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Abstract—Modern computer memories have shown to have
reliability issues. The main memory is the target of a security
threat called Rowhammer, which causes bit flips in adjacent
victim cells of aggressor rows. Numerous countermeasures have
been proposed, some of the most efficient ones relying on memory
controller modifications, which make them non-integrable in
existing systems. These solutions have to be effective against
attacks on current and future architectures and technology nodes.
In order to prove the efficiency of such mitigation techniques,
we have to use simulation platforms. Unfortunately, existing
architecture simulators do not provide any implementation
of unintended memory modifications like bit-flips. Integrating
memory corruption into architecture simulators would allow the
construction of attacks and mitigations for current and future
computers, using feedback from the simulator. In this paper, we
propose an implementation of the Rowhammer effect in the gem5
architecture simulator, demonstrate its capabilities and state its
limitations.

I. INTRODUCTION

Memory is a key component in modern computers. It is
divided in multiple categories: programs and files are stored in
a persistent memory, and data used during run-time is stored in
a Random-Access Memory (RAM). Multiple layers of cache
memories are placed between the RAM and the CPU(s) to
speed up access to the most frequently used data. In recent
computers, Flash memory is used as the persistent memory,
while Dynamic Random-Access Memory (DRAM) is used to
store run-time data.

In the past decades, CMOS process technology became
more efficient and smaller. RAM manufacturers have been able
to put more memory cells in much smaller spaces, resulting
in better performance and lower cost [1]. However, making
DRAM smaller resulted in higher vulnerability to what Kim et
al. [2] described as disturbance errors: activating a DRAM row
slightly disturbs adjacent rows due to electromagnetic coupling
between adjacent wordlines. Repeated activation of neighbors
of a victim row can imply a loss of charge for capacitors
in said victim row, effectively deleting the stored data. This
became an important security threat as attacks exploiting this
vulnerability appeared. These attacks are known as Rowham-
mer (RH) attacks. Using precisely targeted bit-flips, this type
of attack is able to perform privilege escalation [3] or to
retrieve sensitive information [4]. Recently, RH became even
more important as state-of-the-art attacks were successfully
mounted in JavaScript from a web browser sandbox [5] [6],

or event without malicious code running on a victim server,
using only network requests [7].

Therefore, this problem is being widely studied in academia
and industry at present. In order to counter the RH attack,
multiple mitigation techniques have been proposed [2] [8] [9]
[10] [11] [12] [13]. A lot of them require the introduction
of modifications into the memory controller and/or a new
hardware component in the architecture. However, testing
architecture modifications for RH defenses can be difficult.
FPGA emulated system will be too slow to generate the
number of DRAM requests to mount the RH attack with the
same efficiency as on a modern computer Furthermore, miti-
gation techniques need to be efficient not only for the current
technology node, but also for future, smaller technology nodes,
which will be even more vulnerable to disturbance errors.

In order to evaluate the efficiency of their mitigation tech-
niques, researchers could rely on testing environments that are
able to simulate the considered vulnerabilities. However, no
existing platform provides consideration for memory corrup-
tion to-date.

In this paper, we propose to create a module to introduce
the memory corruption to system simulations in gem5, with
Ramulator for the main memory simulation. This will allow
researchers to design attacks and countermeasures implying
modifications of the system architecture, or test the efficiency
of their countermeasures on systems with different vulnerabil-
ities to the RH attack.

II. RELATED WORK

In this section we distinguish our work from related works
on RH simulation.

Although the RH attack has been an important issue since
its discovery and its mitigation has been widely studied, there
has been limited work on its simulation.

