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Underwater cameras are widely used to monitor marine biodiversity, and the trend is increasing due to the availability of cheap action cameras.

The main bottleneck of video methods now resides in the manual processing of images, a time-consuming task requiring trained experts.

Recently, several solutions based on Deep Learning (DL) have been proposed to automatically process underwater videos. The main limitation of such algorithms is that they require thousands of annotated images in order to learn to discriminate classes (here species). This limitation implies two issues: 1) the annotation of hundreds of common species requires a lot of efforts 2) many species are too rare to gather enough data to train a classic DL algorithm. Here, we propose to explore how few-shot learning (FSL), an emerging research field, could overcome DL limitations. Few-shot learning is based on the principle of training a Deep Learning algorithm on "how to learn a new classification problem with only few images". In our case-study, we assess the robustness of FSL to discriminate 20 coral reef fish species with a range of training databases from 1 image per class to 30 images per class, and compare FSL to a classic DL approach with thousands of images per class. We found that FSL outperform classic DL approach in situations where annotated images are limited, yet still providing good classification accuracy.

Introduction

The world's ecosystems have entered an era of anthropogenic defaunation where human activities have triggered global decline in animal abundance, species range contraction and a new wave of species extinction [START_REF] Dirzo | Defaunation in the Anthropocene[END_REF]. This global change is threatening ecosystem services worldwide hence the stability of our food systems, economies, and health.

Defaunation is more advanced in terrestrial and freshwater ecosystems than in the marine environment where it started centuries later. However, the pace of defaunation is accelerating in oceans mostly due to the advent of industrial fishing since a century ago [START_REF] Young | Patterns , Causes , and Consequences of Anthropocene Defaunation[END_REF]. Given this context of global changes rapidly affecting fish communities, it is imperative to monitor fish biodiversity over time, on a large scale and using nondestructive methods.

Fish biodiversity surveys in the marine environment are typically performed by divers. Although dive visual censuses provide a great deal of information on some shallow habitats, there are many limitations. First, divers are limited by depth and can hardly perform long dives to count fish below 30 m, ignoring mesophotic habitats and deeper ecosystems.

Second, divers are limited by time and generally focus their 2-4 dives per day in the most speciose hard-substrate habitats, and ignore less rich and often immense adjacent soft-bottom habitats. Third, dive surveys provide data at a slow rate so that the compilation of global fish biodiversity database takes decades of efforts by multiple teams of highly skilled taxonomic divers (e.g. [START_REF] Cinner | Meeting fisheries, ecosystem function, and biodiversity goals in a human-dominated world[END_REF], [START_REF] Stuart-Smith | Integrating abundance and functional traits reveals new global hotspots of fish diversity[END_REF]). This is a major restriction to the necessary temporal monitoring of global marine ecosystems, although a few time series exist in some countries 1 [START_REF] Heenan | Long-term monitoring of coral reef fish assemblages in the Western central pacific[END_REF].

Underwater videos (UV) are increasingly used [START_REF] Whitmarsh | What is Big BRUVver up to ? Methods and uses of baited underwater video[END_REF] to overcome the limitations of diver-based surveys to quickly collect large amounts of data. For instance, more than 15,000 video stations were deployed in 58 countries in just three years for the first global assessment of the conservation status of reef sharks [START_REF] Macneil | Global status and conservation potential of reef sharks[END_REF]. Furthermore, underwater video surveys can be performed in many habitats, with some example in shallow reefs [START_REF] Juhel | Isolation and no-entry marine reserves mitigate anthropogenic impacts on grey reef shark behavior[END_REF], sandy lagoons [START_REF] Cappo | Inter-reef vertebrate communities of the Great Barrier Reef Marine Park determined by baited remote underwater video stations[END_REF], deep sea [START_REF] Zintzen | Effects of latitude and depth on the beta diversity of New Zealand fish communities[END_REF], and even in the pelagic ecosystem [START_REF] Tom B Letessier | Remote reefs and seamounts are the last refuges for marine predators across the Indo-Pacific[END_REF]. Deploying underwater video stations does not require expert taxonomists and is now quite inexpensive with the improvement of cheap action cameras since a few years. The bottleneck to analyse this data now resides in the manual processing of the videos. Indeed, manually extracting fish biodiversity and abundance data from raw videos requires unsustainable workload by highly trained taxonomic experts. Although this annotation work can be improved through citizen science [START_REF] Torney | A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images[END_REF]- [START_REF] Willi | Identifying animal species in camera trap images using deep learning and citizen science[END_REF], such time-consuming and expensive task cannot match the increasing size of datasets, up to 20,000 hours of videos for global surveys [START_REF] Macneil | Global status and conservation potential of reef sharks[END_REF] and the necessary monitoring of global oceans over time.

