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replying to A. V. Harry & J. M. Braccini Nature https://doi.org/10.1038/s41586-021-03463-w 
(2021)

Our global analysis1 estimated the overlap and fishing exposure risk 
(FEI) using the space use of satellite-tracked sharks and longline fishing 
effort monitored by the automatic identification system (AIS). In the 
accompanying Comment, Harry and Braccini2 draw attention to two 
localized shark–longline vessel overlap hotspots in Australian waters, 
stating that 47 fishing vessels were misclassified as longline and purse 
seine vessels in the Global Fishing Watch (GFW)3 2012–2016 AIS fishing 
effort data product that we used. This, they propose2, results in misi-
dentifications that highlight fishing exposure hotspots that are subject 
to an unexpected level of sensitivity in the analysis and they suggest 
that misidentifications could broadly affect the calculations of fishing 
exposure and the central conclusions of our study1. We acknowledged 

in our previously published paper1 that gear reclassifications were likely 
to occur for a small percentage of the more than 70,000 vessels studied, 
however, here we demonstrate that even using much larger numbers 
of vessel reclassifications than those proposed by Harry and Braccini2, 
the central results and conclusions of our paper1 do not change.

In our use of a third-party dataset such as GFW3, we stated clearly1 
that the dataset is undergoing continuous refinement to correct for 
acknowledged contamination of some gear types with others in some 
regions (for example, drifting longlines with bottom-set longlines off 
New Zealand1). The characterization of GFW vessels (gear) is under-
taken using two convolutional neural networks that were trained3 
on 45,441 marine vessels (fishing and non-fishing) that identified six 
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classes of fishing vessels and six classes of non-fishing vessels with 
95% accuracy, as stated in our paper1. It is inevitable, therefore, that for 
some of the more than 70,000 AIS-monitored fishing vessels analysed, 
the gear was misclassified. Fortunately, a growing number of nations 
now maintain publicly accessible, online vessel registries to promote 
transparency and science within the fishing sector. For example, the 
European Union (EU) releases identifying information (including vessel 
name, identification numbers and fishing gear) for all fishing vessels 
registered to any EU country4. This eliminates the need to develop and 

refine models to estimate this information, as was the case for most of 
the vessels that we analysed. For countries that have not adopted this 
practice, including Australia, models provide necessary estimates in 
lieu of official information.

Since the publication of our paper1 there have been further improve-
ments, including the recent data of AIS longline fishing effort for 2018 
with updated gear assignments based on convolutional neural networks 
and data for more vessels. Mapping the new data (Fig. 1) shows that, 
indeed, the fishing effort by 12 vessels in Australia’s Northwest Shelf 

4.9 × 10–7 1.0 × 1001 939

g hg h

Number of days 	shing FEI

5.4 × 10–7 1.0 × 1001 501

e fe f

Number of days 	shing FEI

2.2 × 10–6 1.0 × 1001 457

c dc d

Number of days 	shing FEI

3.2 × 10–7 1.0 × 1001 1,886

a ba b

Number of days 	shing FEI

Fig. 1 | Comparing AIS longline fishing datasets. a–h, Comparison of GFW 
data of AIS longline fishing effort (a, c, e, g; fishing days, where 1 day = 24 h 
fishing effort) and spatial overlap intensity (FEI) with pelagic sharks (b, d, f, h) 
for three GFW datasets of longline fishing effort and Queiroz et al.1. The 
original 2012–2016 AIS longline fishing effort and FEI (a, b) was compared with 

the new data releases of GFW fishing effort for 2012–2016 (c, d), 2012–2018 (e, f) 
and 2018 only (g, h). These analyses show minor global differences across the 
datasets even in the light of improvements in gear characterization algorithms 
and further verification with additional fishing vessel metadata.
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(NWS) is now removed, indicating that these few longline and purse 
seine vessels were not classified accurately in the GFW 2012–2016 data 
product. However, the GFW 2018 product does not show the reclassifi-
cations proposed off the southern Great Barrier Reef (GBR); therefore, 
further verifications are needed to correct those.

We agree that the space use hotspot for tiger shark (Galeocerdo 
cuvier) in Australia’s NWS does not overlap with AIS-monitored longline 

fishing effort in that area based on the GFW 2012–2016 data product 
that we used. Therefore, an important question raised2 is whether the 
reclassification of the gear types of 47 vessels directly affects the cal-
culations of fishing exposure and our conclusions. In our paper1, the 
area (at the 1° × 1° grid cell scale) covered by AIS longline fishing effort 
in Western Australia is 0.4% of the global coverage and the southern 
GBR area represents only 0.06%. Within the Oceania region used in our 
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Fig. 2 | Example effects of random deletions of fishing effort data on 
exposure risk patterns. a–e, The percentage of randomized deletions from 
100 repeats that resulted in a species exposure risk estimate occurring within 
the high (red), moderate (yellow) or low (green) risk category at each level of 
deletion (1%, 5%, 25%, 50% or 75%) of fishing effort grid cells per sub-region.  
a, North Atlantic. b, Eastern Pacific Ocean. c, Southwest Indian Ocean.  
d, Northwest Oceania. e, Eastern Oceania. The map that shows the locations  
of sub-regions is provided in Supplementary Fig. 1. CCA, white shark 
(Carcharodon carcharias); CFA, silky shark (Carcharhinus falciformis);  