Tatar et al. presented in 2018 Hammertime [14], a tool to
check the efficiency of RH attacks on current DRAM modules.
It uses a memory configuration file containing information
about the memory controller, address routing, DRAM geom-
etry and on-chip remapping; and a profile consisting of a
list of pairs of aggressor addresses and bit-flip locations. If
needed, Hammertime can generate the profile and memory
configuration files of the computer it runs on. Using these two
files, it can evaluate the efficiency of RH exploits using models
of RH attacks. An attack model is represented by a function



that checks its interest for each bit-flip from the provided pro-
file. Hammertime evaluates the efficiency of attacks without
simulating the attacks, using models of memories and attacks.
while this is a very fast solution to test the efficiency of attacks
on different systems, the simplicity of the attack and memory
models does not allow researchers to test new mitigations or
attack algorithms.

Kim et al. recently published a survey about DRAM devices
vulnerability and RH mitigations [15]. They extended Ramu-
lator [16] to simulate the execution of workloads from the
SPEC benchmark suite to evaluate the impact of mitigation
techniques on the system performance when no attack is
running. The evaluation solution used by Kim et al. is useful
to determine whether a mitigation affects the system during
standard usage, but it cannot be used to test mitigations against
attacks.

In these two publications, the memory corruption was not
simulated. When designing RH attacks and countermeasures,
it is important to evaluate the efficiency on a complete system
with a modern architecture and a running operating system.
Unfortunately, none of the referenced prior work permits such
an evaluation.

III. BACKGROUND

Our goal is to create a simulator that integrates the memory
corruption from RH attacks. A good understanding of how
computer memory works and how RH attacks manages to
corrupt the memory is necessary to introduce it in a simulator.

A. DRAM architecture and behavior

Modern computers contain one or multiple processors,
connected to the main memory through multiple levels of
cache memories. Processors generally have their own first level
caches, divided into instructions cache and data cache. All the
processors are then connected to global cache levels. The last
level cache (LLC) is connected to the main memory.

When the processor needs to read or write data, it sends a
request to one of the first level caches. There are two scenarios:

1) Cache hit: the data is already stored in this cache, and
sent back;

2) Cache miss: the data is not stored in this cache. The
request is transferred to the next cache level.

If a cache miss occurs in the LLC, the request is sent to the
main memory. After a cache miss, when the next memory
level (cache or main memory) returns the data, the current
cache memory stores the data to speed up future accesses to
the same data, discarding previously-stored data if needed to
make space for the new data.

In modern computers, the main memory uses the DRAM
technology. Figure 1 presents the communication between the
processor and the DRAM, and its architecture. Addressing
a data in the main memory is done using multiple levels:
channel, rank, chip, bank, then row and column. The CPUs
communicate with the DRAM modules through different chan-
nels. These modules are represented by ranks (Fig. 1.a). A
DRAM chip contains multiple banks (Fig. 1.b). A bank is

made of multiple memory arrays (mats, Fig. 1.a) containing a
matrix of memory cells (Fig. 1.d). A memory cell stores one
bit of data using the charge of a capacitor. An access transistor
acts as a relay controlled by the wordline (WL) to connect this
capacitor to the bitline (BL) (Fig. 1.e). All memory cells of one
row share the same WL and all memory cells of one column
share the same BL.
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Fig. 1. Computer memory architecture and DRAM architecture [17]. (a) Top-
level view of the communication between the processors and the memory; (b)
representation of the content of a DRAM chip; (c) Block schematic of a bank;
(d) memory array (mat) content, with a memory cells matrix, a WL driver
and a sense amplifier; () memory cell (top) and bitline sense amplifier with
enable pin (bottom) schematics.

In addition to the memory cells matrix, a mat has a WL
driver that selects the row to access, and a sense amplifier
(SA) that interacts with the BL to read and write the data in
the memory cells, and transfer the read data to the bank’s row
buffer (Fig. 1.e). This row buffer acts as a cache for the last
accessed row of the bank.

When the main memory receives a read or write request
from the LLC, it first redirects the request to the appropriate
bank. Again, there are two scenarios:

1) Row hit: the row buffer already contains the requested
data. If the request is a write, the buffer is modified,
otherwise it is sent back to the LLC.

2) Row miss: the row buffer does not contain the requested
data. If a previous row was stored in the buffer, it is
written back in the memory cells. Then, the requested
data is fetched from the appropriate row to the row
buffer, and finally the buffer is modified or its value
is sent back to the LLC.

