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Abstract
Microalgae have been used as live food in aquatic species. In recent years, the interest in microalgae has considerably increased, thanks
to the evolution of production techniques that have identified them as an ecologically attractive aquafeed ingredient. The present study
provides the first data about the effects of dietary inclusion of a microalgae consortium grown in a high-rate algal pond system on
zootechnical performance, morphometric indices, and dietary nutrient digestibility as well as morphology and functionality of the
digestive system of European sea bass, Dicentrarchus labrax. A dietary treatment including a commercial mono-cultured microalgae
(Nannochloropsis sp.) biomass was used for comparison. Six hundred and thirty-six European sea bass juveniles (18 ± 0.28 g) were
randomly allotted into 12 experimental groups and fed 4 different diets for 10 weeks: a control diet based on fish meal, fish oil, and
plant protein sources; a diet including 10% of Nannochloropsis spp. biomass (100 g/kg diet); and two diets including two levels (10%
and 20%) of the microalgal consortium (100 and 200 g/kg diet). Even at the highest dietary inclusion level, the microalgal consortium
(200 g/kg diet) did not affect feed palatability and fish growth performance. A significant decrease in the apparent digestibility of dry
matter, protein, and energy was observed in diets including 10 and 20% of the microalgal consortium, but all fish exhibited a well-
preserved intestinal histomorphology. Moreover, dietary inclusion with the microalgal consortium significantly increased the enzy-
matic activity ofmaltase, sucrase-isomaltase, andɤ-glutamil transpeptidase in the distal intestine of the treated European sea bass. Algal
consortium grown using fish farm effluents represents an attempt to enhance the utilization of natural biomasses in aquafeeds when
used at 10 % as substitute of vegetable ingredients in diet for European sea bass.
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Introduction

Aquaculture plays a key role in supporting human nutrition
(Olsen 2011), and the increased availability of raw materials

for feed formulation is required to support its rapid and con-
tinuous growth. For this reason, research has been focused, for
a long time, on finding alternative ingredients to the traditional
ones used by the feed industry to reduce pressure on natural
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resources while addressing the growing market demand for
aquaculture products. Management of sustainable feeding
practices for aquatic organisms involves, both from a technical
and an economic point of view, identifying alternative re-
sources that consider the nutritional profile and the effects
on animal welfare (resistance to stress and disease), while
preserving the nutritional quality of the seafood product. It
also implies the management of livestock activities waste into
the environment (FAO 2018).

The use of microalgae as a potential ingredient of
aquafeeds could represent an ecologically attractive alterna-
tive not only to traditional ingredients of marine and plant
origin (Becker 2007) but also to innovative ingredients such
as insects, seaweeds, and yeasts. In addition to their basic
nutritional value (Spolaore et al. 2006), the inclusion of
microalgae in aquafeeds is becoming popular as feed supple-
ments in the aquaculture sector (Chu 2012; Priyadarshani and
Rath 2012), thanks to the functional properties of their pig-
ments and bioactive compounds. In addition, they may have a
high content of proteins (30–70%), lipid (10–20%), and es-
sential fatty acids (Becker 2007; Nasir et al. 2015; Shah et al.
2018; Cardinaletti et al. 2018). The main microalgal cultured
genera are Chlorella, Nannochloropsis, Scenedesmus,
Arthrospira, Tisochrysis, and Tetraselmis (Sirakov et al.
2015; Bleakley and Hayes 2017), thanks to their nutritional
and health properties and consolidated cultivation technology.
Recently, Castro et al. (2020) have proved that the inclusion
up to 15 % of Nannochloropsis sp. in diets for European sea
bass has decreasing effects on the liver and intestinal
antioxidant activity, while Abdelghany et al. (2020) have
demonstrated that dietary N. oculata significantly improves
growth parameters and resistance to pathogens such as
Aeromonas veronii in Nile tilapia (O. niloticus).

However, the use of microalgae as an ingredient of
aquafeeds may imply a few drawbacks such their high costs.
In the recent decades, many biotechnological processes have
emerged that are based on microalgal cultures and significant
both from the environmental and industrial point of view.
Such processes include biogas enrichment and purification;
wastewater treatment (Quijano et al. 2017); CO2, NOx, and
SOx removal from flue gas (Yen et al. 2015); and recovery of
added-value products such as pigments, nutraceuticals, fertil-
izers, and biofuels (Bahr et al. 2013). The traditional processes
for wastewater treatment are very expensive due to the chem-
ical additives required during each phase. However, the cost
could beminimized by using the microalgae biomass obtained
by this technology as a feed for aquaculture. Some researchers
have thus studied the potential value of multiple applications
of microalgae to contribute to a circular economy approach
(Valente et al. 2019) through their use in wastewater treatment
(Velichkova et al. 2014; Nasir et al. 2015) and the sustainable
production of biofuels (Rawat et al. 2011; Oliveira et al.
2020).

Numerous studies have been conducted on the characteris-
tics of the microalgae obtained by a phycoremediation process
(Yaakob et al. 2014; Nasir et al. 2015; Badr et al. 2019;
Apandi et al. 2019; Michelon et al. 2021). Phycoremediation
is a biotechnological process to remove contaminants from
wastewater and is considered a simpler method than the con-
ventional one (Raskin et al. 1997; Atiku et al. 2016).
Microalgae have already been used to remove inorganic mol-
ecules and improve water quality (Ruiz-Martinez et al. 2012).
Moreover, wastewater from the fish farm and the fresh market
has also been used as a medium for a non-axenic microalgae
culture (Apandi et al. 2019; Andreotti et al. 2017; Michels
et al. 2014).

