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Abstract: 21 

Underwater cameras are widely used to monitor marine biodiversity, and 22 

the trend is increasing due to the availability of cheap action cameras. 23 

The main bottleneck of video methods now resides in the manual 24 

processing of images, a time-consuming task requiring trained experts. 25 

Recently, several solutions based on Deep Learning (DL) have been 26 

proposed to automatically process underwater videos. The main limitation 27 

of such algorithms is that they require thousands of annotated images in 28 

order to learn to discriminate classes (here species). This limitation 29 

implies two issues: 1) the annotation of hundreds of common species 30 

requires a lot of efforts 2) many species are too rare to gather enough 31 

data to train a classic DL algorithm. Here, we propose to explore how 32 

few-shot learning (FSL), an emerging research field, could overcome DL 33 

limitations. Few-shot learning is based on the principle of training a Deep 34 

Learning algorithm on “how to learn a new classification problem with 35 

only few images”. In our case-study, we assess the robustness of FSL to 36 

discriminate 20 coral reef fish species with a range of training databases 37 

from 1 image per class to 30 images per class, and compare FSL to a 38 

classic DL approach with thousands of images per class. We found that 39 

FSL outperform classic DL approach in situations where annotated images 40 

are limited, yet still providing good classification accuracy. 41 

 42 
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Introduction 45 

 46 

The world’s ecosystems have entered an era of anthropogenic 47 

defaunation where human activities have triggered global decline in 48 

animal abundance, species range contraction and a new wave of species 49 

extinction [1]. This global change is threatening ecosystem services 50 

worldwide hence the stability of our food systems, economies, and health. 51 

Defaunation is more advanced in terrestrial and freshwater ecosystems 52 

than in the marine environment where it started centuries later. However, 53 

the pace of defaunation is accelerating in oceans mostly due to the 54 

advent of industrial fishing since a century ago [2]. Given this context of 55 

global changes rapidly affecting fish communities, it is imperative to 56 

monitor fish biodiversity over time, on a large scale and using non-57 

destructive methods. 58 

Fish biodiversity surveys in the marine environment are typically 59 

performed by divers. Although dive visual censuses provide a great deal 60 

of information on some shallow habitats, there are many limitations. First, 61 

divers are limited by depth and can hardly perform long dives to count 62 

fish below 30 m, ignoring mesophotic habitats and deeper ecosystems. 63 

Second, divers are limited by time and generally focus their 2-4 dives per 64 

day in the most speciose hard-substrate habitats, and ignore less rich and 65 

often immense adjacent soft-bottom habitats. Third, dive surveys provide 66 

data at a slow rate so that the compilation of global fish biodiversity 67 

database takes decades of efforts by multiple teams of highly skilled 68 

taxonomic divers (e.g. [3], [4]). This is a major restriction to the 69 

necessary temporal monitoring of global marine ecosystems, although a 70 

few time series exist in some countries1 [5].  71 

                                                           
1 AIMS, Long-Term Monitoring Program: Visual Census Fish Data (Great Barrier Reef) 
https://apps.aims.gov.au/metadata/view/5be0b340-4ade-11dc-8f56-00008a07204e 