The process to read or write data to a row in the memory
cells is as follow. V4 being the power voltage, The BLs are set
to Vaa/2, and the WL associated to the address is set to V.
All the access transistors controlled by the WL are opened,
connecting every bitline to one memory capacitor each. For



each BL, if the storage capacitor was charged, its charge is
partially emptied into the bitline, raising said BL’s voltage to
Vaa + 6. On the contrary, if the capacitor was already empty,
it draws charge from the BL, lowering the voltage to Vg4 — 6.
The SA then compares the voltage of each BL, and invert it
to the ground voltage (GND) or V4 to transfer it to the row
buffer. The value is then written back to the capacitors by
raising the BL voltage to V4 or lowering it to GND. Finally,
the WL is set to GND to close all access transistors.

As capacitors are not perfect insulators, the charge leaks
over time. Capacitors with the fastest leakage in a memory
will lose their charge in less than 1s [18]. To maintain the data
during long periods of time, all the memory cells need to be
frequently refreshed by reading and writing back all the data.
This process is done automatically by the memory controller.
Typically, all rows are refreshed every 64 ms.

B. Rowhammer

As DRAM technology became denser, the WL got closer
to other WL. This proximity made them more vulnerable
to electromagnetic coupling: raising the voltage of one WL
slightly raises the voltage of neighboring WL. As access
transistors are not perfect switches, the small voltage raise
on unselected WL slightly opens the access transistors of
unselected memory cells. The capacitors, connected to the
BL through weakly opened transistors, leak a little bit of
their charge through these transistors in addition to the natural
leakage of capacitors. Thus, accessing a row repeatedly a large
number of times without accessing the neighboring rows can
empty the capacitors of unselected memory cells, effectively
deleting the stored data.

To exploit this error, aggressors need to avoid cache hits
and row hits, which do not lead to rows activations. On x86
systems, an aggressor can perform this attack by running
the simple assembly loop presented in listing 1 [2]. In this
assembly loop, X and Y are two addresses for two different
rows in the same DRAM bank. The first two instructions (mov)
read the data stored at addresses X and Y, activating the two
rows. the next two clflush instructions are used to evict the
data for addresses X and Y from the caches. mfence indicates
to the processor that all memory-related instructions must be
finished before moving to the next instruction. Finally, jmp
restarts the loop. The memory under attack by this program
is illustrated Figure 2.

Listing 1. Rowhammer loop on x86 system

mov (X), %eax
mov (Y),
clflush
clflush
mfence

Jjmp loop

$eax
(X)
(Y)

Aggressor row
N Victim cell

Fig. 2. DRAM bank under attack by program from listing 1

IV. A CYCLE-ACCURATE ROWHAMMER SIMULATOR

In this section, we discuss different approaches to model
RH.

The design of countermeasures requires a proper evaluation
of the mitigation effectiveness and associated cost overheads.
For this purpose, we need a platform that is capable of execut-
ing RH attacks, on which countermeasures can be integrated
and which is capable of simulating memory corruption without
disturbing the timing of the system.

RH countermeasures can be divided into two categories:
some solutions protect the system by detecting the attack and
prevent memory accesses that could damage the memory [10]
[12] [13], and some other solutions let the attack access the
memory, but protect the victim rows from suffering from the
attack [2] [8] [11]. The first category mitigations generally
don’t need major modifications to the architecture. Some rely
only on a software solution and use system-generated traces
with existing architecture components to retrieve information
from the hardware [9].Others use a new component to detect
dangerous memory accesses and warn the system to make
it stop or slow down the dangerous processes [12] [13].
The second category mitigations require the integration of a
component in the memory controller to perform additional
refreshes on victims [2] [11]. This modification is necessary to
distinguish row hits and row misses, and to know the internal
layout of the DRAM, i.e., which rows are adjacent to aggressor
TOWS.