In general, wastewater contains a high level of nutrients
(nitrogen, phosphorus, and carbon) and organic matter, which
act as elements to support microalgae biomass (Riaño et al.
2016); nitrogen availability has been shown to improve bio-
mass production (Maizatul et al. 2017), thus modulating their
nutritional value. Michels et al. (2014) used the wastewater
obtained from a fish farm as a culture medium for the non-
axenic production of Tetraselmis suecica biomass that in turn
was used in juvenile shellfish culture resulting in increased
productivity and constant quality in the hatchery phase.
Several processes at pilot or industrial scale are actually based
on non-axenicmicroalgae cultures fromwastewater treatment,
biogas purification/upgrading, or flue gas treatment.
Moreover, recent studies have proved that microalgae bio-
mass and composition, such as lipid composition, can be ad-
justed under physiological stress conditions, namely nitrogen
depletion with increased salinity and/or increased salinity with
temperature shock (Markou et al. 2016; Anitha et al. 2018). In
non-axenic production processes, both microalgal and bacte-
rial communities play key roles (Coronado-Apodaca et al.
2019), and the combination of different microalgal species
can provide a balanced diet and improve animal growth and
welfare (Spolaore et al. 2006; Cardinaletti et al. 2018).
Cultivating microalgae in a high-rate algal pond (HRAP) sys-
tem is a simple and economic way to produce valuable bio-
mass to be included in aquafeeds. It provides fish farm waste-
water treatment allowing the re-use of water for aquaculture
while providing free nutrients for microalgae biomass produc-
tion (Craggs et al. 2014). In addition, the technological treat-
ment of microalgae biomass could also represent an important
source of proteins, n-3 rich lipids, antioxidants, and natural
bioproducts.

In this context, this study aimed to test the effects of dietary
inclusion of a microalgae consortium grown in a HRAP sys-
tem on zootechnical performance, morphometric indices, and
dietary nutrient digestibility, as well as on the morphology and
functionality of the digestive system of European sea bass. A
dietary treatment including the commercial mono-cultured
microalgae Nannochloropsis sp. was used for comparison,
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based on its nutritional properties and, in particular, n-3 PUFA
content.

Materials and methods

Microalgae consortium production and
characterization

The trial was conducted at the Ifremer experimental station in
Palavas les Flots, France. The microalgae consortium was
cultivated in a conventional oval-shaped raceway HRAP.
Water mixing in the HRAP (140 m2 and 60 m3) was main-
tained at 0.2 m3/s using a vacuum airlift column developed
and patented by COLDEP® (Barrut et al. 2012; Barrut et al.
2013). The column was connected to the HRAP and consisted
of a central tube, the top of which was hermetically closed and
connected to a vacuum pump. Water was raised to the top of
the central tube with a vacuum and allowed to flow over the
central tube so that it could be returned to the HRAP (Fig. 1).
The raceway was initially filled with natural marine water
filtered at 30 μm and supplied with an effluent profile corre-
sponding to European sea bass (Dicentrarchus labrax) breed-
ing tanks providing 80 g N/day and 30 g P/day for 75 days.
The total biomass profile consisted of 2000 fish of 80±2.3 g
(average body weight) fed with a fixed daily rate (1.2% of the
biomass). The experimental natural consortium of marine
microalgae was grown under a natural irradiance directed by
the local weather at 43° 31′ 59.98″ N, 3° 55′ 59.99″ E in
autumn 2017 in France on the western Mediterranean coast.
CO2 addition flow was adjusted by an automatic pH detection
device which was adjusted to photosynthetic demand based
on pH level monitoring (Galès et al. 2020).

Chlorophyll a concentrations were measured (Lorenzen
1967) twice a week during the exponential period of
growth, corresponding to the sample collection period.
The data showed an increasing concentration from 0.8 to
3.5 mg/L of chlorophyll a. Culture productivity calculated
on the sampling period was 2.53 g/m2/day. Algal consor-
tium biomass was weekly sampled until 5 kg of dried bio-
mass was obtained. Natural algae concentration was pre-
concentrated using COLDEP® column (around 10- to 20-
fold depending on the culture stage) and centrifuged using
a plate divider Alfa Laval “Clara15” to obtain a paste fea-
turing an approximate 7% dryness. Residual water was
extracted by freeze-drying, and the final product was
ground to obtain a meal mesh comparable to the industrial
fish meal. The dried consortium biomass (5 kg) was de-
fined in terms of nutrients before being used at graded
levels in formulated feeds satisfying the European sea bass
nutritional requirements (Peres and Oliva-Teles 1999a).

The species composition of the consortiumwas determined
using 18S rRNA gene analysis. For each experimental run,
10mL samples were filtered through 0.2μm membranes
(PALL ALL Supor® 200 PES), the membranes being stored
at −20 °C for subsequent DNA extractions. The DNA was
extracted using DNeasy PowerWater Kit (Qiagen) according
to the manufacturer’s instructions. The V4 region of the 18S
rRNA gene was amplified over 30 amplification cycles at an
annealing temperature of 65°C, with forward and reverse
primers (5 ′-CTTTCCCTAACGACGCTCTTCCGAT
CTGCGGTAATTCCAGCTCCAA-3 ′ and 5 ′-GGAG
TTCAGACGTGTGCTCTTCCGATCTTTGGCAAATG
CTTTCG C-3′, respectively). The resulting products were pu-
rified and loaded onto an Illumina MiSeq cartridge for se-
quencing, paired with 300bp reads following the manufac-
turer’s instructions (v3 chemistry). Sequencing and library
preparation steps were carried out at the Genotoul
Lifescience Network Genome and Transcriptome Core
Facility in Toulouse, France (get.genotoul.fr). A modified
version of the standard operation procedure for MiSeq data
(Kozich et al. 2013) in Mothur version 1.35.0 (Schloss et al.
2009) was used for alignment and taxonomic outline. Mothur
was also used to identify representative sequences of opera-
tional taxonomic units (OTUs).

Test ingredients and diets

Four diets were formulated to be isoproteic (48.5%±0.8) and
isolipidic (18.3%±0.5). As a control diet (C), a formulation
was used that simulated a commercial diet containing fish
meal and oil and vegetable-derived protein mix, including
solvent-extracted soybean meal, pea protein concentrates,
and wheat meal. The microalgae consortium was included to
partially replace the vegetable-derived protein mix in diet

Fig. 1 High-rate algal pond. (a) general view; (b) picture of the consor-
tium culture; (c) crossing section view with COLDEP® column and
harvest collector
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MC10 (10% replacement) and diet MC20 (20% replacement)
(Table 1).

A d i e t (N10 ) i nc lud ing 10% of commerc i a l
Nannochloropsis sp. dry biomass was used for comparison.
Nannochloropsis sp. cells were cultivated in a photobioreactor
using industrial chemical fertilizer. The spray-dried
Nannochloropsis biomass was provided by an industrial algae
farm (GREENSEA, Meze-Fr).

Diets were supplemented with L-methionine so that the
sulfur amino acid level met the requirements of the
European sea bass (Tulli et al. 2010). Yttrium oxide (20 mg/
100 g diet) was added as an indigestible marker to assess
nutrients and energy digestibility of the test diets. The diets
were manufactured by INRA in Donzacq (F) as standardized
2mm pellets. The ingredients and proximate composition of
the experimental diets are shown in Table 1.