Underwater videos (UV) are increasingly used [6] to overcome the 72 

limitations of diver-based surveys to quickly collect large amounts of 73 

data. For instance, more than 15,000 video stations were deployed in 58 74 

countries in just three years for the first global assessment of the 75 

conservation status of reef sharks [7]. Furthermore, underwater video 76 

surveys can be performed in many habitats, with some example in 77 

shallow reefs [8], sandy lagoons [9], deep sea [10], and even in the 78 

pelagic ecosystem [11]. Deploying underwater video stations does not 79 

require expert taxonomists and is now quite inexpensive with the 80 

improvement of cheap action cameras since a few years. The bottleneck 81 

to analyse this data now resides in the manual processing of the videos. 82 

Indeed, manually extracting fish biodiversity and abundance data from 83 

raw videos requires unsustainable workload by highly trained taxonomic 84 

experts. Although this annotation work can be improved  through citizen 85 

science [12]–[14], such time-consuming and expensive task cannot 86 

match the increasing size of datasets, up to 20,000 hours of videos for 87 

global surveys [7] and the necessary monitoring of global oceans over 88 

time.  89 

 90 

As the demand for automatic methods to analyze underwater videos is 91 

rising, the latest generation of deep learning algorithms (DL), and in 92 

particular convolutional neural networks (CNNs) are increasingly used for 93 

species identification [14]–[17] and fish detection [18]–[21]. However, 94 

these algorithms require a large dataset of annotated images (thumbnails 95 

hereafter) in order to train a robust model, able to provide satisfying 96 

results. Therefore, this method still requires collecting an important image 97 

dataset manually annotated by experts. This is especially problematic in 98 

highly diverse faunas such as coral reef fish that encompass nearly 6500 99 

species worldwide [22]. Furthermore, a universal pattern in species 100 

distribution, including fish communities, is that both rare and common 101 

species are found in every community, with the fraction of rare species 102 



more important in rich ecosystems, such as coral reefs [23], [24].  It is 103 

therefore almost impossible to gather enough thumbnails of rare species 104 

to efficiently train a deep neural network in a “classic” way, which 105 

requires thousands of images per species [25]–[27] 106 

 107 

 108 

There are two ways to tackle this problem of lack of data. The first one 109 

consists of directly addressing the data itself, through data augmentation  110 

[28]–[30]. The second option is to change the classification algorithm. 111 

Few-shots learning (FSL) algorithms [31], [32] are designed to compute a 112 

classification task (query, noted Q) with only a few thumbnails to train 113 

(Support Sets, noted SS), and it has been increasingly studied since 2017 114 

[33]. Few-shots learning methods are divided into three main 115 

approaches. Metric-based methods are embedding both queries (Q) and 116 

support sets (Ss), before assigning to the query a class, according to 117 

distances computed between Q and Ss ([34]–[36]). The second approach 118 

consists of 1) training a model on a large database, and 2) adapt this 119 

model to a new task with few examples, while not forgetting the concepts 120 

learned previously [37], [38]. Finally, optimization-based methods are 121 

designed to adapt quickly to new tasks, hence able to learn a 122 

classification task with few examples [33], [39], [40]. Optimization-based 123 

algorithms showed promising results in deep learning few-shot 124 

classification [33], [41], [42]. Such methods propose to pre-train (or 125 

“meta-train”) a model with existing databases (e.g. MiniImageNet [43] , 126 

Ominglot [44]) on different tasks so it can adapt easily to a new one. For 127 

object identification, a task is defined by the classes the model has to 128 

discriminate. Once this model, called “meta-model” has been trained, it 129 

can then be tuned to operate on a new task with a very limited dataset, 130 

usually only 1-5 thumbnails per class.  131 

 132 



In this study we propose to compare the efficiency of optimization-based 133 

few-shot learning and standard large dataset deep-learning methods to 134 

identify coral reef fish species on images. More specifically, we aim to 135 

determine how well a classic deep learning architecture trained with 136 

thousands of images and the benefit of data augmentation (hereafter DL) 137 

and FSL algorithms perform in situations where training thumbnail 138 

dataset is large or limited. To achieve this, we first trained a classic DL 139 

architecture built for image classification [45] on a large dataset of 140 

69,169 thumbnails, and on a more limited dataset of 6,320 thumbnails for 141 

20 coral reef fish species. Then, we trained a few-shots, optimization-142 

based learning algorithm [39] on the exact same training datasets while 143 

varying the number of shots from 1 to 30. Finally, we compared the 144 

capacity of DL and FSL models to correctly identify species on an 145 

independent thumbnail dataset, and modelled the asymptotic relationship 146 

between classification accuracy and the number of thumbnails in the 147 

training datasets for both classic DL and FSL algorithms 148 

 149 

  150 



Material and methods 151 

 152 

Thumbnail datasets 153 

We used three fish thumbnail datasets (T0, T1, and T2) extracted from 154 

175 underwater videos recorded on reefs around Mayotte Island (Western 155 

Indian Ocean) using GoPro Hero 3+ and GoPro hero 4+ cameras with a 156 

resolution of 1920x1080 pixels. A thumbnail is defined as an image 157 

containing a single labelled fish belonging to one of the 20 most common 158 

fish species in the videos, and representing a broad range of sizes, colors, 159 

body orientations, and background (Supp. Fig. 1, Supp. Fig. 2). 160 

T0 is composed of 69,169 thumbnails extracted from 130 videos, with a 161 

range of 1,134 to 7,345 thumbnails per species (Table 1). T1 is composed 162 

of 6,320 thumbnails extracted from 20 videos with 40-1,436 images per 163 

species whereasT2 is composed of 13,232 thumbnails extracted from 25 164 

videos with 55-3,896 images per species. Thumbnails size originally 165 

ranged from 55x55 pixels to 500x450 pixels, but were resized to 84x84 166 

pixels before being processed through FS and DL algorithms. 167 

The datasets T1 and T2 correspond to two real scenarii where videos were 168 

recorded during two trips in the field of a week each. 169 

The three thumbnails datasets are fully independent, as they were 170 

extracted from videos recorded at different sites, with different conditions 171 

(weather, lighting, depth, time of the day, seascape) and on different 172 

days.  173 

 174 

To train our DL architecture, we applied data augmentation to T0 and T1. 175 

For each natural thumbnails in T0 and T1, we created 9 thumbnails 176 

through contrast augmentation or diminution, and horizontal flip. We then 177 

obtained augmented datasets composed of 691,690 (AT0) and 63,200 178 



(AT1) images respectively Supp. Table 1. Further details on thumbnail 179 

datasets and data augmentation are given in [46]. 180 

 181 

Table 1: Number of natural thumbnails extracted from the videos to build 182 

our three datasets 183 

Family Species 
Training 

dataset T0 

Training 

dataset 

T1 

 

Test dataset 

T2 

 