As the demand for automatic methods to analyze underwater videos is rising, the latest generation of deep learning algorithms (DL), and in particular convolutional neural networks (CNNs) are increasingly used for species identification [START_REF] Willi | Identifying animal species in camera trap images using deep learning and citizen science[END_REF]- [START_REF] Shiu | Deep neural networks for automated detection of marine mammal species[END_REF] and fish detection [START_REF] Rathi | Underwater Fish Species Classification using Convolutional Neural Network and Deep Learning[END_REF]- [START_REF] Qin | DeepFish: Accurate underwater live fish recognition with a deep architecture[END_REF]. However, these algorithms require a large dataset of annotated images (thumbnails hereafter) in order to train a robust model, able to provide satisfying results. Therefore, this method still requires collecting an important image dataset manually annotated by experts. This is especially problematic in highly diverse faunas such as coral reef fish that encompass nearly 6500 species worldwide [START_REF] Chabanet | Global Biogeography of Reef Fishes : A Hierarchical Quantitative Delineation of Regions[END_REF]. Furthermore, a universal pattern in species distribution, including fish communities, is that both rare and common species are found in every community, with the fraction of rare species more important in rich ecosystems, such as coral reefs [START_REF] Hercos | Local and regional rarity in a diverse tropical fish assemblage[END_REF], [START_REF] Jones | Rarity in Coral Reef Fish Communities[END_REF]. It is therefore almost impossible to gather enough thumbnails of rare species to efficiently train a deep neural network in a "classic" way, which requires thousands of images per species [START_REF] Liu | Many-Class Few-Shot Learning on Multi-Granularity Class Hierarchy[END_REF]- [START_REF] Zhuang | WildFish : A Large Benchmark for Fish Recognition in the Wild[END_REF] There are two ways to tackle this problem of lack of data. The first one consists of directly addressing the data itself, through data augmentation [START_REF] Wang | The Effectiveness of Data Augmentation in Image Classification using Deep Learning[END_REF]- [START_REF] Wong | Understanding data augmentation for classification : when to warp ?[END_REF]. The second option is to change the classification algorithm.

Few-shots learning (FSL) algorithms [START_REF] Fei-Fei | One-Shot Learning of Object Categories[END_REF], [START_REF] Fink | Object Classification from a Single Example Utilizing Class Relevance Metrics[END_REF] are designed to compute a classification task (query, noted Q) with only a few thumbnails to train (Support Sets, noted SS), and it has been increasingly studied since 2017 [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF]. Few-shots learning methods are divided into three main approaches. Metric-based methods are embedding both queries (Q) and support sets (Ss), before assigning to the query a class, according to distances computed between Q and Ss ([34]- [START_REF] Victor | FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS[END_REF]). The second approach consists of 1) training a model on a large database, and 2) adapt this model to a new task with few examples, while not forgetting the concepts learned previously [START_REF] Gidaris | Dynamic Few-Shot Visual Learning without Forgetting[END_REF], [START_REF] Hariharan | Low-shot Visual Recognition by Shrinking and Hallucinating Features[END_REF]. Finally, optimization-based methods are designed to adapt quickly to new tasks, hence able to learn a classification task with few examples [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF], [START_REF] Nichol | Reptile : a Scalable Metalearning Algorithm[END_REF], [START_REF] Sun | Meta-Transfer Learning for Few-Shot Learning[END_REF]. Optimization-based algorithms showed promising results in deep learning few-shot classification [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF], [START_REF] Wang | Generalizing from a Few Examples: A Survey on Few-Shot Learning[END_REF], [START_REF] Jamal | Task Agnostic Meta-Learning for Few-Shot Learning[END_REF]. Such methods propose to pre-train (or "meta-train") a model with existing databases (e.g. MiniImageNet [START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF] ,

Ominglot [START_REF] Lake | The Omniglot challenge : a 3-year progress report[END_REF]) on different tasks so it can adapt easily to a new one. For object identification, a task is defined by the classes the model has to discriminate. Once this model, called "meta-model" has been trained, it can then be tuned to operate on a new task with a very limited dataset, usually only 1-5 thumbnails per class.

