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Abstract 18 

Stressful events can alter organism physiology at several levels triggering allostatic responses. 19 

Telomeres are well-conserved repetitive DNA sequences mainly localised at chromosome’s 20 

ends, playing a crucial role in DNA stability. Analyses of telomere dynamics are new tools to 21 

assess consequences of environmental stress in non-model organisms like fish. In this study, 22 

the relationship between freshwater tolerance and telomere dynamics was investigated in the 23 

gills of the European sea bass Dicentrarchus labrax. Fluorescent in situ hybridisation of 24 

telomeric sequences revealed distal telomeres as well as intrachromosomal telomeres known 25 

as interstitial telomere sequences. In order to better understand telomere dynamics in the gills 26 

of D. labrax, we used quantitative PCR to measure telomere length and mRNA expression of 27 

the catalytic subunit of telomerase reverse transcriptase tert. For the calculation of the relative 28 

telomere length, two reference genes were tested: the single copy gene mc2r, encoding 29 

melanocortin 2 receptor and the multicopy gene 18S, encoding the 18S ribosomal RNA. We 30 

proposed a novel normalisation method to calculate the relative telomere length using both, 31 

single and multiple copy genes as references. Cell dynamics was also investigated by 32 

measuring mRNA expression of genes involved in apoptosis (caspase 8 and 9), cell 33 

proliferation (proliferation cell nuclear antigen), aerobic mitochondrial metabolism (ATP 34 

citrate-synthase), anaerobic metabolism (lactate dehydrogenase a) and antioxidant enzymatic 35 

defences (superoxide dismutase 1 and 2, catalase). Following a 15-days fresh water exposure, 36 

telomere dynamics was not significantly modified in the gills of freshwater tolerant fish. But 37 

freshwater intolerant fish exhibited telomere attrition relative to saltwater controls, and lower 38 

expression of tert in gills relative to freshwater tolerant fish. This modification of telomere 39 

dynamics in intolerant individuals was found to be correlated with lower antioxidant 40 

enzymatic defences, a higher aerobic metabolic marker and a lower cellular turnover. These 41 

data bring new perspectives for the use of telomere dynamics as an integrative marker to 42 
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study environmental stress in fish, while considering individual phenotypic plasticity in 43 

response to freshwater exposure.  44 
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Introduction 45 

Marine organisms living in fluctuating environments such as lagoons and estuaries have to 46 

constantly deal with abiotic stressors (salinity, temperature, oxygen). A strong physiological 47 

plasticity is required to be able to face salinity, temperature and oxygen level fluctuations 48 

(Claireaux and Lagardère 1999). The European sea bass Dicentrarchus labrax (Linnaeus, 49 

1758) is a demersal fish of high commercial interest which inhabits coastal waters. D. labrax 50 

enters estuaries, lagoons and sometimes ascending rivers most likely to feed (Rogdakis et al. 51 

2010). In D. labrax, a strong intra-specific variability was highlighted regarding its capacity 52 

to tolerate hyperthermia (Ozolina et al. 2016), hypoxia (Claireaux et al., 2013; Joyce et al., 53 

2016) and freshwater exposure (Nebel et al., 2005, L’Honoré et al., 2019, 2020), suggesting 54 

an inter-individual difference in the capacity to tolerate harsh environmental conditions. 55 

Burton and Metcalfe (2014) highlighted that exposure to stressful conditions in early life 56 

stages can have long-term and inter-generational effects on physiology and fitness in several 57 

taxa, including fish. It is questionable whether repeated stress encountered throughout life by 58 

fish such as D. labrax migrating seasonally in transitional waters, has a negative impact on 59 

fitness.  60 

Few studies have examined the potential use of telomere length as an integrative marker of 61 

stress exposure in fish (Anchelin et al. 2013; Henriques et al. 2013; Naslund et al. 2015; 62 

Debes et al. 2016). Telomeres are well conserved terminal regions of eukaryotic 63 

chromosomes, composed of repetitive sequences of TTAGGG in vertebrates (Blackburn and 64 

Gall 1978). Telomeres ensure multiple functions in preserving chromosome stability, 65 

including protecting the ends of chromosomes from degradation and preventing chromosomal 66 

end fusion (Blackburn 1991). Telomere length (TL) and telomerase activity are commonly 67 

used to study ageing in higher vertebrates (Aubert and Lansdorp 2008; Saretzki 2018). 68 

Telomerase plays a crucial role in chromosome stability and cell viability by extending the 69 
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distal 3’ end of eukaryotic linear chromosome over replications (Blackburn 2005). This 70 

enzymatic complex consists of the telomerase reverse transcriptase (TERT) catalytic subunit, 71 

the telomerase RNA component (TERC) involved in the replication of the telomere sequence, 72 

and other associated proteins contributing to elongate telomeres localised at the end of the 73 

chromosomes (Blackburn 2005; Smith et al. 2020). In most non-mammal species such as 74 

birds and fish, telomere dynamics relies on two opposite forces: telomere attrition and 75 

telomere restoration, supported by telomerase. In human, chronic oxidative stress and life 76 

stressors can accelerate telomere attrition by decreasing telomerase activity or tert expression 77 

levels (Epel et al. 2004; Houben et al. 2008; Starkweather et al. 2014). In ecological studies, 78 

telomere length provides a mechanistic link between environmental condition, life history 79 

traits and fitness (Monaghan and Haussmann 2006; Haussmann 2010; Monaghan 2014; 80 

Mathur et al. 2016). According to recent meta-analyses focused on ecological studies in non-81 

model vertebrates (Angelier et al. 2018; McLennan et al. 2018; Wilbourn et al. 2018), we still 82 

lack crucial basic data to fully understand: (i) the influence of abiotic factors, such as salinity 83 

or temperature, on telomere length, (ii) the intra-specific variation in telomere dynamics and 84 

the drivers of this intra-specific variation and (iii) the potential link between telomere 85 

attrition, lifespan and mortality risk, especially in bony fish species.  86 

The effect of temperature on telomere attrition was the main environmental abiotic parameter 87 

analysed in fish. In mosquitofish Gambusia holbrooki, a decrease from 25°C to 20°C for 24 h 88 

was associated with a decrease in telomere length (Rollings et al. 2014). Conversely, an 89 

increase in temperature from 20°C to 30°C for 1 month triggered telomere attrition in the 90 