CLE, bull shark (Carcharhinus leucas); GCU, tiger shark (Galeocerdo cuvier); 
IOX, shortfin mako shark (Isurus oxyrinchus); LNA, porbeagle shark (Lamna 
nasus); PGL, blue shark (Prionace glauca). Overall, only 6 out of 36 species–
region combinations (16.7%) showed significant differences in the proportion 
of 100 randomizations per combination that each resulted in exposure risk 
falling within higher, moderate and lower risk categories when comparing 1% 
and 75% of random deletions of fishing effort data. Detailed summaries are 
provided in Supplementary Tables 1–7.
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paper, Western Australia comprises 2.2% and GBR 0.35%. Therefore, the 
areas comprising reclassifications provide a minor contribution to the 
spatial overlap and FEI values that we calculated not only globally but 
also within the Oceania region.

To check our results within the global context, we compared the spa-
tial overlap of sharks and longline fishing effort in our paper1 with the 
new releases of GFW fishing effort data that have been made available 
since the publication of our paper (Fig. 1 and Extended Data Table 1). 
The new releases of GFW data take into account refinements in the 
algorithms used to classify vessel (gear) types and new knowledge from 
metadata on the gear of the vessels. We find that—globally—the GFW 
longline fishing patterns remain almost identical (Fig. 1). Spatial overlap 
and exposure patterns also remain very similar. For example, the mean 
monthly spatial overlap estimate for all oceans of 24% presented in 
our paper is within the range (19–29%) calculated using the new GFW 
data (Extended Data Table 1). In the Exclusive Economic Zone (EEZ) of 
Australia, the number of FEI grid cells actually increased from 151 to 155 
between the original GFW data (2012–2016) and the updated 2012–2018 
data, whereas in the EEZ of western Australia the number decreased 
from 50 to 37 grid cells between datasets. For Oceania (including Aus-
tralian shelf waters), the spatial overlap of 24% in our paper is within 
the 17–25% range estimated with newer GFW data. We also find that the 
spatial overlap–FEI plots remain largely unchanged across the four GFW 
datasets (Extended Data Fig. 1). Therefore, the NWS vessel reclassifica-
tions are minor and affect a single hotspot for tiger sharks.

To address the potential issue raised by Harry and Braccini2 that 
longline vessel reclassifications occur more broadly and may alter 
results in substantial ways, we randomly deleted 1% of grid cells that 
contained longline fishing effort per ocean region to simulate reclas-
sification of longline vessels to other gears and this randomization 
was repeated 100 times. This is more extreme than simply removing 
a few individual vessels because each replicate removes 1% of grid 
cells, each comprising summed fishing effort from single or multiple  
vessels. Extended Data Table 2 shows that of the 30 species–region pairs 
available for analysis, we found that only 7% of species–region pairs 
changed from highest (red) to moderate (yellow) fishing exposure risk, 
whereas 3% changed from moderate to highest risk after the simulated 
‘reclassification’. We repeated this for 5% random deletions. Even at 
this much higher level of longline gear reclassification, we obtained 
the same results (Extended Data Table 3).

To examine what level of localized reclassification may lead to a 
breakdown of the fishing exposure risk patterns that we found, we 
randomly deleted 1%, 5%, 25%, 50% and 75% of fishing effort grid cells 
within five sub-regions (Supplementary Fig. 1) and recalculated spatial 
overlap and FEI for four key species per sub-region (Fig. 2 and Supple-
mentary Methods). Results reveal no change in patterns of overlap and 
FEI for the four key species for the random deletion of up to 75% of data 
for regions in which shark spatial densities and fishing effort were both 
high and spatially extensive (for example, the North Atlantic (Fig. 2a)). 
Patterns change marginally above deletion of 25% of data for some 
species in other sub-regions in which fewer vessels and sharks were 
tracked (Fig. 2b, d). Seasonal patterns in exposure risk also remained 
largely unchanged albeit with larger differences at higher levels of 
fishing effort deletions (Supplementary Fig. 2). Levels of inaccuracy 
as high as we simulated in these tests are not evident in worldwide 
GFW vessel classifications3. Clearly, our results are not as sensitive to 
minor changes in sub-region vessel reclassifications as suggested by 
Harry and Braccini2.