Experimental animals and feeding trial

Six hundred thirty-six European sea bass (Dicentrarchus
labrax) juveniles were purchased from a commercial hatchery
(Poissons du Soleil, Balaruc les-Bains, France).

After 3 weeks of acclimation to the experimental condi-
tions, the fish (average initial body weight 18.0 ± 0.28 g) were
randomly allotted among 12 cylindrical tanks, featuring a vol-
ume of 1 m3 each (53 fish per tank) and equipped with a
collection tube for feces and uneaten pellets in a recirculation
aquaculture system (RAS), thus ensuring optimal water con-
ditions for European sea bass (Table 2), and were fed a com-
mercial diet. At the beginning of the feeding trial, the fish were
individually implanted with a microchip (Biomark Inc., ID,
USA) under moderate anesthesia (90 ppm benzocaine) (Topic
Popovic et al. 2012).

The fish were assigned to fish groups/tanks according to a
completely random design with diets as the main factor and
three replicates per treatment and hand-fed the experimental
diets starting on 28th March 2018 over 75 days to apparent
satiation in 3 daily meals from 8 am to 2 pm. The fish were
group-weighed every 4 weeks and at the end of the feeding
trial, under moderate anesthesia after 40hours fasting. Relative
feed intake (RFI= feed intake/[(Initial body weight +Final
body weight) × 0.5 × days]), specific growth rate (SGR=
100 × (ln Final body weight − ln Initial Body Weight)/days),
feed conversion ratio (FCR= feed intake/weight gain), protein
efficiency ratio (PER= weight gain/protein intake), and gross
protein retention (GPR= 100 × [(final body protein content-
initial protein content)/protein intake]) were calculated.

At the end of the feeding trial, after 40hours fasting, 3 fish
per tank (9 fish per dietary treatment) were sacrificed with a
lethal solution of benzocaine (200 ppm; Vignet et al. 2014).
Individual weight and length and viscera, liver, and mesenter-
ic fat weight were recorded. The intestinal tract was excised
for histological and physiological evaluations: Fulton’s con-
dit ion index (K= body weight/standard length3) ,
viscerosomatic index (VSI= 100 × viscera weight/body

Table 1 Ingredients (g/kg) and proximate composition, phosphorus and
energy content of the test diets

CTRL MC10 MC20 N10

Ingredients

Fishmeal Chile prime 25.25 25.25 25.25 25.25

Vegetable mix§ 37.87 35.05 34.03 36.02

Wheat gluten meal 4.04 5.05 5.05 0.00

Wheat meal 17.17 9.09 0.00 14.74

Fish oil 13.94 13.73 13.73 12.12

Microalgal consortium 0.00 10.10 20.20 0.00

Nannochloropsis sp.# 0.00 0.00 0.00 10.10

Min. and Vit. supplement$ 1.00 1.00 1.00 1.00

Yttrium oxide 0.02 0.02 0.02 0.02

Binder 0.20 0.20 0.20 0.20

L-Methionine 0.50 0.50 0.50 0.50

Chemical composition

Dry matter (%) 96.94 96.87 97.17 97.12

Protein (% DM) 49.17 49.26 47.61 48.24

Lipids (% DM) 18.14 17.84 18.18 19.12

Ash (% DM) 7.84 12.80 18.33 10.29

Phosphorus (% DM) 1.03 1.07 1.11 1.13

Gross energy (MJ/kg) 23.10 22.20 21.20 22.80

§Vegetable mix: including soy protein concentrate, pea protein concen-
trate, solvent extracted soybean meal in a 4:1:4 ratio

#Nannochloropsis from GREENSEA, Meze-Fr

$Mineral supplement composition (%mix): CaHPO4*2H2O, 78.9; MgO,
2.725 g; KCl, 0.005; NaCl, 17.65; FeCO3, 0.335; ZnSO4*H2O, 0.197;
MnSO4*H2O, 0.094; CuSO4*5H2O, 0.027; Na2SeO3, 0.067

Vitamin supplement composition (% mix): thiamine HCL Vit B1, 0.16;
riboflavin, Vit B2, 0.39; pyridoxine HCL Vit B6, 0.21; cyanocobalamine
B12, 0.21; niacin Vit PP, 2.12; calcium pantotenate, 0.63; folic acid, 0.10;
biotin Vit H, 1.05; myoinositol, 3.15; stay C Roche, 4.51; tocoferol Vit E,
3.15; menadione Vit K3, 0.24; Vit A (2500 UI/kg diet) 0.026; Vit D3
(2400 UI/kg diet) 0.05; choline chloride, 83.99

Table 2 Average and range values of physico-chemical water parame-
ters over 75 days

Parameter Average Min. Max.

Salinity (g/L) 35.3 27.8 39.1

Temperature (°C) 22.8 19.7 23.2

pH 7.1 6.5 7.6

Dissolved oxygen (mg/L) 7.6 5.6 6.7

N-NH3 (ppm) 0.3 0.1 0.8

N-NO2 (ppm) 0.0 0.0 0.0

N-NO3 (ppm) 1.4 0.4 3.3

P-PO4 (ppm) 0.1 0.0 0.2
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weight), hepatosomatic index (HSI= 100 × liver weight/body
weight), mesenteric fat index (MFI= 100 × mesenteric fat/
body weight), and carcass yield = 100 × carcass weight/
body weight were calculated.

Diet digestibility evaluation

To evaluate the in vivo nutrient digestibility of the test diets,
fish feces were daily collected from each tank during the last 3
weeks of the feeding trial and preserved at −20°C until used.
Fecal biomass was centrifuged (10 min at 3000×g at 4°C),
freeze-dried, and stored (−20 °C) until analyzed. Feed and
feces were analyzed for dry matter (AOAC 934.01), protein
(AOAC 2001.11), lipids (AOAC 2003.05), and energy (ISO
9831-1998) (IKA – C7000) content. Yttrium concentration in
feed and feces was determined by inductively coupled plasma
mass spectrometry (ICP-MS) according to Carignan et al.
(2001). Apparent digestibility coefficients (ADCs) of dry mat-
ter, protein, lipid, and energy of the diets were calculated
according to the following formula:

ADC ¼ 1–
F
D

� �
*

Di
Fi

� �� �

where D = % of the nutrient or kJ/g of the energy in the
diet; F = % of the nutrient or kJ/g of the energy in the feces; Di
= % Y in the diet; and Fi = % Y in the feces (Cho et al. 1982).

