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Machine learning to detect bycatch risk: novel application to 1 

echosounder buoys data in tuna purse seine fisheries 2 

Abstract 3 

The advent of big data and machine learning offers great promise for addressing conservation and 4 

management questions in the oceans. Yet, few applications of machine learning exist to mitigate the 5 

overexploitation of marine resources. Tropical tuna purse seine fisheries (TTPSF) are distributed 6 

worldwide and account for two thirds of the global tuna catch. In these fisheries, the use of Drifting 7 

Fish Aggregating Devices (DFADs)—man-made floating objects massively deployed by fishers to 8 

increase their tuna catches—results in the incidental catch of non-target species, termed bycatch. 9 

We explored the possibility of applying machine learning on echosounder buoys attached to DFADs 10 

— representing an unprecedented source of big data – for identifying high bycatch risk at DFADs. We 11 

trained random forests algorithms to differentiate between high and low bycatch occurrence based 12 

on matched echosounder and onboard observer data for the same DFADs (representing sample sizes 13 

of 838 and 2144 in the Atlantic and the Indian Ocean, respectively). Algorithms showed a better 14 

performance in the Atlantic Ocean (accuracy of 0.66 versus 0.58 in the Indian Ocean) and were best 15 

at detecting the “high bycatch” occurrence class. These results unravel the potential of machine 16 

learning applied to fishers’ buoys data for bycatch reduction and improved selectivity in one of the 17 

largest fisheries worldwide.  18 

Keywords: Atlantic Ocean; drifting fish aggregating devices; echosounder buoys; Indian Ocean; 19 

random forests; tropical tuna purse seine fisheries   20 
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Introduction 21 

The past decade has seen an unprecedented rise in data collections on aquatic ecosystems (Durden 22 

et al 2017). In the oceans, emerging sources of datasets include automatic vessel tracking systems 23 

(Kroodsma et al. 2018) and autonomous underwater vehicles (Sahoo et al. 2019). To accelerate the 24 

processing of these massive and complex datasets often referred to as “big data”, machine learning 25 

algorithms have emerged as powerful tools, with promising applications in marine sciences (Beyan & 26 

Browman 2020). Together, big data and machine learning have a huge potential for addressing 27 

conservation and management issues in the oceans.  28 

With over half of the world's oceans subject to industrial fishing (Kroodsma et al. 2018), the 29 

overexploitation of marine resources is a pervasive threat to marine biodiversity. Pursuant to the 30 

Sustainable Development Goal 14 of the United Nations, achieving sustainable use of ocean 31 

resources is a major societal challenge.  Machine learning tools provide new opportunities for 32 

improving the management of fisheries by allowing the automated monitoring of catches for both 33 

target and non-target species (Bradley et al. 2019; Malde et al. 2020). There is a growing need for 34 

pragmatic and illustrative cases for how these tools can be used to promote sustainable fishing 35 

practices at sea. 36 

The global catch of tropical tuna is close to 5 million tons per year and tropical tuna purse seine 37 

fisheries (TTPSF) account for two thirds of this global catch (ISSF 2019). In these fisheries, the use of 38 

Drifting Fish Aggregating Devices (DFADs)—man-made floating objects deployed by fishers to 39 

increase their tuna catches—results in the incidental catch of other fish species, termed bycatch 40 

(Dagorn et al. 2013). Though bycatch in TTPSF is relatively lower than in some other fisheries (with a 41 

reported discards rate of 3.9% in TTPSF versus 12.3% in pelagic longlines fisheries, for example) (Roda 42 

et al. 2019), the sheer magnitude of TTPSF means that the induced mortality on non-target species is 43 

not negligible. Moreover, the strong associations of some species with DFADs make them particularly 44 



3 

 

vulnerable to bycatch (Forget et al. 2015). Decreasing overall bycatch volumes in TTPSF is central to 45 

the application of an ecosystem approach to fisheries management (Pikitch et al. 2004).  46 

Between 81,000 and 121,000 DFADs are deployed every year by fishers across the globe, and this 47 

number is likely to have increased since this estimate was made (Gershman et al. 2015). Most DFADs 48 

are equipped with satellite-linked echosounder buoys that automatically provide remote information 49 

on their geolocation and fish presence. These buoys represent an unprecedented source of big data 50 

for scientists who can use this constellation across the oceans as a scientific platform for observing 51 

pelagic biodiversity (Moreno et al. 2016). While echosounder buoys have been designed to provide 52 

fishers with information on tuna presence, we postulate that data from these buoys can also inform 53 

on the presence of bycatch. In this study, we explored the potential of processing echosounder buoy 54 

data with machine learning to assess bycatch risk at DFADs prior to fishing sets. Our novel approach 55 

opens the door to the development of new machine learning tools to aid fishers in reducing bycatch, 56 

thereby improving selectivity in TTPSF. 57 

Methods 58 

Database description 59 

We obtained echosounder data from Marine Instruments “M3I” buoys attached to DFADs deployed 60 

by French purse seiners in the Atlantic and Indian oceans for the 2013-2018 period. Each buoy is 61 

equipped with a GPS and an echosounder operating at 50 Khz. Simplified acoustic profiles are stored 62 

every 2 h and transmitted by satellite every 12 h (by default) in the form of 50 integer acoustic scores 63 