In this study we propose to compare the efficiency of optimization-based few-shot learning and standard large dataset deep-learning methods to identify coral reef fish species on images. More specifically, we aim to determine how well a classic deep learning architecture trained with thousands of images and the benefit of data augmentation (hereafter DL) and FSL algorithms perform in situations where training thumbnail dataset is large or limited. To achieve this, we first trained a classic DL architecture built for image classification [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] on a large dataset of 69,169 thumbnails, and on a more limited dataset of 6,320 thumbnails for 20 coral reef fish species. Then, we trained a few-shots, optimizationbased learning algorithm [START_REF] Nichol | Reptile : a Scalable Metalearning Algorithm[END_REF] on the exact same training datasets while varying the number of shots from 1 to 30. Finally, we compared the capacity of DL and FSL models to correctly identify species on an independent thumbnail dataset, and modelled the asymptotic relationship between classification accuracy and the number of thumbnails in the training datasets for both classic DL and FSL algorithms

Material and methods

Thumbnail datasets

We used three fish thumbnail datasets (T0, T1, and T2) extracted from 175 underwater videos recorded on reefs around Mayotte Island (Western Indian Ocean) using GoPro Hero 3+ and GoPro hero 4+ cameras with a resolution of 1920x1080 pixels. A thumbnail is defined as an image containing a single labelled fish belonging to one of the 20 most common fish species in the videos, and representing a broad range of sizes, colors, body orientations, and background (Supp. Fig. 1, Supp. Fig. 2).

T0 is composed of 69,169 thumbnails extracted from 130 videos, with a range of 1,134 to 7,345 thumbnails per species (Table 1). T1 is composed of 6,320 thumbnails extracted from 20 videos with 40-1,436 images per species whereasT2 is composed of 13,232 thumbnails extracted from 25 videos with 55-3,896 images per species. Thumbnails size originally ranged from 55x55 pixels to 500x450 pixels, but were resized to 84x84 pixels before being processed through FS and DL algorithms.

The datasets T1 and T2 correspond to two real scenarii where videos were recorded during two trips in the field of a week each.

The three thumbnails datasets are fully independent, as they were extracted from videos recorded at different sites, with different conditions (weather, lighting, depth, time of the day, seascape) and on different days.

To train our DL architecture, we applied data augmentation to T0 and T1.

For each natural thumbnails in T0 and T1, we created 9 thumbnails through contrast augmentation or diminution, and horizontal flip. We then obtained augmented datasets composed of 691,690 (AT0) and 63,200 (AT1) images respectively Supp. Table 1. Further details on thumbnail datasets and data augmentation are given in [START_REF] Villon | A new method to control error rates in automated species identification with deep learning algorithms[END_REF]. 

Experimental design

To compare classic deep-learning and few-shot algorithms in situations of large or small thumbnail datasets, we led five experiments using datasets T0, T1, T2, AT0 and AT1 described in Supp. 3) We trained the same DL architecture with limited datasets obtained by subsampling T0 to 250 and 500 images per class (here after "species" when we are referring to our experiments), corresponding to 2500 and 5000 thumbnails in AT0;

4) We pre-trained a FSL architecture on the 64 training classes of MiniImageNet (Supp. Fig. 3) and used T0 to build support sets (SS) with 1, 5, 15 and 30 thumbnails for each fish species; 5) We pre-trained the same FSL architecture on MiniImageNet and used the more limited T1 dataset to build support sets with 1, 5, 15 and 30 images per species.

We used ResNet 100 [START_REF] He | Deep Residual Learning for Image Recognition[END_REF] as our classic deep-learning algorithm. Resnet is a convolutional neural network (CNN), a DL architecture which is able to both extract features from images and classify these images thanks to those features [START_REF] Lecun | Deep learning[END_REF]. In order for a CNN to build an image classification model, the architecture is fed a large dataset, composed of pairs of labels For the few-shot implementation, we used the Reptile algorithm [START_REF] Nichol | Reptile : a Scalable Metalearning Algorithm[END_REF].