Acanthuridae 
Acanthurus 

leucosternon 
3,259 235 491 

Acanthuridae 
Acanthurus 

lineatus 
1,008 114 864 

Acanthuridae Naso brevirostris 1,134 539 1932 

Acanthuridae Naso elegans 7,345 1,435 3,896 

Acanthuridae 
Zebrasoma 

scopas 
4,970 48 579 

Chaetodontidae Chaetodon auriga 2,134 737 502 

Chaetodontidae 
Chaetodon 

guttatissimus 
1,182 221 68 

Chaetodontidae 
Chaetodon 

trifascialis 
5,234 41 630 

Chaetodontidae 
Chaetodon 

trifasciatus 
4,421 71 82 

Labridae 
Gomphosus 

caeruleus 
3,131 57 173 

Labridae Halichoeres 3,192 40 287 



hortulanus 

Labridae 
Thalassoma 

hardwicke 
4,951 181 275 

Lethrinidae 
Monotaxis 

grandoculis 
3,893 797 1,422 

Monacanthidae 
Oxymonacanthus 

longirostris 
2,553 54 55 

Pomacentridae 
Abudefduf 

vaigiensis 
5,124 376 216 

Pomacentridae 
Amblyglyphidodon 

indicus 
1,188 636 1,310 

Pomacentridae 
Chromis 

opercularis 
1,525 81 93 

Pomacentridae 
Chromis 

ternatensis 
3,640 300 156 

Pomacentridae 
Pomacentrus 

sulfureus 
5,409 270 142 

Zanclidae Zanclus cornutus 3,876 86 59 

TOTAL   69,169 6,320 13,232 

 184 

 185 

 186 

 187 

Experimental design 188 

To compare classic deep-learning and few-shot algorithms in situations of 189 

large or small thumbnail datasets, we led five experiments using datasets 190 

T0, T1, T2, AT0 and AT1 described in Supp. Table 1 : 191 



1) We trained a classic DL algorithms architecture with our biggest 192 

dataset AT0 as a baseline for the DL accuracy; 193 

2) We trained the same DL architecture with the same hyper-194 

parameters (e.g. model architecture and training process) but on a 195 

much more limited dataset (AT1).  Hyper-parameters are the 196 

parameters defining the architecture (number of layers, number 197 

and size of convolutions, connections between layers) and the 198 

training process of a Deep Model (learning rate, neurone activation, 199 

back-propagation compotation).; 200 

3) We trained the same DL architecture with limited datasets obtained 201 

by subsampling T0 to 250 and 500 images per class (here after 202 

“species” when we are referring to our experiments), corresponding 203 

to 2500 and 5000 thumbnails in AT0; 204 

4) We pre-trained a FSL architecture on the 64 training classes of 205 

MiniImageNet (Supp. Fig. 3) and used T0 to build support sets (SS) 206 

with 1, 5, 15 and 30 thumbnails for each fish species; 207 

5) We pre-trained the same FSL architecture on MiniImageNet and 208 

used the more limited T1 dataset to build support sets with 1, 5, 15 209 

and 30 images per species. 210 

 211 

We used ResNet 100 [45] as our classic deep-learning algorithm. Resnet 212 

is a convolutional neural network (CNN), a DL architecture which is able 213 

to both extract features from images and classify these images thanks to 214 

those features [47]. In order for a CNN to build an image classification 215 

model, the architecture is fed a large dataset, composed of pairs of labels 216 

and images. Using this dataset, the algorithms change their inner 217 

parameters in order to minimize the classification error, through a 218 

process called back-propagation. The ResNet architecture achieved the 219 

best results on ImageNet Large Scale Visual Recognition Competition 220 

(ILSVRC [43]) in 2015, considered the most challenging image 221 



classification competition. It is still one of the best classification 222 

algorithms, while being easy to use and implement. 223 

 224 

For the few-shot implementation, we used the Reptile algorithm [39]. 225 

Few-shot learning algorithms are specific DL algorithms, whose goal is to 226 