Siberian sturgeon Acipenser baerii (Simide et al. 2016). Regarding the relationship between 91 

telomere attrition and ageing in fish, studies are controversial. In the zebrafish, telomere 92 

length has been observed to increase from larvae to adult stages and to shorten significantly in 93 

older individuals (Anchelin et al., 2011). Additionally, Hatakeyama et al. (2016) showed in 94 



6 

 

the medaka that telomeres do not shorten linearly with age, but shortening dynamics depends 95 

on growth rate and level of telomerase activity at each life stage. Therefore, it appears that 96 

telomere dynamics is particularly variable and nonlinear in fish.  97 

Previous experimental studies performed in juvenile D. labrax at different ages have shown 98 

that about 25 to 30% of individuals are unable to acclimate successfully to experimental 99 

transfer from seawater to fresh water (Nebel et al. 2005; L’Honoré et al. 2019, 2020). The 100 

freshwater intolerant phenotype exhibits several characteristics: failure in hydromineral 101 

balance regulation, decrease in swimming capacities, downregulation of gluco- and mineralo-102 

corticoid receptors involved in both stress response and osmoregulation and, ultimately, death 103 

(Nebel et al., 2005, L’Honoré et al., 2019, 2020). Recently, Angelier et al. (2018) raised new 104 

hypotheses suggesting a trade-off between immediate survival and telomere 105 

maintenance/protection, which would transitionally lead to shortened telomeres during an 106 

“emergency state”. In this study, we compare extreme phenotypes regarding freshwater 107 

tolerance (tolerant vs intolerant) in order to determine if D. labrax exhibiting contrasted 108 

freshwater tolerance differ in telomere dynamics.  109 

The gill was considered as a somatic tissue of interest to study the relationship between hypo-110 

osmotic stress and telomere dynamics as the branchial epithelium exhibits a rapid cell 111 

turnover and a strong morphological plasticity (Nilsson 2007; Kang et al. 2013). In D. labrax , 112 

gills are able to remodel within 1 to 2 weeks in response to fluctuations of environmental 113 

factors like salinity, oxygen availability and temperature (Sollid and Nilsson 2006; Lorin-114 

Nebel et al. 2006; Nilsson et al. 2012; Masroor et al. 2018). Such plasticity in the response to 115 

environmental change has been demonstrated to be associated to elevated cellular dynamics, 116 

such as cell renewal and apoptosis (Sollid 2005; Tzaneva et al. 2014; Sales et al. 2017; 117 

Mierzwa et al. 2020). In addition, an increased number of gill mitochondrion-rich cells 118 

(MRCs) has been shown in hypo-osmotic environments in numerous species including D. 119 
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labrax (Nebel et al. 2005; Masroor et al. 2018), suggesting a raise of energetic demand to fuel 120 

active ion transport (Evans et al. 2005). Interestingly, freshwater intolerant D. labrax were 121 

previously characterised by a higher density of branchial MRCs compared to freshwater 122 

tolerant fish (Nebel et al. 2005), suggesting metabolic disorders in freshwater intolerant D. 123 

labrax .  124 

Since mitochondria are known to be the main source of ROS production in cells (Lambert and 125 

Brand 2009), an increase in mitochondria may also trigger an increased production of 126 

metabolic ROS, as a by-product of cellular respiration (Quijano et al. 2016). In vitro, 127 

oxidative stress was shown to be a major factor triggering DNA damage and accelerated 128 

telomere shortening in human endothelial cells, through the reduction of telomerase activity 129 

(Kurz et al. 2004; Ahmed and Lingner 2017). In vivo studies showing a direct link between 130 

oxidative stress and telomere dynamics are more scarce (Boonekamp et al. 2017). Recent 131 

reviews by Reichert & Stier (2017) and Chatelain et al (2019) concluded that there is strong 132 

evidence from both experimental and correlative in vivo studies in vertebrates that oxidative 133 

stress induces effects on telomere dynamics, with tissue-dependent, life stage-dependant and 134 

sex-dependant variations. Nevertheless, more experimental studies are required to further 135 

understand the influence of oxidative stress on telomere dynamics in vivo. 136 

The first aim of this study was to determine the occurrence and the localisation of telomeres 137 

in D. labrax genome using fluorescence in situ hybridisation (FISH) in order to test if 138 

interstitial telomeric sites are detected. The head kidney was used for karyotyping because of 139 

its high cell renewal (Bertollo et al. 2015). Then, an acute 2 weeks freshwater stress was used 140 

to test whether osmotic stress affects telomere dynamics in the gills of 5-month-old D. labrax 141 

exhibiting contrasted freshwater tolerance capacities, as previously described in L’Honoré et 142 

al. (2019). Telomere attrition was evaluated using relative TL measurement using q-PCR and 143 

the mRNA expression of tert was measured as a proxy of telomere maintenance. To better 144 
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understand cell dynamics and the potential influence of oxidative stress and energy 145 

metabolism on telomere dynamics, mRNA expression of genes involved in apoptosis 146 

(caspase 8 and 9), cell proliferation (proliferation cell nuclear antigen), aerobic mitochondrial 147 

metabolism (ATP citrate-synthase), anaerobic metabolism (lactate dehydrogenase a) and 148 

antioxidant enzymatic defences (superoxide dismutase 1 and 2, catalase) were measured. 149 