Few-shot learning algorithms are specific DL algorithms, whose goal is to be able to fit a model with very few training images. The Reptile algorithm is based on the well-known MAML architecture [START_REF] Finn | Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks[END_REF], and more precisely on the first-order version of MAML [START_REF] Nichol | On First-Order Meta-Learning Algorithms[END_REF]. image per classes (e.g. species). We set n=5 [START_REF] Sung | Learning to Compare : Relation Network for Few-Shot Learning Queen Mary University of London[END_REF], [START_REF] Victor | FEW-SHOT LEARNING WITH GRAPH NEURAL NETWORKS[END_REF], [START_REF] Sun | Meta-Transfer Learning for Few-Shot Learning[END_REF], [START_REF] Jamal | Task Agnostic Meta-Learning for Few-Shot Learning[END_REF], [START_REF] Wang | Generalizing from a Few Examples : A Survey on Few-shot Generalizing from a Few Examples : A Survey on Few-shot[END_REF] and allowed k to vary between 1 shot and 30 shots for both experiments 4 and 5. We did not use data augmentation for FSL experiments for several reasons. First, the goal of FSL is to adapt quickly with a very limited number of images. Second, to have similar settings for method comparison. There were no data-augmentation in the original paper, so we reproduced that. It also allowed us to compare our results with those obtained on benchmarks. Third, the reason behind the use of raw data instead of augmented data in few-shot learning paper is that with very few training samples and few conditions, the risk of overfitting by using the same image modified multiple times is far greater than in classic approaches with important datasets with many conditions.

Model comparison

All the DL and FSL models were tested on the independent T2 dataset.

First, we compared the results of experiments 1 and 2 in order to estimate the decrease in performance of a classic ResNet DL architecture when trained on a large dataset AT0 (i.e. between 11,340 and 73,450 images per species after data augmentation, with an average of 3458 natural thumbnails per species) or trained on a more limited dataset AT1 (i.e. between 400 and 14,360 images per species after data augmentation, with an average of 315 natural thumbnails per species).

Second, we compared the results of experiments 1 and 4 in order to evaluate if the ResNet architecture outperforms the Reptile architecture in a real-case situation where thumbnail dataset is large (T0 and AT0).

Finally, we compared the results of experiments 2 and 5 to determine whether and to which extent a Reptile model performs better than a

ResNet model in a real-case situation where thumbnail dataset is limited (T1 and AT1).

In order to better evaluate the performance of ResNet and Reptile algorithms, we also modelled the relationship between model accuracy and the number of thumbnails used to train the models. To achieve this, we fitted the following asymptotic function to the results of experiments 1, 3 and 4 (obtained through training DL and FSL architectures on datasets of various size obtained from AT0 and T0):

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∞ • (1 -𝑒𝑥𝑝(-𝑅 • 𝑁 𝑖𝑚𝑎𝑔𝑒 )) (eq.1)
where 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∞ is the asymptotic model accuracy when the number of thumbnails 𝑁 𝑖𝑚𝑎𝑔𝑒 is infinite, and R is the rate at which the asymptote is reached.

Equation 1 was fitted by non-linear mixed-effect modelling (NLME [START_REF] Pinheiro | Mixed-effects models in S and S-PLUS[END_REF]) using species as a random effect .This method is widely used for fitting asymptotic processes. It allows estimating and comparing asymptotic accuracies of both FSL and DL algorithms, and the number of image to reach these asymptotic accuracies. The number of images required to reach the asymptotic accuracy was calculated as the number of images corresponding to an accuracy of 0.99 times the asymptotic value, meaning the asymptote was reached within 1%.

Results

The The same few-shot Reptile architecture trained on subsets of T0 during the fourth experiment obtained even better results than when trained on T1, with a mean accuracy on T2 of 34.57% for 1-shot, 50.23% for 5shots, and up to 64.92% for 30-shots (Table 2).

Mixed-effects modelling (NLME) of T0 and AT0 experimental data showed a clear pattern of asymptotic increase of accuracy with the number of natural thumbnails for both Resnet and Reptile architectures (Figure 1).

NLME models included significant species random effect for both DL and FSL (Log-likelihood tests, P<0.0001).

The fixed-effect asymptotic value of accuracy was higher for ResNet ResNet 100 architecture trained with at least 400 images per species. This is a very promising result in situations where many species need to be identified from models trained with a few images, a typical characteristic in marine biodiversity applications.