Because of the required modifications in the controller, we
cannot test these countermeasures with commodity DRAM
modules. Furthermore, future memory technologies like DDR5
or even different technologies like STT-MRAM [19] or PC-
RAM [20] have to be taken into account, which makes it
impossible to use existing memory modules.

There are multiple solutions to evaluate countermeasures
against RH attacks.

Hardware solutions such as a custom chip or a Field
Programmable Gate Array (FPGA) are not adapted for RH
simulation. A custom chip would be very close to real systems,
but it needs to emulate the DRAM to introduce the corruption,
and include the countermeasure to test. The cost would
be very high and it would require multiple iterations for
exploration or optimisation of the mitigation. An FPGA could



offer more flexibility. All the components would be easily
modifiable with no additional cost, and the simulation would
be close to real time. However, the frequency limit when
using a CPU in the programmable logic is very low (a few
hundred MHz for the most powerful FPGAs). Additionally,
the memory would have to be emulated to add corruption
capability and notify refresh events to the mitigation. Finally,
emulating a memory big enough to run an Operating System
and complex programs such as web browsers would require
too many resources on the FPGA. This type of solution is
more useful for architecture exploration.

Alternatively, we can use software computer architecture
simulation. This type of solutions has the potential to be very
flexible and to model technologies that are not physically
available. The available simulators have different abstraction
levels and we need to specify the basic needs of RH simulation
in order to select the best option. The simulation needs to be
accurate enough for the main memory to behave just as in
a real system, with row hits and row misses. It also needs
to be able to simulate a complex program running on the
system with a reasonable simulation time. We do not need to
simulate electrical details of the system architecture. Electrical
simulators, such as SPICE, that could be very accurate, are
too heavy and slow for a system emulation. Additionally,
it would not be relevant to simulate the corruption as the
physical effects causing the disturbance error are still not
well understood. As long as the simulated system can run
complex programs while maintaining cycle-accurate timing
simulation, we can settle for a higher level of abstraction
with architecture simulators. The goal of these simulators is
to reproduce the behavior of computing devices to generate
metrics while programs are running on the simulated device.
It is primarily meant for design space exploration, validation
of architectures for future hardware and instrumentation.

There are two different categories of simulators: func-
tional simulators and timing simulators. Functional simulators
(sometimes called Instruction Set Simulators) are meant to
reproduce the architecture from a programmer point of view.
They reproduce the functionality without considering internal
components timings. Timing simulators, on the contrary, im-
plement the microarchitecture (i.e., the system internals) more
precisely. It considers the communication between components
and the time needed for their operation.

System simulators from both categories can run two types
of simulations: trace- and execution-driven simulations. Trace-
driven simulations work by reading a trace of instructions
captured by a previous simulation or execution on a simulator
or a real device. This has the advantage of being a fast
solution to compare multiple architectures for the same pro-
gram execution, but programs that interact with the system to
collect data from the memory to take decisions will not behave
correctly from the execution trace. Alternatively, execution-
driven simulations work by running the program on the
simulated system. Slower than trace-driven simulations, they
allow running programs on the simulated architecture without
having to run it on another system before. This approach can

simulate programs that interact with a changing system or an
external user.

For the simulation of memory corruption by RH attacks, we
need to use Execution-driven Timing simulators. Functional
simulators are not a good fit for memory corruption because
they do not simulate timings properly. As some attacks need to
witness memory corruption to plan bit-flips on relevant data,
trace-driven timing simulators are not applicable either. The
simulator needs to be modular so that we can integrate the
corruption of the memory and microarchitecture modifications
required by countermeasures. To be able to run a large variety
of attacks, it must be compatible with the two most common
architectures, such as x86 and ARM, and be compatible with
full-system simulation. Among all simulators presented by
Ayaz Akram et al. in their survey in 2019 [21], only gem5 [22]
fits all these requirements.

gem5 is a modular computer architecture simulator widely
used in academia and industry. It is used to define a custom
system architecture by configuring and connecting cores and
memories, and simulate this architecture running programs
and operating systems. gem5 integrates the DRAMSIM?2 [23]
main memory simulator. However gem5 can also be con-
figured to use other memory simulators. In our case, we
chose Ramulator [16] as our main memory simulator but the
extensions proposed in this paper could easily be implemented
in DRAMSIM?2. Ramulator is a fast and extensible cycle-
accurate DRAM simulator that brings timing accuracy and
flexibility to the main memory simulation. However, it still
does not model memory corruptions.