be able to fit a model with very few training images. The Reptile algorithm 227 

is based on the well-known MAML architecture [33], and more precisely 228 

on the first-order version of MAML [48]. The Reptile algorithm is based on 229 

the division of the training dataset into a number of tasks 𝑇𝑖, a task being 230 

a learning problem. Through repetitively changing the task during the first 231 

training phase (known as meta-training), this algorithm produces a quick 232 

learner, i.e. a learner than can quickly adapt to a new task with a small 233 

number of examples.  234 

Here, the few-shot algorithms were tested on a classic n-ways k-shots 235 

procedure, n being the number of classes per support set, and k the 236 

number of images per class in the support set. For instance, a 5-ways 1-237 

shots consists of training 5 classes with supports sets composed of  1 238 

image per classes (e.g. species).  We set n=5 [34], [36], [40], [42], [49] 239 

and allowed k to vary between 1 shot and 30 shots for both experiments 240 

4 and 5. We did not use data augmentation for FSL experiments for 241 

several reasons. First, the goal of FSL is to adapt quickly with a very 242 

limited number of images. Second, to have similar settings for method 243 

comparison.  There were no data-augmentation in the original paper, so 244 

we reproduced that. It also allowed us to compare our results with those 245 

obtained on benchmarks. Third, the reason behind the use of raw data 246 

instead of augmented data in few-shot learning paper is that with very 247 

few training samples and few conditions, the risk of overfitting by using 248 

the same image modified multiple times is far greater than in classic 249 

approaches with important datasets with many conditions. 250 

 251 



 252 

Model comparison 253 

All the DL and FSL models were tested on the independent T2 dataset.  254 

First, we compared the results of experiments 1 and 2 in order to 255 

estimate the decrease in performance of a classic ResNet DL architecture 256 

when trained on a large dataset AT0 (i.e. between 11,340 and 73,450 257 

images per species after data augmentation, with an average of 3458 258 

natural thumbnails per species) or trained on a more limited dataset AT1 259 

(i.e. between 400 and 14,360 images per species after data 260 

augmentation, with an average of 315 natural thumbnails per species). 261 

Second, we compared the results of experiments 1 and 4 in order to 262 

evaluate if the ResNet architecture outperforms the Reptile architecture in 263 

a real-case situation where thumbnail dataset is large (T0 and AT0). 264 

Finally, we compared the results of experiments 2 and 5 to determine 265 

whether and to which extent a Reptile model performs better than a 266 

ResNet model in a real-case situation where thumbnail dataset is limited 267 

(T1 and AT1).  268 

 269 

 270 

In order to better evaluate the performance of ResNet and Reptile 271 

algorithms, we also modelled the relationship between model accuracy 272 

and the number of thumbnails used to train the models. To achieve this, 273 

we fitted the following asymptotic function to the results of experiments 274 

1, 3 and 4 (obtained through training DL and FSL architectures on 275 

datasets of various size obtained from AT0 and T0): 276 

 277 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∞ · (1 − 𝑒𝑥𝑝(−𝑅 · 𝑁𝑖𝑚𝑎𝑔𝑒))                                          (eq.1) 278 



where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∞ is the asymptotic model accuracy when the number of 279 