However, the important standard deviation among the different trained species (18.96 SD on 30-shots) showed that few-shot algorithms may not be robust enough to discriminate among similar species showing only subtle differences. Nevertheless, in our 2 nd experiment, our ResNet model achieved an accuracy under 40% for all the species with fewer training images than 1140 (after data augmentation, i.e. 114 natural images), and only 7 species were identified with an accuracy greater than 45%. These species were represented with a range of 2700-14350 images during the training phase. We also show better results with the model trained on T0 than the model trained on T1. As expected, increasing the number of images per shot rely on better performances as well as increasing the per species images variability.

However, in real conditions, few-shot learning is to be used in a context where very few images per classes are at disposal. Therefore, the dataset T1 corresponded more to a real use case scenario.

Thus, there is a trade-off to make between accuracy and robustness on one hand, and the cost of video annotation by experts on the other.

Modeling the accuracy of neural networks using NLME allowed to understand the number of images per species required for the Few-shot and Deep architecture to reach 99% of their maximum potential accuracy. In our case study, there was a 150-fold factor between the average number of images required for a Deep

Learning architecture (1153 images) and for a Few-shot architecture [START_REF] Macneil | Global status and conservation potential of reef sharks[END_REF] to reach asymptotic accuracy. However, it is important to note that these numbers could vary according to the number and complexity of classes fed to the deep classifier.

In this work we used a Reptile FSL architecture. As the field of few-shot learning is quickly improving, new methods are proposed at a fast rate. While Reptile obtained a mean accuracy of 61.98% on the MiniImageNet dataset (the most used benchmark for few-shot learning methods) through a 5-shots learning, [START_REF] Li | Finding Task-Relevant Features for Few-Shot Learning by Category Traversal[END_REF] recently achieved 80.51% of accuracy on the same dataset. Although further studies are required, we can reasonably assume that the improvements of FSL algorithms will further expand the possible use of few-shot learning for real-life use cases.

Applied to marine and coral reef ecology, such methods requiring few examples to fit a model on an identification task could be used for studies on species rarely seen on screen. A key characteristic of highly diverse ecosystems is that they are composed of few very common species and a large proportion of less-common and rare species. Hence, the important effort required to build databases with a sufficient number of images of all these rare species is the main bottleneck preventing the use of Deep Learning on a large number of species. The improvement of few-shot learning algorithms offers promises to build efficient identification models to automatically process images and videos to localise and identify rare fish species. Such models could then be paired with more classic deep architectures, more efficient to identify abundant species with the leverage of important datasets.
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  and images. Using this dataset, the algorithms change their inner parameters in order to minimize the classification error, through a process called back-propagation. The ResNet architecture achieved the best results on ImageNet Large Scale Visual Recognition Competition (ILSVRC[START_REF] Russakovsky | ImageNet Large Scale Visual Recognition Challenge[END_REF]) in 2015, considered the most challenging image classification competition. It is still one of the best classification algorithms, while being easy to use and implement.

  The Reptile algorithm is based on the division of the training dataset into a number of tasks 𝑇 𝑖 , a task being a learning problem. Through repetitively changing the task during the first training phase (known as meta-training), this algorithm produces a quick learner, i.e. a learner than can quickly adapt to a new task with a small number of examples. Here, the few-shot algorithms were tested on a classic n-ways k-shots procedure, n being the number of classes per support set, and k the number of images per class in the support set. For instance, a 5-ways 1shots consists of training 5 classes with supports sets composed of 1

Figure 1 :

 1 Figure 1: Relationship between the number of natural thumbnails per species for training and the accuracy of deep-learning and few-shot learning models. Nonlinear mixed effects asymptotic model fit for (a) DL architecture at the fixedeffect level, and for FSL architecture at (b) the fixed-effect level and (c) the random-effect level. Grey areas represent 95% CI in fixed-effects estimates. Dotted lines represent the NLME estimate of the number of images per species required to reach the 99% asymptote value. We obtained similar magnitude with the 95% asymptote value, reached with 750 images for DL and 5 with FSL.

. 2 :

 2 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Diversity of individuals of the same species and of their environments. 35 Supp.

