trend) over the study 581 
period. 582 



 

 

 
Fig. 7. Interannual variations of abundance indices by fishing mode over the period 2000-583 
2019. 584 

 585 

Fig. 8. First (Dim 1), second (Dim 2) and third (Dim 3) axes of the principal component 586 
analysis of the sea surface temperature (SST), sea surface height (SSH), sea surface salinity 587 
(SSS), chlorophyll concentration (CHL), dissolved oxygen at a depth of 100 meters 588 
(DO2_100), mixed-layer thickness (MLD) and coastal upwelling index (CUI_sst) in the EEZ 589 
of Côte d’Ivoire. 590 



 

 

 591 

Fig. 9. Interannual variations (global trend) of three environmental variables over the period 592 
2000-2018. The decomposition has been done using the CEEMDAN’s algorithm. 593 
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