Osmotic stress and individual tolerance to fresh water may differentially influence telomere 150 

dynamics where telomere attrition would reflect the harshness of the environment an 151 

individual has experienced. We hypothesised that non-tolerant fish to fresh water will exhibit 152 

shorter telomeres than tolerant fish, as a consequence of oxidative and physiological stress. If 153 

telomeres shorten to critical levels in the gill tissue, this may trigger organ dysfunction, as 154 

previously shown in gut and muscle zebrafish (Carneiro et al. 2016). This could have 155 

consequence on general physiology and survival since the fish gill is a multifunctional organ 156 

involved in gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous 157 

waste (Evans et al. 2005). As short telomeres induce senescence in cells and hence reduce the 158 

regenerative capacity of the corresponding tissues, it has been suggested that TL might affect 159 

various fitness parameters (Monaghan and Haussmann 2006). In fact, TL has been linked to 160 

survival and reproductive success in some bird species (Haussmann et al. 2005; Pauliny et al. 161 

2006). From an evolutionary ecology point of view, telomere-induced selection could occur if 162 

telomere attrition differently affects relative fitness among individuals (Olsson et al. 2017). 163 

Evidence for causal effects of telomere traits on life history and fitness-related parameters is 164 

still limited. In this study, we investigate the consequence of an acute osmotic stress in the 165 

non-model euryhaline species D. labrax to test whether intraspecific differences in 166 

osmoregulatory capacities have consequences on TL maintenance. 167 

 168 

Materials and methods 169 
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1. Origin of animals 170 

Fish were issued from in vitro fertilisation of unrelated wild native West Mediterranean 171 

breeders (40 males and 23 females) in order to obtain a large genetic diversity. Sea bass were 172 

grown at the Ifremer Station at Palavas-les-flots (Hérault, France) under a 16/8 hours 173 

light/dark photoperiod in seawater (SW) at 20°C. Food was proposed ad libidum. 174 

2. Fluorescence in situ hybridisation on telomere sequence DNA and microscope 175 

analysis 176 

Karyotype analysis and fluorescent in situ hybridisation were performed at the CytoEvol 177 

facilities of UMR ISEM of the LabEx CeMEB (Montpellier, France). Cephalic kidney of two 178 

males and 2 females (10 month-old) were sampled and processed as described in Ozouf-179 

Costaz et al. (2015). Fluorescence in situ hybridisation (FISH) was performed following the 180 

same procedure as described in Ozouf-Costaz et al. (2015), using an oligonucleotide 181 

telomeric probe (TTAGGG)7 labelled with Cy3 at its 5’ end (biomers.net, Ulm, Germany) and 182 

counterstaining the chromosomes with DAPI (4’,6-diamidino-2-phenylindole)-antifade 183 

mounting medium solution (Vectashield, Vector Laboratories, Peterborough, UK). Three 184 

slides were prepared per individual and preparations were analysed using a Zeiss Axioplan 2 185 

Imaging epifluorescence microscope equipped with a cooled charge couple devise camera and 186 

Cytovision 7.4 software (Applied Imaging, San Jose, CA). 187 

3. Experimental exposure to freshwater 188 

Five month-old D. labrax juveniles (N=1525, 4.20 ± 0.09 cm, 0.87 ± 0.06 g) were 189 

experimentally exposed to fresh water according to L’Honoré et al. (2019). Briefly, fish were 190 

transferred from SW to brackish water (BW) at 15 ppt for 24h before being transferred to 191 

fresh water (FW) for 2 weeks. A no replication experimental setup, where intolerant fish and 192 

tolerant fish are maintained in the same tank and exact same conditions, was chosen because 193 
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we expected from previous studies that the FW intolerant phenotype represents about one 194 

third of the experimental cohort (Nebel et al. 2005; L’Honoré et al. 2019, 2020), thus 195 

requiring an elevated number of animals (N=1525). In addition, the detection of FW 196 

intolerant phenotype also requires an elevated number of individuals swimming in shoals in 197 

order to be able to observe abnormal individual behaviour within the shoal as described in 198 

L’Honoré et al. (2019). After 2 weeks of freshwater challenge, tolerant and intolerant 199 

phenotypes were sorted, measured and weighted. More precisely, fish exhibiting erratic 200 

swimming, isolation from the shoal associated with low reflexes and stronger pigmentation 201 

were identified as the freshwater-intolerant phenotype (FW-I). These animals were 202 

characterised by an incapacity to maintain hydromineral balance in FW (Nebel et al., 2005; 203 

L’Honoré et al. 2019, 2020). The three experimental groups analysed were: seawater controls 204 

(SW, 6.30 ± 0.12 cm, 2.84 ± 0.14 g), freshwater tolerant fish (FW-T, 5.28 ± 0.10 cm, 1.47 ± 205 

0.10 g) and freshwater intolerant fish (FW-I, 5.20 ± 0.10 cm, 1.25 ± 0.08 g). At the end of the 206 

exposure, fish were euthanised in 100 ppm of benzocaine and the first left gill arc was 207 

dissected, flash frozen in liquid nitrogen and stored respectively dry or in RNAlater (Quiagen, 208 

Valencia, CA) at -80°C until gDNA and mRNA extraction.  209 

4. gDNA extraction 210 

Genomic DNA (gDNA) extraction was performed using the Maxwell® 16 Buccal Swab LEV 211 

DNA Purification Kit (Promega, Charbonières, France). Samples were eluted in 50 µL of 212 

ultrapure water. Quantity was measured fluorometrically using a Qubit dsDNA BR Assay Kit 213 

(Thermo Fisher Scientific), concentrations ranged from 60 to 200 µg mL-1. Purity was 214 

verified using the NanoDropTM One/OneC Spectrophotometer (Thermo Scientific, Waltham, 215 

MA, USA) through A260/A280 and A260/A230 ratios. DNA quality was checked using 216 

Bioanalyzer 2100 (Santa Clara, CA, United States). 217 
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5. RNA extraction and reverse transcription 218 

RNA extraction was performed using the total RNA extraction kit that includes a DNase step 219 

(Nucleospin® RNA, Macherey-Nagel, Germany). Quantity and purity of extraction products 220 

were verified using a UV spectrophotometer (NanoDrop™ One/OneC Spectrophotometer, 221 