Gut histology

Two fish from each tank were used for histologic analyses.
Fish gut was dissected, and proximal intestine samples were
collected from below the pyloric caeca (0.5cm fragment).
Samples were fixed in 4% neutral-buffered formaldehyde
and embedded in paraffin. Cross sections of each sample were
cut (3 μm thick) in a semi-automated rotary microtome (Leica
RM 2245). Slides were then dewaxed and stained with spe-
cific Alcian Blue/PAS (pH=2.5). Micrographs of each section
were obtained through slides scanning using a VS120 Virtual
Slide Microscope (20× magnification). On each intestinal sec-
tion, the following parameters were measured in two sections
of each sample by using imaging software Olympus cellSens
Dimension Desktop: cross-sectional area; muscularis externa
thickness (inner circular and outer longitudinal muscle layers);
fold length and width and goblet cell presence, as previously
described (Batista et al. 2020a, b) (Fig. 2). Briefly, the
muscularis externa was measured in eight points of each cross
section, and the mean value was considered; the eight highest
folds in each section were selected to measure their length and
width. Goblet cells (mucus-producing cells) were counted in
the eight selected folds (blue and magenta cells), and the av-
erage number of goblet cells per fold was determined.

The activity of the brush border membrane (BBM)
enzymes

One fish per tank was used to obtain the digestive tract that
was divided into pyloric caeca (PC), proximal intestine (P, the
section from below the PC to the increase in diameter indicat-
ing the start of the distal intestine), and distal intestine (D, the
terminal part of the intestine with a larger diameter, reaching
the anus). When necessary, the remaining feed residues were
gently squeezed out. Tissue samples were lightly blotted with
absorbent paper, put in individual plastic tubes, and stored at
−20°C until the analysis of the BBM enzyme activity was
performed. The extraction of the BBM enzymes and the anal-
ysis of maltase, sucrase-isomaltase (SI), γ-glutamyl
transpeptidase (γ-GT), and alkaline phosphatase (ALP) were
carried out as reported by Messina et al. (2019). One unit (U)
of enzyme activity corresponded to the amount of enzyme that
transforms or hydrolyses 1 μmol of substrate/mL/min. The
specific enzymatic activity was calculated as U = μm/min/
mg of supernatant protein for maltase and sucrase-isomaltase
and mU for ALP and γ-GT.

The amount of total protein in the supernatant was deter-
mined according to Bradford et al. (1976) by using Bradford
reagent (Sigma-Aldrich, Milan, Italy) and bovine serum albu-
min (Sigma-Aldrich, Milan, Italy) as a standard.

Fig. 2 Anterior intestine histological sections (Alcian Blue/PAS staining,
pH = 2.5) of European sea bass. Villus length (VL), muscularis externa
(outer longitudinal layer OLL and inner circular layer ICL); villus width
(VW), Goblet cells (acid AGC and neutral NGC)
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Statistical analysis

Data are expressed as average ± standard deviation.
Zootechnical and digestibility data were analyzed by one-
way ANOVA to test statistical significance within the main
factor. BBM enzyme activity data were analyzed by a two-
way ANOVA test, considering the dietary treatment and the
intestinal section as main factors. If appropriate, Duncan’s
post hoc test was applied at a significant level of 95%. IBM-
SPSS statistical package (release 17.0) was used to carry out
data analysis.

Results

Marine consortium characterization

The consortium biomolecular characterization identified 34
assignments with 6 dominant algal species (Table 3). The
main species of the natural consortium were as follows:
Oocystis sp., Chlorella stigmatophora, Tetraselmis sp.
Depending on the open pond culture cycle and the season,
Isochrysis sp. and Phaeodactilum tricornutum were observed
in the minority.

The chemical composition of the dried consortium biomass
is shown in Table 4. The consortium was characterized by
2.8% nitrogen and 3.2% total lipid. Oleic (16.8% FAMEs)
and linolenic (12.4% FAMEs) acids were the main fatty acids.
The free amino acid fraction was dominated by proline, ala-
nine, arginine, and glutamate (42.0, 21.3, 16.0, 16.5 nmol/mg,
respectively). Natrium, iron, and boron were the most abun-
dant elements in the mineral fraction.

Fish growth performance

During the experimental period, the fish easily accepted the
experimental diets, and mortality was negligible. Growth per-
formance, RFI, FCR, and PER of the European sea bass juve-
niles fed with the experimental diets over 75 days are shown in
Table 5. The fish fed with diet MC10 exhibited a significantly
higher final body weight as compared to those fed with the
control diet (64.9 vs 61.0 g; P<0.05), while the SGR value in
MC10, though being the highest, did not reach statistical sig-
nificance (P = 0.066). The fish fed with diet MC20 exhibited
the highest relative feed intake (18.4 g/kg ABW/day), a sig-
nificantly different value from the RFI of the C group that
showed the lowest one (16.7 g/kg ABW/day) (P<0.05).
Feeding diet MC20 also resulted in a significant increase in
FCR values as compared to the other dietary treatments (1.25
vs 1.15 respectively, P = 0.0052). On the contrary, PER was
significantly lowered by the microalgae inclusion in the
MC20 group compared to diet C and Nannochloropsis-
including diet (1.73 vs 1.83, P<0.05). GPR was not affected
by the experimental diets.

The biometric morphometric index values calculated at the
end of the trial on European sea bass did not reveal any sig-
nificant effects of the experimental diets (Table 6).

Diet digestibility

The dry matter, protein, lipid, and energy ADCs of the exper-
imental diets are shown in Table 7. Diet N, including 10% of
Nannochloropsis sp., resulted in ADC values similar to the
ones observed in the reference C diet (74.2, 92.2, 85.4, and
85.8%, respectively for dry matter, protein, lipid, and energy).