thumbnails 𝑁𝑖𝑚𝑎𝑔𝑒 is infinite, and R is the rate at which the asymptote is 280 

reached. 281 

Equation 1 was fitted by non-linear mixed-effect modelling (NLME [50])  282 

using species as a random effect .This method is widely used for fitting 283 

asymptotic processes. It allows estimating and comparing asymptotic 284 

accuracies of both FSL and DL algorithms, and the number of image to 285 

reach these asymptotic accuracies. The number of images required to 286 

reach the asymptotic accuracy was calculated as the number of images 287 

corresponding to an accuracy of 0.99 times the asymptotic value, 288 

meaning the asymptote was reached within 1%.  289 

 290 

 291 

Results 292 

The deep ResNet model trained on the large AT0 dataset (3458 natural 293 

thumbnails in average per species) during the first experiment obtained a 294 

mean accuracy (i.e. percentage of correct classification) of 78.00% 295 

(standard deviation (SD) of 15.16%) on T2 test-dataset (Table 2). With 296 

this model, accuracy varied among species between 54.14% (Naso 297 

brevirostris) and 99.07% (Abudefduf vagiensis). The same ResNet DL 298 

model trained on smaller AT1 (315 natural thumbnails in average per 299 

species) during the second experiment showed highly degraded 300 

performance with a mean accuracy of only 42.21% (SD=24.95%). Among 301 

species variation ranged with this model from only 3.49% (Chaetodon 302 

trifascialis) to 85.86% (Chaetodon auriga). 303 

The few-shot Reptile architecture trained on limited T1 dataset during our 304 

fifth experiment obtained a mean accuracy of 32.04% for the 1-shot 305 

learning (SD= 12.70%) and 51.77% mean accuracy for the 30-shots 306 

learning (SD= 18.96%) (Table 2,). In this scenario of limited T1 training 307 

dataset, the few-shot Reptile algorithm nearly equalled the ResNet DL 308 

model with only 5 shots (41.47% accuracy for 5-shots learning on T1 vs 309 

42.21% for DL on AT1), and performed better beyond 10 shots (45.92% 310 



of accuracy on T2 with 10-shots learning). A pairwise proportion test 311 

showed a p-value <0.0001, assessing that FSL was significantly better 312 

than DL in this scenario beyond 10 shots (Supp. Table 3) accuracy of 313 

Reptile models had a standard deviation from 12.70% with one-shot 314 

learning, to 18.96% with 30-shots learning, indicating important variation 315 

in accuracy among species. However, this standard deviation was smaller 316 

than that of the ResNet algorithm trained on the same AT1 limited 317 

dataset (24.95%). 318 



Figure 1: Relationship between the number of natural thumbnails per species for 319 

training and the accuracy of deep-learning and few-shot learning models. Non-320 

linear mixed effects asymptotic model fit for (a) DL architecture at the fixed-321 

effect level, and for FSL architecture at (b) the fixed-effect level and (c) the 322 

random-effect level. Grey areas represent 95% CI in fixed-effects estimates. 323 

Dotted lines represent the NLME estimate of the number of images per species 324 

required to reach the 99% asymptote value. We obtained similar magnitude with 325 

the 95% asymptote value, reached with 750 images for DL and 5 with FSL. 326 

 327 



 328 

 329 

 330 

The same few-shot Reptile architecture trained on subsets of T0 during 331 

the fourth experiment obtained even better results than when trained on 332 

T1, with a mean accuracy on T2 of 34.57% for 1-shot, 50.23% for 5-333 

shots, and up to 64.92% for 30-shots (Table 2).  334 

Mixed-effects modelling (NLME) of T0 and AT0 experimental data showed 335 

a clear pattern of asymptotic increase of accuracy with the number of 336 

natural thumbnails for both Resnet and Reptile architectures (Figure 1).  337 

NLME models included significant species random effect for both DL and 338 

FSL (Log-likelihood tests, P<0.0001). 339 

The fixed-effect asymptotic value of accuracy was higher for ResNet 340 

model (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∞ = 77.34%, 95% CI: 71.26-83.41%) than for Reptile 341 

model (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦∞ =60.87%, 95% CI: 54.48–67.26%), illustrating higher 342 

classification power of ResNet over Reptile when large numbers of 343 

thumbnails are available. However, the slope of the asymptotic model 344 

was two-orders of magnitude higher for Reptile (0.707, 95% CI: 0.559-345 

0.854) than for ResNet architecture (0.0040, 95% CI: 0.0032-0.0048), 346 

illustrating the high capacity of Reptile FSL algorithm to learn from only a 347 

few images. NLME modelling further showed that average asymptotic 348 

accuracy was reached with only 7 natural thumbnails per species for 349 

Reptile architecture, compared to 1153 natural thumbnails per species for 350 

ResNet, confirming the strong power of Reptile method in situation of 351 

limited thumbnail training dataset. However, model random effects 352 

showed that some variation existed among species. For Reptile 353 

architecture, asymptotic accuracy values ranged from 38.09% 354 

(Amblyglyphidodon indicus) to 89.78% (Pomacentrus sulfureus), and was 355 

reached with 4 to 16 training images per species. For DL architecture, 356 

species asymptotes varied from 62.72% (Monotaxis grandoculis) to 357 



96.81% (Abudefduf vaigiensis), and could be reached with 786-1776 358 

thumbnails per species (Supp. Table 4). 359 



 360 

Table 2: Accuracy of our ResNet deep-learning (DL) and Reptile few-shots learning (FSL) models trained on T0 or 361 