In this paper, we will integrate the memory corruption
mechanism in a gem5 + Ramulator simulation in order to
create a platform to design RH attacks and countermeasures
for current and future computer architectures.

V. MEMORY CORRUPTION SIMULATION

In order to simulate the memory corruption in gem5, we
created a Memory-Corruption (M-C) module. It is responsible
for measuring the disturbance of every row in the memory
from activation of neighboring rows, and modifying the stored
data to simulate corruption. The integration was made with
gem5 version 19.

A. Integration in gem5 and Ramulator

This module needs to be notified for all row activations
in the main memory, and have access to the simulation host
memory to perform the corruption.

We use Ramulator to assure an accurate simulation of the
main memory, we can concentrate our effort on Ramulator and
its wrapper in gem5. Ramulator only brings timing consider-
ation to gem5. Data is always read or written by the memory
module on gem5. To be able to access the location of the data
on the host memory, we need to integrate the module in gem5,
not only in Ramulator.

The Ramulator wrapper in gem5 is implemented as a main
memory module. When it receives a read or a write packet
from other modules of gem5 , it first performs the functional



operation of reading or writing the data from/to the host
memory, and then sends a request to the DRAM simulator
of Ramulator to simulate the timing of the request. Ramulator
first calculates the address vector to find the rank, bank group,
bank, row and column for the accessed address. If the memory
is busy with parallel accesses or a refresh operation, the request
is delayed. Then, Ramulator checks if the request results
in a row hit or a row miss, virtually activates the row if
necessary to change the row ”stored” in the row buffer. Finally,
Ramulator stores the address vector in the request and sends
it back to the wrapper in gem5 using its callback function. At
regular intervals (typically 7.8us), a refresh request is sent by
Ramulator to itself in order to simulate the periodic refreshes
of the DRAM. It has no direct effect, but makes the memory
busy for a short period of time. As refresh events are not part
of any memory access from the rest of the system, they are
not notified to gems5.

DRAM row activations are the cause of disturbance in
neighbor rows. Thus, all activations must be acknowledged
by the M-C module. Row activations can be caused by row
misses during memory accesses, and refresh events. Memory
accesses are already notified to gem5S through the request
callback, but without the important information of whether
the request ended on a row hit or a row miss. We simply add
this information to the request callback to let the M-C module
know when a memory access has led to a row activation. The
address vector is specified in the request callback. It is used by
the module to determine which row got activated and which
rows were disturbed.

The refresh events are not notified to gem5. We fix this
by adding a method set_refresh_callback (callback) to the
C++ Memory base class of Ramulator. When used, this method
adds the callback function to all subsequent refresh requests.
We make sure to call this function once at the start of the
simulation in the M-C module. However, refresh events do
not specify the range of refreshed rows. We have to wait for
the full refresh cycle to end to consider the refresh on all
rows at once. In reality, all row refreshes are distributed in
scheduled refresh intervals (typically 7.8us) across the whole
refresh cycle (typically 64ms) [24].

response

gem5 mem.
module

(Ramulator
wrapper)

simulator

Ramulator

gemS

Fig. 3. Integration of the M-C module in gem5

B. Memory-Corruption module behavior

The behavior of the M-C module can be summarized by
the algorithm presented in listing 1. In this pseudo-code, c is
a map associating a row placement to a counter of how many
times neighbor rows were activated since the last activation of
this row. T is the minimum corruption threshold, at which the
row starts to get corrupted, and ref_count is a counter that
decrements at every refresh. When it reaches 0, c is cleared,
effectively resetting all counters.