Table 3 Taxonomic composition of the marine consortium

Quantity (%) Properties Reference

Algae

Oocystis sp. 80.32 High EPA Anthony and Stuart 2015

Tetraselmis sp. 6.06 High EPA and ARA Vizcaíno et al., 2016

Chlorella stigmaphora 2.06 High EPA Anthony and Stuart 2015

Chlamydomonas sp. 1.22 Mineral (boric acid and calcium) Kliphuis et al. 2012

Nannochloropsis gaditana 0.06 15% EPA Anthony and Stuart 2015

Nannochloris sp. 0.06 35% EPA Anthony and Stuart 2015

Others

Rotifera 5.84 Monounsaturated fatty acid Awaiss et al. 1992

Lacrymariidae (ciliated) 2.09 x

Cinerochilidae (Phylasterides) 2.07 x

Chytridiomycotina (Chytridiomycota) 0.18 x

Strombidiidae (ciliated) 0.02 x

Isochrysis Traces x

Phaeodactylum tricornutum Traces x

62190 Environ Sci Pollut Res (2021) 28:62185–62199



On the contrary, increasing the dietary inclusion of the marine
consortium resulted in a significant decrease in dry matter,
protein, lipid, and energy ADCs as observed in MC10 (65.9,
90.0, 82.8, 80.1 % respectively) and MC20 (57.7, 85.2, 84.9,
75.2 % respectively) diets (P<0.05).

Intestine morphology

The fish fed with the experimental diets did not exhibit major
alterations in intestinal morphology, as shown in Table 8.
Most of the traits considered did not vary significantly among
the dietary treatments (P>0.05), and the intestine from all
sampled fish showed a well-preserved morphology. A signif-
icant reduction in the total number of acid goblet cells per fold
was registered in the fish fed with the highest consortium
dietary inclusion level as compared to those fed with the con-
trol diet (36.77 vs 64.29 n. GC/fold respectively forMC20 and
C, P<0.05) (Fig. 3).

The activity of the intestinal brush border membrane
enzymes

The activity of maltase, SI, -γGT, and ALP varied depending
on the intestinal tracts (Fig. 4). The PC was the major site of
activity for all enzymes studied. In this tract, the diet contain-
ing 10% of Nannochloropsis sp. resulted in a significant de-
crease of the maltase activity as compared to the control diet
(3.83 vs 6.41 U, P<0.05).

In the distal portion of the intestine, the activity of SI and
maltase showed a similar pattern and their activity resulted
significantly enhanced in the fish fed with the consortium-
including diets as compared to diet C (2.05 vs 0.96 U and
3.63 vs 1.76, respectively, P<0.05).

The dietary treatment considerably affected the activity of
γ-GT in the PC. The highest value was observed in the fish
fed with the MC10 diet (P=0.001). The activity of ALP was
not affected by the dietary treatments (P > 0.05).

The effect of the two main factors (diet and intestinal tract)
was tested on the brush border membrane enzyme activity of
the European sea bass fed with the experimental diets. The
two-way ANOVA results are summarized in Table 9. A

Table 4 Major chemical characteristics of the dried marine consortium
biomass

Nitrogen (%) 2.8

Lipid (%) 3.2

Gross energy (kJ/g) 9.0

Fatty acids (% FAMEs)

18:1 n-9 16.8

16:3 n-3 4.3

16:4n-3 1.9

18:3n-3 12.4

20:3n-3 1.1

20:4n-3 1.1

20:5n-3 9.1

22:5n-3 0.2

SFA 24.0

MUFA 32.0

PUFA 42.0

n-3 33.0

n-6 8.0

Amino acids (nmol/mg) Free Hydrolysed

Arginine 16.0 66.0

Histidine 0.0 15.0

Lysine 3.0 47.0

Threonine 1.6 50.0

Isoleucine 1.0 40.0

Leucine 1.0 40.0

Valine 2.0 64.0

Methionine 1.0 14.0

Phenylalanine 1.0 37.0

Tryptophan 0.0 0.0

Alanine 21.3 111.0

Tyrosine 1.0 20.0

Aspartate 1.2 82.0

Glutamate 16.5 92.0

Glycine 4.3 101.0

Serine 3.3 51.0

Proline 42.0 88.0

Minerals (μg/g)

B 55.1

Ca 6.4

Cd 0.4

Co 2.9

Cr 1.1

Cu 5.2

Fe 84.8

K 10.4

Mg 16.7

Mn 9.6

Na 120.5

Ni 0.3

P 5.2

Table 4 (continued)

Zn 8.0
Carbohydrates (%)
Galactose 1.9
Glucose 6.6
Mannose 2.2
Xylose 1.9
Fucose <0.5
Rhamnose 7.5
Gluconic acid 1.2
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significant interaction between the main factors was revealed
for maltase and γ-GT.

Discussion

The interest in the use of microalgae dry biomass in aquafeeds
is recent; several studies already tested the effects of their
dietary inclusion in the in vivo trials on different fish species
(Hussein et al. 2013; Eryalçın and Yıldız 2015; Haas et al.
2016; Kissinger et al. 2016; Vizcaíno et al. 2016a; Sarker
et al. 2020).

Different microalgae species such as Gracilaria gracilis,
Nannochloropsis oceanica, Tisochrisis lutea, and Tetraselmis
suecica have been used as partial replacement of fish meal in
diets for European sea bass with no adverse effects on zoo-
technical performance and intestinal physiology (Cardinaletti

et al. 2018; Messina et al. 2019; Valente et al. 2019; Batista
et al. 2020a). Isochrysis sp. has also been proposed as a source
of n-3 PUFA in partial substitution of fish meal in diets for
European sea bass without any effects on feed intake and
zootechnical performance (Tibaldi et al. 2015). Similar results
in the same fish species have been obtained by Haas et al.
(2016) when part of fish oil was substituted by Pavlova viridis
and Nannochloropsis sp. Moreover, treatment with
microalgae in this trial did not affect the histological aspect
of the liver and intestine. Studies carried out on rainbow trout
have demonstrated the effectiveness of microalgae when
included at low levels in the diets. Sarker et al. (2020) dem-
onstrated that Isochrysis sp. and Schizochytrium sp. are
possible candidates for DHA supplementation in rainbow
trout diet formulations, while Sheikhzadeh et al. (2012)
showed that dietary Haematococcus pluvialis might enhance
the antioxidant system when added at 0.3 %.