T1 thumbnails datasets for different number of shots. Accuracy is the % correct classification of models on T2 test 362 

dataset. DL models were trained from T0 and T1 after data augmentation (AT0 and AT1).  363 

 364 

 DL  FSL 

 T0 T1  T1  T0 

Image per species (on 

average) 

3458 315  1 shot 5 shots 30 shots  1 shot 5 shots 30 shots 

Abudefduf vaigiensis 99.07 69.91  16.08 11.39 11.38  47.67 70.9 86.35 

Acanthurus leucosternon 86.15 44.67  25.51 30.71 38.74  19.23 28.8 42.66 

Acanthurus lineatus 59.72 20.37  39.86 56.04 72.50  32.93 61.01 72.02 

Amblyglyphidodon indicus 58.78 60.78  25.75 26.74 32.86  28.26 32.55 40.64 

Chaetodon auriga 87.05 85.86  18.16 25.68 36.56  27.8 35.18 53.20 

Chaetodon guttatissimus 85.50 44.12  33.58 44.21 58.26  29.61 51.18 79.29 

Chaetodon trifascialis 90.00 3.49  29.02 25.48 28.44  27.14 43.17 63.51 

Chaetodon trifasciatus 87.80 28.05  38.73 50.63 66.72  32.41 51.07 70.63 



Chromis opercularis 61.29 9.68  44.01 61.81 62.94  45.34 68.28 81.50 

Chromis ternatensis 59.61 55.77  18.91 24.94 35.07  35.4 55.44 67.22 

Gomphosus caeruleus 75.72 20.81  26.01 38.99 58.74  28.96 39.16 54.22 

Halichoeres hortulanus 82.93 17.07  31.82 44.81 57.01  28.94 41.35 58.87 

Monotaxis grandoculis 57.10 53.37  32.03 41.52 50.64  32.8 45.85 59.13 

Naso brevirostris 54.14 68.60  47.06 54.26 64.66  54.47 58.08 61.00 

Naso elegans 93.24 79.43  34.54 43.11 52.17  28.47 33.71 44.36 

Oxymonacanthus 

longirostris 

96.43 14.54  39.29 53.48 

66.26 

 42.15 65.44 

84.86 

Pomacentrus sulfureus 90.14 61.97  70.90 88.18 93.93  65.53 86.21 90.00 

Thalassoma hardwicke 90.90 51.64  25.64 44.4 67.96  26.72 45.7 70.60 

Zanclus cornutus 81.36 40.68  18.33 31.28 44.44  26.08 40.82 62.72 

Zebrasoma scopas 63.04 13.30  25.56 31.81 36.05  31.42 50.69 55.70 

MEAN 78.00 42.21  32.04 41.47 51.77  34.57 50.23 64.92 

SD 15.16 24.95  12.70 16.93 18.96  11.14 14.75 14.55 



20 
 

365 

 366 

Discussion 367 

Our experiments demonstrated that few-shot learning methods based on Reptile 368 

architecture can be effectively used to drastically reduce the number of annotated 369 

images for underwater fish identification. Accuracy levels obtained with few-shot 370 

learning algorithm trained with only five training images are close to those of a 371 

standard Deep Learning architecture such as ResNet trained with 400-14350 images 372 

per species. Further, FSL architecture trained with 10 images outperformed a 373 

ResNet 100 architecture trained with at least 400 images per species. This is a very 374 

promising result in situations where many species need to be identified from models 375 

trained with a few images, a typical characteristic in marine biodiversity 376 

applications.  377 

However, the important standard deviation among the different trained species 378 

(18.96 SD on 30-shots) showed that few-shot algorithms may not be robust enough 379 

to discriminate among similar species showing only subtle differences. Nevertheless, 380 

in our 2nd experiment, our ResNet model achieved an accuracy under 40% for all 381 

the species with fewer training images than 1140 (after data augmentation, i.e. 114 382 

natural images), and only 7 species were identified with an accuracy greater than 383 