Thermo Scientific, Waltham, MA, USA). RNA quality was checked using Bioanalyzer 2100 222 

and RIN levels were comprised between 6 and 9 (mean RIN = 8.15). Reverse transcription 223 

was performed using one microgram of RNA using the qScript™ cDNA SuperMix (Quanta 224 

Biosciences™) providing all necessary components for first-strand synthesis: buffer, 225 

oligo(dT) primers, random primers and qScript reverse transcriptase. 226 

6. Target genes selection 227 

Key genes were selected to better understand cell dynamics and the potential influence of 228 

oxidative stress and energy metabolism on telomere dynamics. Proliferating cell nuclear 229 

antigen (pcna) was used as a cell proliferation marker (Sadoul et al. 2018) whereas caspase 8 230 

and 9 (casp 8, casp 9) were used as extrinsic and intrinsic cell apoptosis markers respectively 231 

(Olsson and Zhivotovsky 2011; Paiola et al. 2018). Mitochondrial superoxide dismutase 1 232 

(sod1), cytosolic superoxide dismutase 2 (sod2) and catalase (cat) were selected as 233 

antioxidant enzymes because superoxide anion (O2
.-) and hydrogen peroxide (H2O2) are the 234 

main ROS formed by mitochondria. Lactate dehydrogenase is a key enzyme in the control of 235 

energy metabolism composed of four polypeptide subunits encoded by two genes: ldh-a and 236 

ldh-b (Driedzic et al. 1980). In this study, ldh-a was investigated as a marker for anaerobic 237 

glycolysis (Almeida-Val et al. 2011; Valvona et al. 2016). Gene encoding citrate synthase (cs) 238 

was selected as a marker of aerobic metabolism (Roche and Reed 1974; Elcock and 239 

McCammon 1996; Goldenthal et al. 1998). 240 

7. Quantitative real-time polymerase chain reaction 241 
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Telomere length measurement and relative mRNA gene expression quantification was 242 

realised using 384-wells plates filled with an Echo®525 liquid handling system (Labcyte Inc., 243 

San Jose, CA, USA). Each well contained a mix composed by 1.5 µL of LightCycler-244 

FastStart DNA Master SYBR-Green I™ Mix (Roche, Manheim, Germany), 0.27 µL of each 245 

primer (forward and reverse primers at 0.9 µM final concentration), 0.23 µL of ultrapure 246 

water and 1 µL of cDNA or gDNA. For pcna, tert, casp8, casp9, sod1, sod2, cat, cs, ldh-a, 247 

18S and l13 cDNA amplification, efficiency (E) of each primer pair was tested using standard 248 

curves performed on all-samples pools of cDNA (Table 1). 249 

For mRNA expression analyses, the q-PCR conditions were as follows: 2 min denaturation at 250 

95 °C followed by 35 cycles (95 °C for 30 s, 61 °C for 45 s and 72 °C for 1 min) followed by 251 

a final elongation step at 72 °C for 4 min. The reference genes 18S and l13 were chosen 252 

according to previous studies performed in sea bass (Mitter et al. 2009). Relative mRNA 253 

expressions were normalised against two reference genes, l13 and 18S, according to the 254 

method of Vandesompele et al. (2002) and expressed using the comparative ∆∆Ct method (Ct, 255 

threshold cycle number) described by Pfaffl (2001), with SW fish as a reference. For all 256 

samples, measurements were run in triplicates, and no-template control (water) Ct was above 257 

40. 258 

For TL measurement, the q-PCR conditions were adapted from Cawthon (2009) with some 259 

modifications as follows: 15 min denaturation at 95 °C followed by 2 cycles (94° C for 15 s, 260 

49° C for 15 s) followed by 35 cycles (95 °C for 15 s, 62 °C for 10 s and 74 °C for 15 sec). 261 

Telomere primers used to amplify telomeric hexamer repeats were TEL G and TEL C as 262 

described in Cawthon (2009). Efficiency of each primer pairs reported on Table 1 were 263 

obtained by standard curves performed on all-sample pools of gDNA (tel, mc2r and 18S). 264 

Relative TL calculation was performed using the ratio between telomere repeat copy number 265 

and reference gene copy number known as T/R ratio. T/R ratio was calculated with the ∆∆Ct 266 
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method described in Cawthon (2002) and normalised against two reference genes, a single 267 

copy gene mc2r and a multicopy gene 18S (Wang et al. 2013).  268 

Formulas used “E” as primers efficiency as indicated in Table 1. The condition SW was used 269 

as the control condition for the ∆∆Ct calculation. An inter-plate assay was performed to 270 

investigate the potential variability between two different q-PCR runs. Inter-assay validation 271 

was performed in duplicates with mc2r and 18S on gDNA of 16 samples. 272 

8. Statistics 273 

Statistical analyses were performed on GraphPad Prism (version 6, GraphPad Software 274 

Incorporated, La Jolla, CA 268, USA). First, Grubb’s test was used on the 15 fish per 275 

condition to remove the potential outliers from the data set. Since data fitted normality test 276 

(D’Agostino-Pearson test) but not homoscedasticity test (Bartlett test), Mann-Whitney 277 

pairwise comparisons were performed, with Bonferroni adjustment (p < 0.0167). For inter-278 

plate assay correlation analysis, Pearson correlation tests were used because data fitted with 279 

normality assumption. A non-parametric Spearman correlation test was performed to study 280 

the correlation between quantitative variables. Experimental values are reported as means ± 281 

s.e.m.. 282 

Results 283 

1. FISH of DNA telomere sequences in D. labrax karyotypes 284 

Karyotype analyses confirmed the presence of 2n=48 chromosomes (Fig. 1) as expected in D. 285 

labrax (Sola et al., 1993). Fluorescent in situ hybridisation of telomeric sites revealed that 286 

telomere sequences were localised distally, as expected. Interstitial telomeric sequences (ITS) 287 

localised proximally were also observed. FISH does not allow a precise detection so we 288 
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cannot conclude about any inter-individual differences in signal intensity or localisation of 289 

telomere sequences.  290 

2. Relative telomere length measurements 291 

2.1 Method validation 292 

Primer efficiency of the single copy gene mc2r and the multicopy gene 18S were at 2.0 (Table 293 