Table 5 Zootechnical performance of European sea bass fed the experimental diets over 75 days

CTRL MC10 MC20 N10 P

Mortality (%) 1 0 1 0

Initial body weight (g) 18.00 ± 1.10 18.50 ± 0.90 18.50 ± 1.20 18.40 ± 1.00 0.088

Final body weight (g) 61.0 ± 11.00b 64.9 ± 13.40a 63.4 ± 12.80ab 63.70 ± 12.70ab 0.024

RFI (g/kg ABW/day)1 16.70 ± 0.60b 17.4 ± 0.10ab 18.4 ± 0.30a 17.30 ± 0.30ab 0.018

SGR (%)2 1.65 ± 0.02 1.70 ± 0.01 1.66 ± 0.03 1.68 ± 0.02 0.066

FCR3 1.15 ± 0.03b 1.16 ± 0.01b 1.25 ± 0.03a 1.16 ± 0.03b 0.005

PER (%)4 1.82 ± 0.04a 1.80 ± 0.02ab 1.73 ± 0.04b 1.84 ± 0.05a 0.007

GPR (%)5 32.09 ± 1.75 31.33 ± 0.87 30.05 ± 1.76 29.10 ± 1.28 0.075

Data are presented as mean ± standard deviation; values with different letters on the same row are significantly different (P < 0.05), n= 3
1RFI Relative Feed Intakeð Þ ¼ feed intake

Initial Body Weight þFinal Body Weightð Þ�0:5�days

2 SGR Specific Growth Rateð Þ ¼ 100� lnFinal Body Weight−lnInitial Body Weight
days

3FCR Feed Conversion Ratioð Þ ¼ feed intake
weight gain

4PER Protein Efficiency Ratioð Þ ¼ weight gain
protein intake

5GPR Gross Protein Retentionð Þ¼100� Final Body protein content−Initial Body protein contentð Þ
protein intake

h i

Table 6 Biometric morphometric indices of European sea bass fed the experimental diets over 75 days

Biometric index CTRL MC10 MC20 N10 P value

K1 1.72 ± 0.11 1.73 ± 0.11 1.70 ± 0.10 1.73 ± 0.12 0.108

HSI (%)2 1.18 ± 0.31 1.03 ± 0.27 1.02 ± 0.28 1.27 ± 0.70 0.539

VSI (%)2 10.0 ± 1.20 9.54 ± 1.00 9.64 ± 1.90 11.0 ± 1.90 0.162

MFI (%)2 5.93 ± 1.12 5.18 ± 0.90 4.85 ± 1.13 5.77 ± 2.13 0.344

Carcass yield (%)2 82.89 ± 2.28 84.26 ± 1.90 83.75 ± 2.29 81.19 ± 3.76 0.101

Data are presented as mean ± SD; values with different letters in the same row are significantly different (P < 0.05) n=9
1K Fulton’s Condition Indexð Þ ¼ body weight

std lenght3

2HSI ;VSI ;MFI ;Carcass Yield¼100� weight of liver;viscera;mesenteric fat;carcass
body weight
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However, contrary to the vast majority of studies with mi-
crobial biomass, the marine consortium tested in the present
study consisted of a certain number of different organisms,
namely Oocystis sp. (80%), Tetraselmis sp. (6%), Chlorella
stigmaphora, Chlamydomonas sp., Nannochloropsis
gaditana, Nannochloris sp., Rotifera, Lacrymariidae (ciliat-
ed), Cinerochilidae (phylasterides), Chytridiomycotina
(Chytridiomycota), and Strombidiidae (ciliated). The analysis
method cannot precisely define the Oocystis species, but
whereas Oocystis sp. is generally associated with a freshwater
genus of green microalgae, oceanic strains can be found in
marine or brackish water such as Oocystis submarina
(Śliwińska-Wilczewska and Latała 2018) or Oocystis borgei
which could inhibit harmful microalgae by expressing allo-
pathic effects (Wang et al. 2020). Oocystis heteromucosa be-
longs to strains of marine algae consortium found in marine
aquaculture pond wastewater with a high ammonia tolerance
(Katayama et al. 2020). In a HRAP, algae predators such as
rotifers can have a negative effect on the consortium growth to
the point of cultural annihilation. That was not the case in our
experiment: we hypothesize that continuous CO2 delivery
linked to the photosynthetic demand maintains a pH value
around 7, which could be uncomfortable for organism repro-
duction adapted to marine pH at 8.2. In addition, the culture
did not collapse, probably because of the high culture volume
and dynamic algae growth. Previous experiments showed that
the algae cells’ reproduction rate has to be higher than the total

grazers’ reproduction rate in order to keep a culture alive
(Strom and Morello 1998). That was the case in the exponen-
tial culture growth phase, which is the sample period for bio-
mass extraction. Algae predators also sequester compounds of
some interest from algae ingestion and their tolerated presence
in the culture contributes to final powder value.

The use of a non-axenic culture of a blend of Tetraselmis
suecica, Isochrysis galbana, and Dunaliella tertiolecta has
been evaluated in its remediation potential for the nutrient
assimilation of fish farm wastewater (Andreotti et al. 2017).
Dallaire et al. (2007) have previously described the effect on
trout fry of the dietary inclusion of a freshwater photosynthetic
microorganism consortium (mainly Scenedesmus sp. and
Chlamydomonas sp.) derived from the sedimentation pond
of a fish farm. The results showed that a maximum of 12.5%
of consortium could be included in the feed formulation with-
out affecting growth or whole-body fish composition.
Anyway, to the best of our knowledge, there seem to be no
other studies considering the dietary inclusion of a non-axenic
multi-species marine consortium in fish feeds. For these rea-
sons, the comparison of the present results with previous re-
search studies is not straightforward and should be done with
caution. In any case, the results of the present study are
consistent with the ones of Dallaire et al. (2007) as the dietary
inclusion of microalgae biomass generally improved fish per-
formance and feed intake, although only the fish fed with the
10% microalgae consortium (MC10) reached a significantly

Table 7 Nutrient and energy
apparent digestibility coefficients
(%) of the experimental diets

CTRL MC10 MC20 N10 P value

Dry matter 76.7 ± 1.0a 65.9 ± 2.0bc 57.7 ± 6.2c 74.2 ± 1.1ab 0.000

Protein 92.7 ± 0.3a 90.0 ± 0.5b 85.2 ± 1.2c 92.2 ± 0.1a 0.000

Lipid 86.8 ± 0.2a 82.8 ± 0.8b 84.9 ± 2.3ab 85.4 ± 0.3ab 0.023

Energy 87.4 ± 0.9a 80.1 ± 1.3b 75.2 ± 3.4c 85.8 ± 0.8a 0.000

Data are presented asmean ± SD; values with different letters in the same row are significantly different (P < 0.05)
n=3