(ranging from 0 to 7) indicating the acoustic energy recorded within 3-m depth layers over a total 64 

detection range of 150 m (Figure S1) (Baidai et al. 2020). We obtained bycatch data from scientific 65 

observer programs onboard French purse seiners in the Atlantic and Indian oceans implemented 66 

under the EU Data Collection Framework (DCF) and the French OCUP program (Observateur 67 

Commun Unique et Permanent). Bycatch data were used to associate acoustic profiles with the 68 

actual bycatch biomass, based on the assumption that the entire aggregation is encircled and 69 
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captured. For each DFAD fishing set, dedicated observers recorded species-specific bycatch in 70 

numbers of individuals, or in weight when the number of individuals was too high to be reliably 71 

counted. Numbers were converted to weight based on the mean recorded individual length and 72 

published length-weight relationships. Total bycatch biomass was then calculated by summing 73 

species-specific biomasses.  Observers also recorded the date, time, GPS location and the buoy 74 

unique identifier associated with each set.  75 

Acoustic data pre-processing 76 

We pre-processed acoustic data for standardization and reduction of dimensionality as illustrated in 77 

Figure S1 (detailed in Baidai et al. 2020). We excluded the two layers corresponding to the transducer 78 

blanking zone (from 0 to 6 m depth). Acoustic scores were first aggregated temporally by averaging 79 

them over 4-h slots. Next, acoustic scores were aggregated vertically based on a cluster analysis 80 

(Murtagh & Legendre 2014), which identified 6 homogeneous groups of depth layers in each ocean 81 

(Baidai et al. 2020). For each homogeneous depth group, acoustic scores recorded for each of the 82 

layers constituting the group were summed and rescaled to obtain a single score per depth group 83 

and time interval (Baidai et al. 2020). This pre-processing led to daily acoustic matrices of 6 x 6 84 

dimension providing synthetic acoustic profiles.  85 

Machine learning 86 

The originality of our approach lies in the ability of machine learning to detect bycatch occurrence at 87 

DFADs based on patterns on echosounder buoy outputs when bycatch species were present, with no 88 

required a priori knowledge on these patterns, nor on species-specific acoustic responses. We 89 

considered as bycatch species all non-tuna teleosts (Table S2). Because these species have swim 90 

bladders and usually form dense schools, they are highly detectable by echosounder buoys. In 91 

contrast, sharks generally occur in low numbers around DFADs (between 2 and 6 individuals on 92 

average in the Atlantic and Indian oceans, respectively), have no swim bladder and do not usually 93 
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form dense schools. Hence, owing to their relatively insignificant biomass, they were less likely to be 94 

detected by the echosounders and were excluded from our analyses. 95 

We obtained learning datasets by matching bycatch biomasses reported by observers with daily 96 

acoustic matrices in each ocean, based on buoy identifiers, and dates and times of the sets. We 97 

discarded aberrant buoy identifiers for which positions reported by observers were inconsistent with 98 

GPS positions. We used daily acoustic matrices corresponding to the day preceding the set in order 99 

to avoid potential disturbances to fish aggregations induced by the fishing operation. Because very 100 

few sets contained no bycatch (only 5.4% in the Atlantic Ocean and 6.2% in the Indian Ocean), we 101 

used a cutoff for categorizing sets into “high” and “low” bycatch, and performed a binary 102 

classification. We defined the best cutoff among values ranging from 0.1 to 1 t in each ocean as the 103 

one leading to the highest classification accuracy (see below).   104 

In each ocean, we applied a random forest (RF) classification algorithm (Breiman 2001) to 105 

discriminate between high and low bycatch occurrence using the R package “randomForest” (Liaw & 106 

Wiener 2002). A random forest consists of an ensemble of independent decision trees leading to a 107 

more accurate prediction than that of any individual tree (Breiman 2001). Candidate predictor 108 

variables were the elements of the 6 x 6 daily acoustic matrices. To deal with the imbalanced number 109 

of observations in high and low bycatch classes, we resampled the dominant size class to make its 110 

frequency closer to the rarest class (Kuhn & Johnson 2013). We grew three thousand trees in each 111 

ocean. We assessed the number of predictor variables randomly sampled at each split (denoted as 112 