Table 1 :

 1 Number of natural thumbnails extracted from the videos to build

	our three datasets			
	Family	Species	Training dataset T0	Training dataset T1	Test dataset T2
	Acanthuridae	Acanthurus leucosternon	3,259	235	491
	Acanthuridae	Acanthurus lineatus	1,008	114	864
	Acanthuridae	Naso brevirostris	1,134	539	1932
	Acanthuridae	Naso elegans	7,345	1,435	3,896
	Acanthuridae	Zebrasoma scopas	4,970	48	579
	Chaetodontidae Chaetodon auriga	2,134	737	502
	Chaetodontidae	Chaetodon guttatissimus	1,182	221	68
	Chaetodontidae	Chaetodon trifascialis	5,234	41	630
	Chaetodontidae	Chaetodon trifasciatus	4,421	71	82
	Labridae	Gomphosus caeruleus	3,131	57	173
	Labridae	Halichoeres	3,192	40	287

Table 1 : 1
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	) We trained a classic DL algorithms architecture with our biggest
	dataset AT0 as a baseline for the DL accuracy;
	2) We trained the same DL architecture with the same hyper-
	parameters (e.g. model architecture and training process) but on a
	much more limited dataset (AT1). Hyper-parameters are the
	parameters defining the architecture (number of layers, number
	and size of convolutions, connections between layers) and the
	training process of a Deep Model (learning rate, neurone activation,
	back-propagation compotation).;

Table 2

 2 

	). With

deep ResNet model trained on the large AT0 dataset (3458 natural thumbnails in average per species) during the first experiment obtained a mean accuracy (i.e. percentage of correct classification) of 78.00% (standard deviation (SD) of 15.16%) on T2 test-dataset (

Table 2 :

 2 Accuracy of our ResNet deep-learning (DL) and Reptile few-shots learning (FSL) models trained on T0 or T1 thumbnails datasets for different number of shots. Accuracy is the % correct classification of models on T2 test dataset. DL models were trained from T0 and T1 after data augmentation (AT0 and AT1).

	model (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∞ = 77.34%, 95% CI: 71.26-83.41%) than for Reptile
	model (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ∞ =60.87%, 95% CI: 54.48-67.26%), illustrating higher
	classification power of ResNet over Reptile when large numbers of
	thumbnails are available. However, the slope of the asymptotic model
	was two-orders of magnitude higher for Reptile (0.707, 95% CI: 0.559-
	0.854) than for ResNet architecture (0.0040, 95% CI: 0.0032-0.0048),
	illustrating the high capacity of Reptile FSL algorithm to learn from only a
	few images. NLME modelling further showed that average asymptotic
	accuracy was reached with only 7 natural thumbnails per species for
	Reptile architecture, compared to 1153 natural thumbnails per species for
	ResNet, confirming the strong power of Reptile method in situation of
	limited thumbnail training dataset. However, model random effects
	showed that some variation existed among species. For Reptile
	architecture, asymptotic accuracy values ranged from 38.09%
	(Amblyglyphidodon indicus) to 89.78% (Pomacentrus sulfureus), and was
	reached with 4 to 16 training images per species. For DL architecture,
	species asymptotes varied from 62.72% (Monotaxis grandoculis) to

Table 3 :

 3 Probability values of the pairwise proportional test used to assess the significance of the difference between accuracies obtained through few-shot models with 5, 10, 15, 20, 25 and 30 shots and deep learning model trained on T1.

		DL	FS1	FS5	FS10	FS15	FS20	FS25
	FS1	<2e-16					
	FS5	0.28	<2e-16				
	FS10	1.20E-08 <2e-16 3.80E-12			
	FS15	<2e-16 <2e-16 <2e-16 0.0016		
	FS20	<2e-16 <2e-16 <2e-16 4.10E-09 0.0379	
	FS25	<2e-16 <2e-16 <2e-16 1.30E-14 8.90E-05 0.2362
	FS30	<2e-16 <2e-16 <2e-16 <2e-16 3.90E-08 0.0059	0.28
	Supp.						

Table 4 :

 4 Value of the asymptotic accuracy predicted by the NLME models, and number of natural images required for both Deep Learning architecture and Few-shot Learning architecture to reach 99% of this asymptote.

		Deep Learning	Few-Shot Learning
		Number of images		Number of images	
		required to reach	Accuracy	required to reach	
		99% of the	asymptote	99% of the	Accuracy
	Species	asymptote.	value	asymptote.	asymptote value
	Naso brevirostris	1,506.47	67.43	5.04	38.10
	Monotaxis				
	grandoculis	1,769.71	62.72	7.59	38.14
	Amblyglyphidodon				
	indicus	1,766.55	62.89	5.34	41.76
	Chromis				
	ternatensis	1,492.65	67.75	6.16	46.55
	Acanthurus	1,425.04	69.30	6.42	50.59

https://apps.aims.gov.au/metadata/view/5be0b340-4ade-11dc