Table 8 Intestinal morphology of European sea bass fed the experimental diets over 75 days

CTRL MC10 MC20 N10 P value

Cross-sectional area (mm2) 11.2 ± 2.97 11 ± 4.41 9.5 ± 2.29 10.2 ± 1.62 0.761

Villus length (μm) 1414.7 ± 256.7 1416.5 ± 368.5 1327.6 ± 207.9 1240.0 ± 126.6 0.592

Villus width (μm) 226.9 ± 34.76 225.1 ± 32.41 222.3 ± 29.50 225.9 ± 14.85 0.993

Muscularis externa (μm) 131.7 ± 20.45 104.4 ± 21.69 106.5 ± 30.88 129.3 ± 17.68 0.103

Inner circular layer (μm) 85.1 ± 13.23 67.4 ± 14.23 65.6 ± 18.58 81.4 ±10.69 0.069

Outer longitudinal layer (μm) 46.6 ± 8.26 37 ± 7.83 40.9 ± 13.23 47.9 ± 9.40 0.226

Goblet cells (no. GC/fold) 88.8 ± 16.94 67.2 ± 20.55 56.7 ± 13.05 82.2 ± 29.64 0.061

Acid GC (no. GC/fold) 64.3 ± 13.46a 46.4 ± 8.14ab 36.8 ± 6.26b 54.7 ± 17.44ab 0.006

Neutral GC (no. GC/fold) 24.6 ± 15.54 20.8 ± 14.92 19.9 ± 8.13 27.6 ± 15.21 0.760

Data are presented as mean ± SD; values with different letters in the same row are significantly different (P < 0.05), n=6
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higher final body weight than the control diet. MC20 diet had
a growth performance that did not differ from other treatments
but resulted in a significant increase of FCR. Similarly, the
rainbow trout fed with diets including 9.5% of a
Nannochloropsis and Isochrysis blend or including also
Schizochytrium exhibited significantly poorer FCR, a result
not unlike those obtained by Walker and Berlinski (2011) on
cod or Cardinaletti et al. (2018) on European sea bass.

For the above-mentioned reason, in the present study, a
comparison with a test diet including monospecific dried bio-
mass of Nannochloropsis spp. has been considered in the
experimental design. Nannochloropsis sp. is a unicellular
microalga with a polysaccharide cell wall (Hibberd 1981)
and a promising ingredient in aquafeeds both as a successful

fish oil substitute (Eryalçın and Yıldız 2015; Gbadamosi and
Lupatsch 2018; Lozano-Muñoz et al. 2020) and the form of
the defatted meal as an alternative to fish meal (Sørensen et al.
2017). Moreover, N. oceanica became better digested by
European sea bass than other microalgae marine species
(Batista et al. 2020b). In the present study, the replacement
of terrestrial plant source by Nannochloropsis sp. dried bio-
mass did not significantly affect diet palatability, fish growth
performance, or biometric indices compared with C diet after
a 75-day feeding period, confirming previous observation in
the European sea bass fed with 8% of N. oceanica (Batista
et al. 2020a). A recent study carried out by Valente et al.
(2019) showed that the dietary inclusion up to 15% of defatted
Nannochloropsis sp. biomass can replace fish meal in
European sea bass diets without affecting fish growth
performance and biometric indices. Moreover, Haas et al.
(2016) showed that a 50 % fish oil replacement by
Nannochloropsis sp. biomass did not hamper the growth per-
formance of juvenile European sea bass. Other studies consid-
ering different dietary inclusion of N. oceanica indicate that
moderate inclusion levels (<15 g/kg diet) do not affect growth
and feed performance in other fish species like spotted wolf-
fish (Anarhichas minorhas) and Atlantic salmon (Salmo
salar) (Sørensen et al. 2017; Knutsen et al. 2019). On the
contrary, higher dietary inclusion levels of Nannochloropsis
sp. biomass hampered growth and feed conversion in Nile

Fig. 3 Anterior intestine histological sections (Alcian Blue/PAS staining,
pH = 2.5) of European sea bass at the end of 75-day feeding trial. Blue
points represent the acid goblet cells. A, CTRL diet and B, MC20 diet
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Fig. 4 Specific activity of SI
(sucrase-isomaltase), maltase,
ALP (alkaline phosphatase), and
γ-GT (gamma glutamil
transpeptidase) in PC (pyloric
caeca), P (proximal intestine), and
D (distal intestine) of European
sea bass fed the experimental di-
ets over 75 days. Data are pre-
sented as means ± SD (n=3).
Different letters indicate signifi-
cant differences among the treat-
ment diets (lower case superscript
P < 0.05, capital superscript P <
0.001).

Table 9 ANOVA of the
main factors which affect
the activity of the BBM
enzymes

Diet Tract Diet × Tract

Maltase * ** **

Sucrase * ** NS

ALP * ** NS

γ-GT ** * **

*P < 0.05; **P < 0.001
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tilapia (Abdelghany et al. 2020) and Atlantic salmon
(Sørensen et al. 2017; Teuling et al. 2018).

The nutritional value of a feed depends not only on its nutrient
content but also on the animal’s ability to digest and absorb it.
Consequently, the evaluation of the nutrient digestibility is the
first step to determine the feasibility of using a microalgae prod-
uct in aquafeeds (Allan et al. 2000; Tibbetts et al. 2006; Guedes
and Malcata 2012; Cardinaletti et al. 2018). The effects of the
dietary utilization of a microalgae consortium on zootechnical
fish performance observed in the present study are similar to
those of other studies where the dietary inclusion of microalgae
biomass resulted in a marked reduction in nutrient and energy
digestibility independently of the microalgae species studied, i.e.,
T. suecica (Tulli et al. 2012; Vizcaíno et al. 2016b), Isochrysis
galbana (Tibaldi et al. 2015), Phaeodactlylum tricornutum
(Sørensen et al. 2016), and a blend of Tetraselmis suecica and
Tisochrysis lutea (Cardinaletti et al. 2018). In the present study,
the replacement of terrestrial plant source by 10%
Nannochloropsis spp. did not significantly affect the nutrient
and energy ADCs in European sea bass. The ADC values mir-
rored the data recently reported for defatted Nannochloropsis sp.
in European sea bass (Valente et al. 2019), where dry matter,
protein, lipid, and energy ADC figures were 79.9%, 94.2%,
97.1%, and 88% respectively when included at 10% of the diet
in fishmeal replacement. Similar data were observed byDeCruz
et al. (2018) when amoderate (6%) dietary inclusion ofN. salina
did not significantly modify the protein ADC in comparisonwith
a fish meal and fish oil-based diet in Morone sp., with a figure
close to the one observed in the present experiment for MC10
(88.4% vs 90.0%). On the contrary, in post-smolts (215 g)
Atlantic salmon, a 10% dietary inclusion of defatted
Nannochloropsis sp. resulted in a significant decrease of dry
matter (71.6% vs 76%), protein (85% vs 87.9%), lipid (88.6%
vs 92.6%), and energy (81.5% vs 85.9%) ADCs as compared to
a fish meal-based diet (Sørensen et al. 2017). Higher dietary
inclusion levels (30%) also resulted in a significant decrease of
nutrient and energy digestibility in comparison with the values
reported for Atlantic salmon (67.3% for dry matter, 82.2% for
protein, and 77.4% for energy ADCs, respectively) (Gong et al.
2018).