1). The primers specificity was checked using the melting point (Tm) of the product for each 294 

primer pair and displayed a unique pike at the expected temperature. The inter-plate Pearson 295 

correlation r² were respectively above 0.92 and 0.99 for the T/R ratio with mc2r and 18S as 296 

reference genes (Pearson test, P < 0.0001 for each gene, Figs 1Sa-b). Coefficients of variation 297 

(CV) did not exhibited values > 3% for both intra-assay CV and inter-assay CV as resumed in 298 

Table 1S.  299 

Regarding TL, CV were the highest using 18S as the reference gene (32.0% in SW, 34.7% in 300 

FW-T and 60.0% in FW-I, Fig. 1Sc), whereas they were the lowest using mc2r as the 301 

reference gene (26.6% in SW, 35.5% in FW-T and 32.0% in FW-I, Figure 2). Thus, we will 302 

consider mc2r as the best reference gene for TL since it was 3-times less variable within 303 

phenotypes. 304 

2.2 Telomere dynamics in response to freshwater exposure: telomere length and 305 

mRNA expression of tert 306 

No significant difference in TL could be measured between SW and FW-T (P = 0.8107, Fig. 307 

2). A significantly lower relative TL was measured in FW-I compared to FW-T and SW (P < 308 

0.0001, Fig. 2). Regarding tert expression, no significant difference was measured between 309 

SW and FW-T (P = 0.2115, Fig. 3a). In FW-I, tert expression was significantly lower than in 310 

FW-T but not compared to SW (P = 0.0011 and P = 0.072 respectively).  311 
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2.3 mRNA expression of genes involved in cell dynamics, metabolism and antioxidant 312 

defences 313 

Transcript levels of pcna did not differ between SW and FW-T (P = 0.9144), whereas they 314 

were significantly lower in FW-I than in SW and in FW-T (P = 0.0001 and P = 0.0003, Fig. 315 

3b). Although we did not measure any significant difference in casp8 expression levels 316 

between SW and FW-T (P = 0.1936, Fig. 3c), we measured significant lower expression of 317 

casp8 in FW-I compared to FW-T but not compared to SW (P = 0.0137 and P = 0.0367 318 

respectively). We did not measure any significant difference in casp9 expression levels 319 

between the three groups (Fig. 4d).  320 

Superoxide dismutase sod1 and sod2 mRNA gene expression did not exhibit any significant 321 

differences between the three phenotypes (Figs 4a-b). Regarding cat, no significant 322 

differences were inferred between SW and FW-T (P = 0.0455). However, FW-I displayed 323 

significantly lower expression compared to both SW and FW-T (P = 0.0005 and P = 0.0052 324 

respectively, Fig. 4c).  325 

Concerning cs mRNA expression levels, they were significantly lower in SW than in FW-T 326 

and FW-I (P = 0.0133 and P = 0.0101, Fig. 4d). However, no significant differences could be 327 

inferred between FW-T and FW-I (P = 0.6932), or between each group regarding ldh-a 328 

mRNA expression levels (P = 0.0469 for SW vs FW-T, P = 0.0219 for SW vs FW-I, and P = 329 

0.3669 for FW-T vs FW-I). 330 

3. Correlation between variables 331 

Testing the Spearman coefficient correlation between all quantitative variables (Table 2), it 332 

appeared that telomere dynamics markers (TL and tert mRNA expression) were significantly 333 

and positively correlated (r = 0.48, P = 0.013). Body mass and body length were not 334 

correlated with telomere dynamics markers (P > 0.05 for both), and no significant differences 335 
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could be inferred between the two phenotypes in FW (Mann-Whitney test, P = 0.3110 and 336 

unpaired t-test, P = 0.5893, for body mass and body length respectively). These correlations 337 

were all positives regarding cellular turnover markers (r = 0.48 between pcna and TL, r = 338 

0.38 between casp8 and TL, r = 0.64 between casp8 and tert, r = 0.47 between casp9 and 339 

tert) and antioxidant enzymatic defences (r = 0.66 between sod2 and tert, r = 0.59 between 340 

TL and cat). However, the correlation between TL and metabolic marker was negative (r = -341 

0.58 between cs and TL, r = -0.39 between ldh-a and TL). 342 

Discussion 343 

1. Method validation 344 

As reviewed in Lai et al. (2018), the estimation of relative TL using the q-PCR method may 345 

be biased by inter-assays variations. By reproducing the same q-PCR amplification using two 346 

different plates as described in Appleby (2016), we showed that the operational variability 347 

was very limited in this study. Karyotype analysis of D. labrax revealed 24 pairs of 348 

chromosomes different in size as already demonstrated in the literature (Sola et al. 1993). In 349 

this study, we demonstrate the presence of interstitial telomeric sequences (ITS) in D. labrax. 350 

According to Ocalewicz et al. (2013), most of the pericentromeric and ITS in fish are possible 351 

relicts of chromosome fusion events. The occurrence of ITS may potentially reduce the 352 

sensitivity of the q-PCR method for TL measurement by adding a background noise, 353 

especially if small TL changes are expected. Due to their intrachromosomal position, several 354 

authors suggested that ITS do not shorten during DNA replication or in response to ageing or 355 

stress (Foote et al. 2013). According to a recent meta-analysis of Chatelain et al. (2020), the 356 

noise in telomere length resulting from interstitial repeats may not mask the differences in the 357 

length of end-cap telomeres between individuals, using the qPCR method or the TRF method. 358 