Harry and Braccini2 emphasize that regional results should not 
be overlooked within a global-scale study. We agree, which is why 
we provided region-specific results for individual species that were 
discussed in detail in our paper1 (see supplementary results and dis-
cussion 2.6 of ref. 1), in which each regional analysis was informed 
by regional experts among the authorship, including for Western 
Australia. Although continued refinements to fishing gears ascribed 

to AIS-monitored vessels in the GFW dataset are useful, we disagree 
with Harry and Braccini2 about the levels of fishing threatening large 
sharks in Australia’s NWS where we identified the space use hotspot 
for tiger sharks. They incorrectly assert that longline fishing has not 
occurred for two decades in Australia’s NWS2. Longline and gillnet 
fishing not only occurred historically in the NWS and offshore to 
the boundary of Australia’s EEZ5, but also continues to occur there 
through illegal, unreported and unregulated fishing6–8 by vessels that 
are not equipped with or that do not use AIS, which we discussed in 
our paper1. Illegal, unreported and unregulated fishers are known to 
target sharks—including tiger sharks9—for fins, an ongoing threat that 
has been a major problem in Australia’s NWS7, which overlaps with the 
tiger shark hotspot8. Therefore, it cannot be discounted that the shark 
hotspot overlaps with non-AIS monitored fishing activity, especially 
as more than 0.5 million km2 of the NWS remains open to commercial 
shark fishing10. Furthermore, the 55-year-long shark control program 
along 1,760 km of coastal northeastern Australia shows a long-term 
decline in the abundance of tiger sharks11,12; this is a region with move-
ment and genetic connectivity with tiger sharks of the NWS13. In our 
view, Harry and Braccini2 overlook existing threats to tiger sharks and 
other shark species from fishing in the NWS.

As a consequence, we disagree with the opinion that existing 
science-based management has been undermined by our results or 
conclusions. Rather, in our paper1 we highlighted specifically the need 
to incorporate tracking and other spatial data into scientific assess-
ments. However, this should not be misinterpreted as spatial data rep-
resenting a regional management tool to replace assessments that rely 
on other types of data, such as time-series catch data. Indeed, a review14 
cited in our paper identifies examples in which marine animal tracking 
and space use data informed policy, and it is evident that these data 
were never used in isolation from existing management regimes or 
complementary scientific assessments. Our paper1 emphasizes the 
need for a holistic approach to shark management that should also 
incorporate dynamic, spatial data.

Reporting summary
Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data used to prepare the maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) 
are available on GitHub (https://github.com/GlobalSharkMovement/
GlobalSpatialRisk).

Code availability
Code used to prepare the maps (shark relative spatial density, 
longline-fishing effort and shark–longline-fishing overlap and FEI) 
is available on GitHub (https://github.com/GlobalSharkMovement/
GlobalSpatialRisk).
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Matters arising

Extended Data Fig. 1 | Comparing shark exposure risk between AIS longline 
fishing effort datasets. a–d, Estimated exposure risk of sharks to capture by 
GFW AIS longline fishing effort across ocean regions for Queiroz et al.1 (a) 
compared with three improved data releases since the paper was published (b–d).  

The plots show minor effects of any changes on estimates of shark exposure 
risk from AIS longline fishing effort and confirm the global results and 
conclusions of our paper. a, Data from Queiroz et al.1. b, Data from GWF  
2012–2016. c, Data from GWF 2012–2018. d, Data from GWF 2018.
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Extended Data Table 1 | Mean monthly spatial overlap estimates (%) of pelagic shark space use and AIS longline fishing effort 
for different AIS datasets
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Matters arising
Extended Data Table 2 | Effect of 1% random deletion of fishing effort grid cells within each region on risk exposure estimates

The results show minor effects of substantial removal of longline fishing effort. Before/after denotes before/after deletion. Red denotes the highest risk exposure category, green indicates the 
least risk. The ‘after’ colour represents the category with the highest percentage of occurrence after 100 randomizations. No change in colour between before/after indicates no change in 
spatial overlap and exposure risk of species from AIS longline fishing effort. White indicates that no tracking data are available to undertake analysis. There are no changes from high to low, or 
vice versa.

Q6
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Extended Data Table 3 | Effect of 5% random deletion of fishing effort grid cells within each region on risk exposure 
estimates

The results show minor effects of substantial removal of longline fishing effort. Before/after denotes before/after deletion. Red denotes the highest risk exposure category, green indicates the 
least risk. The ‘after’ colour represents the category with the highest percentage of occurrence after 100 randomizations. No change in colour between before/after indicates no change in 
spatial overlap and exposure risk of species from AIS longline fishing effort. White indicates that no tracking data are available to undertake analysis. There are no changes from high to low, or 
vice versa.
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