45%. These species were represented with a range of 2700-14350 images during 384 

the training phase. We also show better results with the model trained on T0 than 385 

the model trained on T1. As expected, increasing the number of images per shot 386 

rely on better performances as well as increasing the per species images variability. 387 

However, in real conditions, few-shot learning is to be used in a context where very 388 

few images per classes are at disposal. Therefore, the dataset T1 corresponded 389 

more to a real use case scenario. 390 

Thus, there is a trade-off to make between accuracy and robustness on one hand, 391 

and the cost of video annotation by experts on the other. 392 

 393 
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Modeling the accuracy of neural networks using NLME allowed to understand the 394 

number of images per species required for the Few-shot and Deep architecture to 395 

reach 99% of their maximum potential accuracy. In our case study, there was a 396 

150-fold factor between the average number of images required for a Deep 397 

Learning architecture (1153 images) and for a Few-shot architecture (7) to reach 398 

asymptotic accuracy. However, it is important to note that these numbers could 399 

vary according to the number and complexity of classes fed to the deep classifier. 400 

In this work we used a Reptile FSL architecture. As the field of few-shot learning is 401 

quickly improving, new methods are proposed at a fast rate. While Reptile obtained 402 

a mean accuracy of 61.98% on the MiniImageNet dataset (the most used 403 

benchmark for few-shot learning methods) through a 5-shots learning, [51] recently 404 

achieved 80.51% of accuracy on the same dataset. Although further studies are 405 

required, we can reasonably assume that the improvements of FSL algorithms will 406 

further expand the possible use of few-shot learning for real-life use cases.  407 

 408 

Applied to marine and coral reef ecology, such methods requiring few examples to 409 

fit a model on an identification task could be used for studies on species rarely seen 410 

on screen. A key characteristic of highly diverse ecosystems is that they are 411 

composed of few very common species and a large proportion of less-common and 412 

rare species. Hence, the important effort required to build databases with a 413 

sufficient number of images of all these rare species is the main bottleneck 414 

preventing the use of Deep Learning on a large number of species. The 415 

improvement of few-shot learning algorithms offers promises to build efficient 416 

identification models to automatically process images and videos to localise and 417 

identify rare fish species. Such models could then be paired with more classic deep 418 

architectures, more efficient to identify abundant species with the leverage of 419 

important datasets. 420 
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Supp. Fig. 1 :  The 20 reef fish species considered in this study 578 
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Supp. Fig. 2: Diversity of individuals of the same species and of their 585 

environments. 586 
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Supp. Fig. 3: Examples of classes’ images in MiniImageNet 588 

Supp. Table 1: Dataset usage during our experiments 589 

Dataset 
name Building Number of annotations Usage 

T0 Human Annotation 69,169 
Building of supports sets of 1,5,15 and 30 
 images for our fourth experiment 

T1 Human Annotation 6,320 
Building of supports sets or 1, 5, 15 and 
 30 images for our fifth experiment 

T2 Human Annotation 13,232 testing dataset 

AT0 Data augmentation applied on T0 691,690 DL training for our first experiment 

AT1 Data augmentation applied on T1 63,200 DL training for our second experiment 

 590 

 591 

 592 

Supp. Table 2: Mean accuracy obtained with FSL models trained with 593 

1,5,10,15,20,25 and 30 images per species. All the images used for the 594 

supports set are from T1. 595 

 Number of thumbnails in the Support set 

Species 1 5 10 15 20 25 30 

Abudefduf vaigiensis 16.08 11.39 13.18 12.59 14.02 12.98 11.38 

Acanthurus 

leucosternon 25.51 30.71 34.90 36.68 37.16 36.95 38.74 

Acanthurus lineatus 39.86 56.04 63.52 66.21 70.02 70.93 72.50 
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Amblyglyphidodon 