Listing 1. Memory Corruption module behavior

param T : int < 50k # corruption threshold
C : Map (int — int) # counters map
ref_count : int <« 8192 # refresh counter

function on_ACT (addr_vec)

p < physical_placement (addr_vec)

if pecC:
C.delete (p)

if is_placement_valid(p-1)
disturb (p-1)

if is_placement_valid(p+1)
disturb (p+1)

function disturb (p)
if pecC:
Clp] < C[p] + 1
if C[p] > T :

corrupt (p, Clp] - T)

else :

Clp] < 1

function on_REF ()
ref_count <4 ref_count - 1
if ref_count = 0
C.clear ()
ref_count <« 8192

In DRAM banks, consecutive row numbers are not neces-
sarily adjacent. The function physical_placement transforms
the address into an identifier for the physical placement of
the row in the memory. This function can be configured to
move the rows inside the memory. More details are discussed
in Section VL.

The corrupt function is responsible for the modification
of the host memory. As the modification happens directly
in the host’s memory, it does not create any delay for the
simulated system. The corruption can be configured to follow
a probabilistic polynomial law, detailed in Section VI.

VI. EVALUATION

In this section, we will discuss the usage of the created
module and its limitations.

A. Parameters

In order to make the created module as versatile as possible,
we need to be able to adapt it to various cases and to let it
easily evolve with new technologies.

Between two DRAM modules, the internal mapping of rows
in the memory chip can change. Two adjacent rows in one chip
may not be adjacent on another chip [25]. The M-C module
takes a DRAM layout file as an optional parameter, containing
the position of each rows in a bank. An example is presented



in Table I. In this example, rows 0, 1, 3 and 6 are respectively
at positions 0, 1, 3 and 6. Row 2 is placed at position 4, row
4 is at position 5 and row 5 is at position 2. That means that
with this configuration, row 2 is adjacent to row 3 and 4.

TABLE 1
DRAM LAYOUT CONFIGURATION EXAMPLE.

logical row O|1 |23 |4]5]|6
physicalrow | O [ 1 | 4 [ 3 | 5|2 | 6

The corruption threshold depends on the technology. For
example, the corruption threshold is around 139k for DDR3
DRAM and 50k for DDR4 DRAM [2]. We let the user change
the corruption threshold with a parameter.

Finally, the corruption is not instantaneous on all bits of a
row. There is a few sensitive cells that get corrupted faster
than others. The more a row is disturbed from its neighbors,
the more cells get corrupted. To model this behavior, the
corruption function is defined as presented in listing 2. In this
pseudo-code, the parameter seed_offset is used to initialise
the random function. The parameter probability_polynomial
defines the polynomial function to determine the flip proba-
bility of cells, given the neighbors activation count minus the
threshold. By default, all bits are reset when the threshold is
reached.

Listing 2. memory corruption function

param seed_offset « O
param probability_polynomial < f:xz 1

function corrupt (position, count)

row_addr < get_row_addr (position)
random_seed < seed_offset + row_addr
probability < probability_polynomial (count)
if probability > 1

clear_row (row_addr)
else if probability > 0

for bit in row (row_addr)

if random([0..1]) < probability :
bit < 0

B. Impact on the simulation

We checked the impact of the M-C module on the simu-
lation time and memory usage for a simple RH attack, the
STREAM [26] benchmark and the boot of a Linux system.
The simulation runs on a server with an Intel® Xeon® CPU
E5-2697 v3 @ 2.60GHz and 252 GB memory. The simulation
time is measured using the time command, and the peak
memory usage using the valgrind command. The gem5
system configuration we use, includes one TimingSimpleCPU
running at 1 GHz; two 32KB L1 caches: one instruction cache
and one data cache; one 512KB L2 cache; and finally a DDR4
DRAM at 2400 MHz as main memory, with a storage limit of
4 GB handled by Ramulator. Table II presents the experiments
results. The total simulation time is presented in columns 2
and 3, and the peak memory usage is presented in columns
4 and 5. The M-C module is enabled for columns 2 and 4,
and disabled for columns 3 and 5. We measured no noticeable
difference for the total simulation time, and no difference in

peak memory usage with our module enabled or disabled. For
all tested benchmarks, the measured noise is higher than the
difference that appears when we integrate the M-C module.
The experiments show that our module has no negative impact
on the simulation performance.