“mtry”) through a grid-search strategy implemented with the R package “caret” (Kuhn et al. 2019). 113 

We selected the best "mtry" as the value generating the lowest classification error rate.  The 114 

importance of predictors was assessed using the mean decrease accuracy (i.e., the increase of 115 

prediction error after permuting each predictor, leaving all other predictors unchanged) (Breiman 116 

2001).  117 
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We performed model training and evaluation through a hold-out validation (corresponding to setting 118 

a portion of the data aside to evaluate model performance) repeated 10 times. In each replica, we 119 

divided the original dataset into training and validation datasets, representing 75% and 25% of the 120 

data, respectively. We then derived the model accuracy (proportion of correct predictions) and the 121 

kappa coefficient (a reliability index) (Cohen 1968) on the validation dataset. Finally, sensitivity (true 122 

positive rate), specificity (true negative rate), and precision (positive predictive value) were derived 123 

from the confusion matrix. 124 

Results 125 

In both oceans, we obtained the best RF accuracy with a cutoff of 0.2 t between low and high 126 

bycatch classes (Figure S3-1 and S3-2). Learning datasets represented 838 and 2144 data points in 127 

the Atlantic and Indian Ocean, respectively (Figure 1, Table S4-1). In the Atlantic Ocean (AO), the high 128 

bycatch class corresponded to acoustic scores that were higher in intermediate depth layers (from 21 129 

to 45 m), but slightly lower in shallow layers during the day (Figure S4-1). In the Indian Ocean (IO), 130 

differences were less clear, with a high bycatch class associated with slightly higher acoustic scores in 131 

shallow layers (from 6 to 18m) during the day. 132 

The RF algorithm was better at discriminating high and low bycatch classes in the AO than in the IO, 133 

with respective accuracies of 0.66 and 0.58, and a kappa coefficient twice higher in the AO (Table 1). 134 

In both oceans, the sensitivity was higher than the specificity, indicating a better ability at detecting 135 

the high bycatch class (Table 1, Figure 2). 136 

In the IO, the most important predictors corresponded to shallow layers (6-15 m) during the day 137 

(Figure 3). Conversely, in the AO, deep layers (27-150 m) during the day, and shallow layers (9-21 m) 138 

around dawn, appeared most important. 139 

Discussion 140 

Fishing on DFADs accounts for more than half of the tuna landings of TTPSF (Restrepo et al. 2017), 141 

but also leads to large overall bycatch volumes (Roda et al. 2019). We capitalized on the massive data 142 
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available from fishers’ buoys analyzed through machine learning to assess whether they could inform 143 

potential bycatch risks at DFADs. RF algorithms showed promise to discriminate between high and 144 

low levels of teleost bycatch, particularly in the AO, and better detected the high bycatch class. 145 

Implemented in real time, these algorithms could help fishers to avoid fishing sets on DFADs 146 

associated with high risks of non-target species catch, thereby improving selectivity in TTPSF. Though 147 

additional research is needed to increase the algorithms’ accuracy, our approach shows great 148 

potential for progressing towards an ecosystem approach to fisheries (Pikitch et al. 2004). Indeed, 149 

our approach focuses on non-tuna teleost species impacted by fisheries and could help design spatio-150 

temporal management measures that could lead to a reduction in overall bycatch volume, thereby 151 

complementing mitigation measures already in place for vulnerable species (e.g., Poisson et al. 152 

2014). Regardless of the management strategy, knowledge on bycatch risk prior to fishing is key to 153 

support best fishing practices.  154 

As bycatch species are generally known to occur shallower than tuna species (Forget et al. 2015; 155 

Macusi et al. 2017), we expected acoustic scores to be higher in shallower layers in the high bycatch 156 

class. In the AO, acoustic scores in shallower layers were instead higher in the low bycatch class. We 157 

also found a pronounced geographical structure, with 65% of our low teleost bycatch class 158 

originating from coastal Angola and Gabon (Appendix S5) (an area that is nevertheless characterized 159 

by high shark bycatch (Lopez et al. 2020)). In this region, the higher acoustic scores detected near the 160 

surface despite low teleost bycatch could be explained by an increased abundance of tuna in shallow 161 

layers usually occupied by bycatch species. RF algorithms further implemented at the regional scale 162 

had lower performances than the Atlantic-scale algorithm (Appendix S5). These results suggest that 163 

the higher performance in the AO compared to the IO could be related to the stronger 164 

geographical/environmental structure in the AO. Remarkably, these contrasted patterns between 165 

oceans and the importance of deep layers as predictor variables stress the need to reconsider the 166 

fixed 25 m depth layer previously assumed as adequate for discriminating bycatch and tuna species 167 

at DFADs (Orue et al. 2019).  168 
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Discrepancies between bycatch detection on echosounder profiles and in the catches may negatively 169 

affect the performance of algorithms by introducing noise. For example, small schooling fish like 170 