It would be interesting to use a quantitative technique such as Q-FISH (Lai et al. 2018) to 359 
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further explore the proportion of ITS vs terminal telomeric sequences and to determine 360 

whether the inter-individual variability of ITS is elevated in sea bass.  361 

For relative quantification, the choice of the reference gene may be crucial to improve the 362 

reliability of the T/R ratio calculation. While most studies used single copy genes as reference 363 

for relative TL calculation (Lai et al., 2018), Wang et al. (2013) demonstrated in single cells 364 

that a multicopy gene like 18S was more robust for this calculation. However, given that the 365 

variability among each group seemed to depend on the reference gene, we propose to use a 366 

single copy gene like mc2r to reduce bias due to the variations of a single specific reference 367 

gene. 368 

2. Telomere and cell dynamics in gills following FW exposure 369 

The use of TL as a biomarker for environmental stress exposure requires a tissue with active 370 

telomere dynamics. Previous study working on erythrocytes reported no difference in 371 

telomere length in D. labrax with age (Horn et al. 2008). Gill tissue has several interesting 372 

properties: a strong plasticity associated with high cell renewal and active cell division 373 

(Nilsson 2007; Tzaneva et al. 2014), the presence of MRCs suggesting an active cellular 374 

respiration and potential increased production of metabolic ROS by-products (Hwang and Lee 375 

2007). To our knowledge, the effect of salinity change on telomere dynamics has never been 376 

studied in euryhaline teleost. In this study, we were able to detect a significant TL reduction 377 

of about 50% in the gill of FW-I after only two weeks of freshwater stress. A strong inter-378 

individual variability in TL was observed, as expected in vertebrates (Dugdale and 379 

Richardson 2018; Toupance et al. 2019). This highlights that telomere dynamics in gill is 380 

quickly modified. In accordance to the hypothesis of Angelier et al (2019), TL was not 381 

maintained in fish whose survival is threatened, suggesting a trade-off between immediate 382 

survival and telomere protection.  383 
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Interestingly, the quick telomere attrition measured in FW-intolerant fish was correlated to a 384 

significant lower tert expression compared to FW-tolerant fish, suggesting an altered capacity 385 

to maintain TL in intolerant fish facing freshwater stress. Conversely, transfer from seawater 386 

to fresh water did not trigger any significant change in tert expression and TL in FWT. In 387 

European hake Merluccius merluccius and in Atlantic cod Gadus morhua, tert expression was 388 

found higher in early developmental stages suggesting an higher telomerase demand possibly 389 

linked with elevated tissue renewal and long-term cell proliferation capacity maintenance 390 

(López de Abechuco et al. 2014). However, there is no clear trend concerning the relationship 391 

between ageing and telomerase activity (Hatakeyama et al. 2008; Henriques et al. 2013; 392 

Saretzki 2018). Regarding cell dynamics, freshwater transfer is expected to increase cell 393 

population renewal associated with branchial epithelium remodelling occurring during hypo-394 

osmotic acclimation (Nilsson 2007; Masroor et al. 2018). We observed no significant changes 395 

in mRNA expression of cell dynamics markers of apoptosis casp8, casp9 or proliferation 396 

pcna in FW-T after 2 weeks of exposure. Most of the cellular changes have probably been 397 

completed in successfully acclimated D. labrax within 2 weeks of freshwater exposure (Nebel 398 

et al. 2005). In the gill of FW-I, casp8 and pcna levels were significantly down-regulated 399 

compared to the freshwater tolerant condition, suggesting a slowdown of cell dynamics in the 400 

gills of intolerant fish. This is consistent with the results of Carneiro et al. (2016), which 401 

observed a decreased cell proliferation in the gut and testis of tert-/- mutants zebrafish using 402 

PCNA immunostaining. Conversely, in cellular in vitro models, a link between tert 403 

overexpression, cell survival and increased cell proliferation has been shown (Dagarag et al. 404 

2004; Aubert and Lansdorp 2008). Given that we highlighted a correlation between cellular 405 

dynamics and telomere dynamics in D. labrax, we can hypothesise that the reduction of 406 

cellular dynamics observed in FW-I may be associated to a reduction of tert expression or 407 

telomerase activity. The reduction of cell dynamics in intolerant fish may be possibly due to 408 
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an exhaustion of energetic reserves allocated to osmoregulatory processes. Due to technical 409 

and ethical limitations regarding the number of individuals used for this study, no replication 410 

of freshwater and seawater treatment was performed. Therefore, we cannot exclude a batch 411 

effect between SW and FW fish or other confounding factor that may influence within salinity 412 

treatment response. 413 

3. Metabolism and antioxidant defences following freshwater exposure 414 

Freshwater exposure differentially affected energy metabolism and antioxidant enzymatic 415 

defences in D. labrax according to their individual freshwater tolerance capacity. Freshwater 416 

exposure significantly increased mRNA gene expression of the citrate synthase gene, a 417 

marker of aerobic metabolism. Acclimation of teleosts to different environmental salinities 418 

causes depletion of energy which is used to regulate the functioning of various highly energy-419 

consuming pumps and ion transporters in gill MRCs (Chang et al. 2007; Hwang and Lee 420 

2007; Tseng and Hwang 2008). In tilapia gill epithelial cells, Tseng et al. (2008) have shown 421 

that citrate synthase and LDH proteins were induced after transfer from FW to SW, 422 

confirming the active role of these enzymes to fuel active ion-pumping and fish 423 

osmoregulation. During salinity challenges either from SW to FW or from FW to SW, an 424 

increase in lactate contents and LDH activities has been reported in the gills of several 425 

euryhaline teleost fish (Vijayan et al. 1996; Polakof et al. 2006; Tseng et al. 2008) indicating 426 

the involvement of monocarboxylate metabolites in gill energy consumption during 427 

osmoregulation. In this study, no significant changes in mRNA expression of ldh-a could be 428 

inferred according to the Bonferonni adjusted p-value of 0.0169. Present mRNA gene 429 

expression data should be taken with caution since they do not reflect the concentration and/or 430 

activity of the related protein. Therefore, additional biochemical analyses (e.g. activity of key 431 

enzymes of aerobic and anaerobic metabolic pathways such as LDH, citrate synthase or 432 

citrate oxidase) would be necessary to confirm the hypothesis of a metabolic distress in FW-433 
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intolerant fish. But data from this and previous studies (Nebel et al. 2005; L’Honoré et al. 434 