indicus 25.75 26.74 28.06 28.80 30.24 32.20 32.86 

Chaetodo  auriga 18.16 25.68 30.67 32.63 33.78 35.42 36.56 

Chaetodon 

guttatissimus 33.58 44.21 47.40 49.26 54.12 55.91 58.26 

Chaetodon trifascialis 29.02 25.48 27.44 28.02 28.18 29.65 28.44 

Chaetodon 

trifasciatus 38.73 50.63 53.47 60.17 63.19 64.38 66.72 

Chromis opercularis 44.01 61.81 61.85 63.85 64.67 61.98 62.94 

Chromis ternatensis 18.91 24.94 26.27 31.21 33.87 33.49 35.07 

Gomphosus 

caeruleus 26.01 38.99 46.84 52.88 53.96 58.69 58.74 

Halichoeres 

hortulanus 31.82 44.81 50.73 53.52 54.11 55.85 57.01 

Monotaxis 

grandoculis 32.03 41.52 45.68 47.59 48.34 49.19 50.64 

Naso brevirostris 47.06 54.26 61.01 59.46 59.30 62.40 64.66 

Naso elegans 34.54 43.11 48.38 50.19 51.31 50.55 52.17 

Oxymonacanthus  

longirostris 39.29 53.48 59.71 58.84 62.70 64.37 66.26 

Pomacentrus 

sulfureus 70.90 88.18 90.92 93.08 92.67 94.13 93.93 

Thalassoma 

hardwicke 25.64 44.40 57.80 62.03 64.97 67.86 67.96 

Zanclus cornutus 18.33 31.28 37.27 41.71 41.70 42.95 44.44 
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Zebrasoma scopas 25.56 31.81 33.32 34.62 37.02 37.22 36.05 

        Mean 32.04 41.47 45.92 48.17 49.77 50.86 51.77 

SD 12.70 16.93 17.69 18.00 18.10 18.52 18.96 

 596 

  597 
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Supp. Table 3: Probability values of the pairwise proportional test used to 598 

assess the significance of the difference between accuracies obtained 599 

through few-shot models with 5, 10, 15, 20, 25 and 30 shots and deep 600 

learning model trained on T1. 601 

      DL   FS1      FS5   FS10   FS15   FS20   FS25 

FS1 <2e-16             

FS5 0.28 <2e-16 

     FS10 1.20E-08 <2e-16 3.80E-12 

    FS15 <2e-16 <2e-16 <2e-16 0.0016 

   FS20 <2e-16 <2e-16 <2e-16 4.10E-09 0.0379 

  FS25 <2e-16 <2e-16 <2e-16 1.30E-14 8.90E-05 0.2362 

 FS30 <2e-16 <2e-16 <2e-16 <2e-16 3.90E-08 0.0059 0.28 

  602 

Supp. Table 4: Value of the asymptotic accuracy predicted by the NLME 603 

models, and number of natural images required for both Deep Learning 604 

architecture and Few-shot Learning architecture to reach 99% of this 605 

asymptote. 606 

 

Deep Learning Few-Shot Learning 

Species 

Number of images 

required to reach 

99% of the 

asymptote. 

Accuracy 

asymptote 

value 

Number of images 

required to reach 

99% of the 

asymptote. 

Accuracy 

asymptote value 

Naso brevirostris 1,506.47 67.43 5.04 38.10 

Monotaxis 

grandoculis 1,769.71 62.72 7.59 38.14 

Amblyglyphidodon 

indicus 1,766.55 62.89 5.34 41.76 

Chromis 

ternatensis 1,492.65 67.75 6.16 46.55 

Acanthurus 1,425.04 69.30 6.42 50.59 
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lineatus 

Zebrasoma scopas 1,776.17 62.74 5.92 54.94 

Gomphosus 

caeruleus 1,341.80 71.51 6.90 53.15 

Chromis 

opercularis 1,112.28 78.67 5.85 54.95 

Zanclus cornutus 1,069.22 80.57 3.66 60.08 

Halichoeres 

hortulanus 1,250.29 74.18 11.60 57.14 

Acanthurus 

leucosternon 1,184.97 76.31 10.21 58.28 

Chaetodon 

guttatissimus 868.64 90.93 6.46 64.95 

Chaetodon auriga 1,053.06 81.31 14.97 65.94 

Chaetodon 

trifasciatus 1,076.99 80.34 7.70 63.88 

Chaetodon 

trifascialis 1,087.93 79.94 7.42 68.66 

Pomacentrus 

sulfureus 960.99 85.63 15.41 72.98 

Thalassoma 

hardwicke 994.27 84.00 5.86 78.42 

Naso elegans 1,074.08 80.48 6.66 78.13 

Oxymonacanthus 

longirostris 833.75 93.29 5.68 80.97 

Abudefduf 

vaigiensis 785.95 96.82 4.12 89.78 

Mean 1221.54 77.34 7.45 60.87 

 607 
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