Decapterus spp and the blue runner Caranx crysos are characterized by a strong acoustic back-171 

scatter, but are not always retained by the net. The buoy’s blanking zone and its smaller acoustic 172 

cone in shallow layers also prevent the detection of bycatch species that occupy these positions in 173 

the water column during the night (Forget et al. 2015), leading to an overall underestimation of 174 

bycatch biomass from echosounders. Observer-derived bycatch estimates may be prone to 175 

estimation errors, especially in such large volume fisheries, but remain the most reliable data source 176 

of bycatch. In the future, observer data could be combined with complementary data sources, such 177 

as electronic monitoring, in an attempt to improve bycatch estimates (Ruiz et al. 2015). Finally, 178 

echosounder buoys cannot be used to detect sharks despite their vulnerability to bycatch and DFAD 179 

entanglement (Dagorn et al. 2013; Filmalter et al. 2013). A different machine learning approach 180 

applied to video data obtained from autonomous cameras attached to DFADs could be more 181 

appropriate for detecting shark species. 182 

Echosounder buoys initially developed as fishing tools represent an unprecedented and massive 183 

source of information for characterizing patterns in pelagic fish occurrence (Moreno et al. 2016), but 184 

challenges remain for their utilization in direct fisheries management applications. Despite the large 185 

amounts of echosounder buoy data, matches with actual catches are limited (as shown by our 186 

modest learning datasets). Expanded coverage of observer programs and better reporting of buoy 187 

identifiers would help increase the size of learning datasets in the future. The potential for deriving 188 

accurate estimates of fish biomass from the current echosounder buoys is also limited, as illustrated 189 

by the poor performance of RFs for quantifying tuna biomass (Baidai et al. 2020). Finally, the unique 190 

sampling frequency of the echosounder buoys does not appear as the best technological approach to 191 

differentiate species. Nevertheless, our machine learning approach is applicable to any echosounder 192 

buoy type, including multi-frequency buoys that have revealed helpful for refining species 193 

differentiation (Moreno et al. 2019). 194 
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In conclusion, machine learning applied to massive data collected through fishers’ buoys offers 195 

promise for assessing bycatch risk at DFADs and could help designing spatio-temporal measures for 196 

the reduction of bycatch in TTPSF. Implemented in real-time, such algorithms have the potential to 197 

help fishers avoid bycatch at DFADs by providing them with information prior to the fishing sets, 198 

paving the way for more sustainable fishing practices. Given the magnitude and extensive 199 

distribution of TTPSF worldwide, this novel approach could contribute to reduce the impact of fishing 200 

on pelagic marine ecosystems.  201 
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Tables 

Table 1: Performances of the random forest classifications derived from a hold-out validation in each 

ocean. Mean and standard deviation values (in brackets) of evaluation metrics are provided. 

Evaluation Metrics Atlantic Ocean Indian Ocean 

Accuracy 0.66 (0.04) 0.58 (0.02) 

Kappa 0.32 (0.07) 0.16 (0.03) 

Sensitivity 0.74 (0.05) 0.63 (0.03) 

Specificity 0.59 (0.05) 0.53 (0.03) 

Precision 0.64 (0.03) 0.57 (0.02) 

 

Figures 
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Figure 1: Geographical span of the learning datasets in the Atlantic (n=838 sets) and Indian oceans 

(n=2144 sets). Each point corresponds to a fishing set on DFAD and the colors represent high and low 

bycatch classes. 

 

 

Figure 2: Confusion matrices standardized per row (i.e., with respect to observations) for random 

forest classifications in the Atlantic Ocean (left) and the Indian Ocean (right). The diagonal elements 
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represent the percentage of data points for which the predicted class is equal to the observed class, 

while off-diagonal elements are those that are misclassifed by the random forest. The color scale 

represent the percentage of data points. 

 

Figure 3: Importance of random forests predictors in the bycatch classification in both oceans 

assessed through the mean decrease accuracy (the mean decrease accuracy corresponds to the 

increase of prediction error after permuting each predictor, leaving all other predictors unchanged). 

 

 

 

 