2019, 2020) converge to this hypothesis. After two weeks in FW, the cost of acclimation is 435 

maintained elevated in FW-I compared to FW-T and SW. This is consistent with results of 436 

previous studies in sea bass showing that (i) intolerant fish over-absorbed ions in the gills to 437 

compensate a renal failure (L’Honoré et al., 2020), (ii) intolerant fish exhibit and 438 

overabundance of MRCs in gills (Nebel et al. 2005) and (iii) intolerant fish exhibit a change 439 

in gluco- and mineralocorticoids regulatory pathways, underlying impairment of hydro-440 

mineral balance and stress response regulation (L’Honoré et al., 2020). Thus, in species 441 

exhibiting intraspecific variability in abiotic stress tolerance such as salinity in killifish 442 

Fundulus heteroclitus (Scott and Schulte 2005), temperature (Ozolina et al. 2016) or hypoxia 443 

(Joyce et al. 2016) in D. labrax, differences in gill TL should be further investigated to test 444 

whether differential patterns of tolerance to physiological stress have consequence on 445 

telomere attrition, and possibly on tissue functioning as suggested by Carneiro et al. (2016). 446 

Mitochondria are widely recognized as a source of ROS in animal cells, where it is assumed 447 

that overproduction of ROS may conduct to an overwhelmed antioxidant system and 448 

oxidative stress (Quijano et al. 2016). Therefore, an elevated mitochondrial metabolism could 449 

increase the production of ROS and would therefore require an activation of anti-oxidant 450 

defences to maintain the oxidative balance. In this study, the expression of cat, sod1 or sod2 451 

genes, encoding enzymes involved in the main mitochondrial anti-oxidant defences, were not 452 

significantly modified after 2 weeks in freshwater in the gills of the tolerant fish compared to 453 

seawater controls. These results are consistent with Ghanavatinasab et al. (2019), where no 454 

significant difference in SOD and CAT were observed in yellowfin seabream Acanthopagrus 455 

sheim exposed for 2 weeks in 5 ppt water. However, a significant decrease in cat expression 456 

levels was measured in the gills of FW-intolerant sea bass compared to FW-tolerant and SW. 457 

This result suggests that telomere attrition in FW-intolerant fish could be due to an imbalance 458 
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between increased ROS production and downregulated antioxidant defences, leading to 459 

oxidative damage on telomeres in individuals with lower capacity to induce tert. But this 460 

hypothesis needs to be further explored by investigating pro-oxidants, other enzymatic and 461 

non-enzymatic anti-oxidant defences as well as oxidative damages.  462 

This study suggests that, in case of elevated physiological and metabolic stress, telomere 463 

repair is not prioritised and that energetic limitation has direct consequence on telomere 464 

maintenance. These results are consistent with the hypothesis of Angelier et al (2018) 465 

suggesting a trade-off between immediate protection and telomere maintenance. Additional 466 

evidence concerning energy metabolism, oxidative stress and damage would be necessary to 467 

support the preliminary results of this study. Another recent in vivo study highlighted that TL 468 

and metabolism are more tightly linked than initially thought (Casagrande and Hau, 2019). 469 

The results obtained in this study are in agreement with the metabolic telomere attrition 470 

concept proposed by Casagrande and Hau (2019), that assumes that TL attrition is strongest 471 

during times of energy limitation. Oxidative stress may also be at stake but the relationship 472 

between ROS production and mitochondrial energy production remains to be further 473 

investigated (Salin et al., 2015). In marine teleost, there is no evidence that hyposaline stress 474 

triggers oxidative stress as shown in hepatic tissue of D. labrax (Sinha et al. 2015) as well as 475 

in A. sheim gills (Ghanavatinasab et al. 2019). But again, the gill was poorly studied and a 476 

transient increase of production of metabolic ROS, as a by-product of cellular respiration 477 

cannot by excluded. According to these hypotheses, telomere dynamics can be considered as a 478 

major determinant for cell homeostasis.  479 

Finally, our results suggested that, in the wild, freshwater environment requiring active ionic 480 

regulation would potentially not represent a stress involving telomere shortening in fish 481 

having large salinity tolerance capacity, if salinity variation is considered solely. But in 482 

transitional waters, other environmental parameters are at stake. In particular, temperature and 483 
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hypoxia have been shown to upregulate TERT expression in testis and liver of medaka and 484 

decrease TL in muscle and fin in brown trout, respectively (Yu et al. 2006; Debes et al. 2016). 485 

Multi-stress experimental studies would be necessary to further understand the influence of 486 

abiotic factors on telomere length, but the results obtained from this study bring interesting 487 

information regarding the consequences of exposure to harsh low salinity conditions and the 488 

intra-specific variation in telomere dynamics on non-model fish vertebrates, which is of 489 

particular interest for ecologists in the context of global change. Therefore, an interesting 490 

perspective of this work would be to determine whether marked fluctuations of environmental 491 

parameters, such as those encountered in transitional waters, affect TL in the wild, in 492 

association with other life-history traits markers such as otolithometry in order to gain further 493 

information on age, growth rate and habitat (Darnaude and Hunter 2017; Bouchoucha et al. 494 

2018).  495 

Conclusion 496 

The q-PCR method performed in this study was efficient to detect relative telomere length 497 

changes in sea bass exposed to freshwater. Differences in telomere dynamics in the gills was 498 

linked with individual phenotypic plasticity related to freshwater tolerance. Lower telomere 499 

dynamics (telomere length and tert expression) in FW-I was correlated with a higher aerobic 500 

metabolism as well as a lower antioxidant defences.  501 
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Figure 1 Fluorescent in situ hybridisation (FISH) of metaphase chromosomes isolated from 

head-kidneys of 10 month-old European sea bass using the telomeric probe (TTAGGG)7 

labelled with Cy3 at its 5’ end, indicated by red colour. 2 males and 2 females were analysed 

with N = 3 slides per fish. Scale bar: 10µm 

Figure 2 Relative telomere length expressed as T/R ratio calculated using ∆∆Ct method 

normalised against the single copy gene mc2r in gills of 5 month-old sea bass maintained in 

seawater and after a transfer of 2 weeks in fresh water. Different letters denote significant 

differences between groups (Mann-Whitney test, Bonferroni-corrected P < 0.0167, means ± 

s.e.m, N=10-14). SW: control fish in seawater, FW-T: FW-tolerant fish, FW-I: FW-intolerant 

fish 

Figure 3 Relative mRNA expression of genes involved in telomere maintenance (a), cell 

proliferation (b) and apoptosis (c, d) in the gill of 5 month-old sea bass maintained in 

seawater (SW) or exposed for 2 weeks to fresh water (FW-T and FW-I). (a) telomerase 

catalytic subunit tert (b) proliferation cell nuclear antigen pcna (c) caspase 8 casp8 (d) 

caspase 9 casp9. The mRNA expression was calculated using the ∆∆Ct method with SW as 

a reference and normalised according to the expression of two reference genes l13 and 18S. 