One of the parameters affecting dietary digestibility is the
processing technology adopted to obtain the microalgae-based
ingredient (Batista et al. 2020b). The microalgae cell wall is
hard to digest and can limit the bioavailability of intracellular
nutrients. A recent study carried out by Teuling et al. (2018)
shows that cell wall disruption increases the bioavailability of
N. gaditana biomass in the diet for Nile tilapia juvenile. The
substantial inclusion of disrupted microalgae biomass (30%)
resulted in an increase in protein and lipid ADCs from 62 to
78% and from 50 to 82%, respectively. Similar results were
also observed by Tulli et al. (2017) with Chlorella
sorokiniana dry biomass included in the diet for rainbow trout
(Oncorhynchus mykiss).

Low nutrient digestibility has also been associated with
intestinal morphological alterations such as reduction in the
intestinal absorption area (Silva et al. 2015; Araújo et al. 2016;
Moutinho et al. 2018), but the results of the present study do
not support such conclusion as villus length and width
remained similar among dietary treatments. Nevertheless,
the inclusion of the microalgae consortium resulted in a sig-
nificant decrease in the number of total acid goblet cells at the
end of the feeding trial, suggesting lower intestinal protection
against bacterial translocation (Torrecillas et al. 2019).
Increased neutral GC was recently associated with higher pro-
tein and energy ADC values in European sea bass fed with
N. oceanica (Batista et al. 2020a), but this could not be ob-
served in the present study. In addition, the intestinal structure
and enzyme activities are determinant in nutrient absorption
and provide a physical barrier against pathogenic microorgan-
isms. Thus, this aspect merits further consideration even
though the dietary treatments did not hamper gut functionali-
ty, herein considered a general framework of animal physio-
logical welfare. Maltase and sucrase-isomaltase are disaccha-
ridases belonging to hydrolases, which split the disaccharides
into glucose and glucose and fructose, respectively. The ac-
tivity of both disaccharidases in the terminal phase of the
digestion of the carbohydrates was higher in pyloric caeca
than in proximal and distal intestine. According to previous
studies (Krogdahl et al. 1999; Harpaz et al. 2005; Tibaldi et al.
2006; Messina et al. 2019), the data observed in the present
study confirm that pyloric caeca are the main site of the final
digestion of the carbohydrates. In this part of the gut, only the
test diet containing Nannochloropsis modulated the maltase
activity. On the contrary, the distal part of the intestine seems
to be affected by the presence of the algal consortium that
stimulates the activity of both disaccharidases. Considering
the decreasing amount of starch in the diets MC10 and
MC20, it can be assumed that the small amount of starch
provided by the consortium becomes available only in this
tract of the intestine. γ-GT plays an essential role in the final
digestion and absorption of proteins and is one of the main
enzymes located in intestinal microvilli. γ-GT reached the
highest activity in the PCs as also reported by Harpaz et al.
(2005), who studied the response of Asian seabass Latex
calcarifer, featuring a size similar to our experimental fish,
to different feeding levels. On the contrary, Messina et al.
(2019) and Tibaldi et al. (2006) for European sea bass and
Harpaz and Uni (1999) for several fish species found that
the distal intestine revealed the highest activity of γ-GT. It
has to be highlighted that the size of the fish considered by
these authors is much larger than that of the European sea bass
considered in the present trial and that this specific feature
could be related to differences in the enzymatic activity. The
effect of MC10 and MC20 diets on the activity of γ-GT in the
PC tract could be a consequence of the dietary protein quality,
which also affected the protein digestibility. Alkaline
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phosphatase is an enzyme of the mature epithelial gut cells
and is considered a marker of intestinal integrity. In the
present study, the dietary inclusion of the consortium or
Nannochloropsis biomass did not significantly affect the
activity of ALP, indicating that microalgae did not cause
major functional changes in gut integrity of European sea
bass juveniles, as previously reported by Batista et al.
(2020b) and Messina et al. (2019) for adult European sea
bass and Vizcaíno et al. (2018) for sole. On the contrary, a
previous study by Vizcaíno et al. (2014) showed that the in-
clusion of Scenedesmus almeriensis in the diet of gilthead
seabream juveniles resulted in a quadratic response of ALP
activity to increasing supplementation of algal biomass.

Conclusion

This is so far the first study aimed at evaluating the dietary
utilization of multispecific marine microalgae consortium
biomass originated from a HRAP for a commercially rele-
vant species. The results support a possible substitution of
up to 10% of terrestrial vegetable ingredients by the
microalgae consortium dried biomass with a significant
increase of European sea bass final body weight, though
imp a i r i n g n u t r i e n t a n d e n e r g y d i g e s t i b i l i t y .
Nannochloropsis sp. biomass also has the potential to par-
tially substitute terrestrial plant ingredient up to 10% of the
diet without affecting growth performance, dietary nutrient
utilization, and gut enzymatic activities. Algal consortium
and Nannochloropsis sp. biomass could undergo specific
processing techniques before being included in fish feed
formulation to improve nutrient bioavailability. To in-
crease aquaculture sustainability, this study using fish farm
effluents to produce a multispecific marine non-axenic
valuable biomass represents the first attempt to enhance a
circular use of natural biomasses aquafeeds. Such an ap-
proach still needs further efforts, and the safety issues con-
nected with their utilization need specific evaluations.
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