C. limitations

The simulation of memory corruption is limited on some
parameters such as temperature and technology variations.
The physical phenomenon behind the RH attack, at the time
of writing, is still not entirely understood. Even among the
known parameters that affect the corruption of the memory, the
created module does not integrate all of them. First, parameters
such as temperature, capacitors and transistors technologies
have a direct impact on the global corruption threshold and
are therefore not integrated as separate parameters. Users will
have to change the threshold parameter if they need to change
the temperature or capacitor size. At the time of writing, it is
not possible to specify vulnerable bits. When specifying the
dram bank layout, all banks have the same internal layout.
Additionally, the data pattern dependence of the RH effect,
which has been measured by J.S. Kim et al. in 2014 [2] is not
taken into account for the simulation. Finally, the corruption
of near rows that are not directly adjacent (i.e., a blast radius
higher than one), which was recently demonstrated by S.
Qazi [27], is not yet implemented.

D. Countermeasure design with the M-C module

The purpose of the M-C module is to design and improve
attacks and countermeasures, especially countermeasures that
require the modification of the memory controller. The module
provides all the necessary information for the design of such
countermeasures: all DRAM row activations are notified to the
module, and it is capable of determining the addresses of adja-
cent rows. Therefore, this module allows researchers to easily
design and improve countermeasures that react when rows are
activated, and refresh neighboring rows before the corruption
threshold is met. Countermeasures like Graphene [11] and
PARA [2] could easily be integrated in a system simulation
using the M-C module. The integration of PARA is presented
in listing 3. In this code, the Mitigation class is the base
class for countermeasures integration with the M-C module.
The neighbor function is used to get one of the neighbors of
a row, and returns true if the neighbor exists.

Listing 3. PARA [2] implementation in gem5 with the M-C module.

class PARA :
float p;
public:
PARA (float p) : Mitigation(), p(p) {}
void onACT (const std::vector<int>& addr) {
float r = ranged_random(0,1);
std: :vector<int> adj;
if (r < p/2) {
if (neighbor (addr,
refresh (adj) ;
} else if (r < p && neighbor (addr, 1,
refresh (adj);

public Mitigation {
//!< refresh probability

-1, adj))
adj))

Pl



TABLE 11

IMPACT OF THE M-C MODULE ON SIMULATION PERFORMANCE

time (avg +30)

Benchmark M-C enable

time (avg +30)
M-C disabled

peak memory usage
M-C enable

peak memory usage
M-C disabled

6m32s + 7%

STREAM (8 samples)

6m30s + 4%
(8 samples)

x86: 885.2MB

x86! 885.2MB

11.47s = 10.5%

Rowhammer attack (10 samples)

11.63s £ 10.4%
(10 samples)

x86: 890.44MB
ARM: 941.13MB

x86: 890.44MB
ARM: 938.14MB

31m10s + 23%
(5 samples)

Linux boot
and shutdown

30m58s + 15.8%
(5 samples)

not measured

not measured

VII. CONCLUSION

In this paper, we presented a gem5 module to simulate
the memory corruption in DRAM caused by Rowhammer
attacks [28]. We showed that this module is configurable and
can efficiently simulate memory corruption in the memory. It
will allow researchers to integrate the architecture simulation
when designing attacks to improve the efficiency, and when
creating and improving countermeasures. This module will
be integrated in the simulator of the ARCHI-SEC ANR
project [29]. In future work, we plan to integrate the module
on other memory technologies, in particular emerging non-
volatile memories such as STT-MRAM, which has been
demonstrated to be affected by a variation of the RH at-
tack [30], [31].
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