Different letters denote significant differences between phenotypes (Mann-Whitney test, 

Bonferroni-corrected P < 0.0167, means ± s.e.m, N=10-15). SW: control fish in seawater, 

FW-T: FW-tolerant fish, FW-I: FW-intolerant fish 

Figure 4 Relative mRNA expression of genes involved in antioxidant defence (a, b, c) and 

metabolism (d, e) in the gill of 5 month-old sea bass maintained in seawater (SW) or 

exposed for 2 weeks to fresh water (FW-T and FW-I). (a) superoxide dismutase 1 sod1 (b) 

superoxide dismutase 2 sod2 (c) catalase cat (d) ATP citrate synthase cs (e) lactate 

dehydrogenase a (ldh-a). The mRNA expression was calculated using the ∆∆Ct method with 

SW as a reference and normalised according to the expression of two reference genes l13 

and 18S. Different letters denote significant differences between groups (Mann-Whitney test, 

Bonferroni-corrected P < 0.0167, means ± s.e.m, N=10-15). SW: control fish in seawater, 

FW-T: FW-tolerant fish, FW-I: FW-intolerant fish 

Table 1 Primer sequences used for relative telomere length and gene expression analysis 

Table 2 Spearman r-correlation matrix. Asterisks denotes significant r using P < 0.05. 











Target gene Primer 

name 

Sequences ID Sequence (from 5’ to 3’)  Efficiency Reference 

pcna PCNA F DLAgn_00120330 CAGAGCGGCTGGTTGCA 1.7 Sadoul et al., 2018 

 PCNA R  CACCAAAGTGGAGCGAACAA   

tert TERT F DLAgn_00199170 GGGTCAGGGGCTTCTTGTAC 2.1 This study 

 TERT R  AGAAACAGGCTCGAACCAGG   

casp8 CASP8 F FJ225665 TGTCAGGGAAGCCTCTACCA 2.1 Paiola et al., 2018 

 CASP8 R    CATCCCCAGCAGGAAGTCAG   

casp9 CASP9 F DQ345775   CGAATGCAACCGAGCACAAA 1.9 Paiola et al., 2018 

 CASP9 R  ACTAACGACCGCCAATGAGG   

tel TEL G  ACACTAAGGTTTGGGTTTGGGTTTGGGTTTGGGTTAGTGT 2 Cawthon et al., 2009 

 TEL C  TGTTAGGTATCCCTATCCCTATCCCTATCCCTATCCCTAACA 2  

l13 L13 F DT044539 TCTGGAGGACTGTCAGGGGCATGC 2 Mitter et al., 2009 

 L13 R  AGACGCACAATCTTGAGAGCAG   

mc2r MC2R F    FR870225    CATCTACGCCTTCCGCATTG 2 Samaras &  Pavlidis, 

2018 



 MC2R R     ATGAGCACCGCCTCCATT   

18s 18S F KU820862 AGGAATTGACGGAAGGGCAC 2 Masroor et al., 2018 

 18S R  TAAGAACGGCCATGCACCAC   

sod1 SOD1 F DLA_LG14_005480 AACCATGGTGATCCACGAGA 1.9 Chang et al, 2021 

 SOD1 R  ATGCCGATGACTCCACAGG   

sod2 SOD2 F DLAgn_00071530 TGCCCTCCAGCCTGCTCT 1.7 Chang et al, 2021 

 SOD2 R  CTTCTGGAAGGAGCCAAAGTC   

cat CAT F DLAgn_00171080 TGCTGAATGAAGAGGAGCGC 2 This study 

 CAT R  ACAGCCTTCAAGTTCTGCAAC   

cs CS F DLAgn_00102430 TGGCGTCTATGAAAGTGTGG 1.9 This study 

 CS R  CTGAAGTGAACATGGTGGCG   

ldh-a LDHA F DLAgn_00166080 TGACGCTGAGAACTGGAAGG 2 This study 

 LDHA R  GTGCAGGTTCTTGAGGATGC   

 



Body length (cm) Body mass (g) TL (tel/mc2r) tert pcna Casp8 casp9 sod1 sod2 cat cs ldh-a 

Body length (cm) 1,00 

Body mass (g) 0,96* 1,00 

TL (tel/mc2r) 0,26 0,18 1,00 

tert 0,16 0,18 0,48* 1,00 

pcna 0,23 0,31* 0,48* 0,31 1,00 

casp8 0,06 0,10 0,38* 0,64* 0,48* 1,00 

casp9 0,01 0,00 0,21 0,47* 0,28 0,78* 1,00 

sod1 0,00 0,15 -0,28 -0,05 0,52* 0,15 0,14 1,00 

sod2 0,24 0,23 0,18 0,66* 0,31 0,60* 0,57* 0,15 1,00 

cat 0,49* 0,44* 0,59* 0,26 0,28 0,18 0,06 -0,17 0,24 1,00 

cs -0,31 -0,22 -0,58* 0,11 -0,09 0,45* 0,52* 0,12 0,34 -0,66* 1,00 

ldh-a -0,30 -0,21 -0,39* -0,12 -0,38* -0,04 -0,13 0,02 -0,15 -0,26 0,48* 1,00 
 




