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REVIEW

The role of mechanistic physiology in investigating impacts
of global warming on fishes
Sjannie Lefevre1,*, Tobias Wang2 and David J. McKenzie3

ABSTRACT
Warming of aquatic environments as a result of climate change is
already having measurable impacts on fishes, manifested as
changes in phenology, range shifts and reductions in body size.
Understanding the physiological mechanisms underlying these
seemingly universal patterns is crucial if we are to reliably predict
the fate of fish populations with future warming. This includes an
understanding of mechanisms for acute thermal tolerance, as
extreme heatwaves may be a major driver of observed effects. The
hypothesis of gill oxygen limitation (GOL) is claimed to explain
asymptotic fish growth, and why some fish species are decreasing in
size with warming; but its underlying assumptions conflict with
established knowledge and direct mechanistic evidence is lacking.
The hypothesis of oxygen- and capacity-limited thermal tolerance
(OCLTT) has stimulated a wave of research into the role of oxygen
supply capacity and thermal performance curves for aerobic scope,
but results vary greatly between species, indicating that it is unlikely to
be a universal mechanism. As thermal performance curves remain
important for incorporating physiological tolerance into models, we
discuss potentially fruitful alternatives to aerobic scope, notably
specific dynamic action and growth rate. We consider the limitations
of estimating acute thermal tolerance by a single rapid measure
whose mechanism of action is not known. We emphasise the
continued importance of experimental physiology, particularly in
advancing our understanding of underlying mechanisms, but also the
challenge of making this knowledge relevant to the more complex
reality.

KEY WORDS: Critical thermal maximum, CTmax, Metabolism,
Scope for activity, Temperature tolerance

Introduction
Global warming is accelerating at an alarming rate, causing
progressive elevations of seasonal temperatures and also wider
thermal variation, with increased frequency of extreme heatwaves
(Frölicher et al., 2018; Collins et al., 2019). The responses to climate
warming by animal populations are commonly divided into three
‘universal’ phenomena. Firstly, there is a seasonal change in timing
of life cycle events, for example earlier spawning or longer
reproductive seasons (Poloczanska et al., 2013; Crozier and
Hutchings, 2014; Myers et al., 2017; Rogers and Dougherty,
2019). Secondly, there are latitudinal shifts in species distributions,
notably a poleward invasion by temperate and sub-tropical species

(Parmesan and Yohe, 2003; Perry et al., 2005; Hickling et al., 2006;
Poloczanska et al., 2013). The third phenomenon is a reduction in
average body size, due to a decline in final adult size and increases
in the proportion of younger and smaller individuals (Daufresne
et al., 2009; Gardner et al., 2011; Audzijonyte et al., 2020). The
increased frequency, intensity and duration of heatwaves is,
however, considered to be the major challenge for the survival
and fitness of aquatic ectotherm fauna (Vasseur et al., 2014;
Buckley and Huey, 2016; Williams et al., 2016; Stillman, 2019).
Indeed, mortality events of fishes after unusually high summer
temperatures and heatwaves are increasingly documented in
freshwater and marine habitats (Gunn and Snucins, 2010; Hinch
et al., 2012; Pearce and Feng, 2013; Till et al., 2019). The
mechanisms underlying all of these phenomena are not understood,
but will be based on physiological functions and responses by
individual animals, so experimental biology holds much promise in
advancing the understanding of global warming impacts on fishes
(Wang and Overgaard, 2007; Pörtner and Farrell, 2008; Pörtner and
Peck, 2010; Huey et al., 2012; Seebacher and Franklin, 2012;
Seebacher et al., 2015; Stillman, 2019).

The study of fish thermal physiology has a long history and much
is now understood about fundamental mechanisms underlying
biochemical and physiological responses to temperature changes
(Fry, 1958; Cossins and Bowler, 1987; Prosser and Heath, 1991;
Schulte, 2011; Currie and Schulte, 2014; Little et al., 2020). There
are relatively long-standing theories about the universal principles
that would define how water temperature influences the physiology
of fishes and, consequently, determines their performance in their
environment. Two theories in particular have been actively
promulgated to the scientific community, decision makers and
media. These are the ‘gill oxygen limitation’ (GOL; Pauly, 1981)
and ‘oxygen- and capacity-limited thermal tolerance’ (OCLTT;
Pörtner, 2001; 2010) hypotheses. Fishes are valuable resources,
from food to tourism, and negative effects of global warming on
their populations threaten many ecosystem services globally.
Research into the thermal physiology of fishes has therefore
intensified, with particular focus on evaluating how temperature
affects physiological performance and on defining thermal
tolerance. This research has contributed greatly to our knowledge
and understanding, but has also provoked vivid controversy about
the validity and universality of the GOL and the OCLTT paradigms,
and animated discussions on proper experimental methods and
strategies, particularly regarding the design of protocols to evaluate
thermal tolerance in fishes. Here, the evidence is reviewed for and
against the GOL and OCLTT models, with emphasis on the latter.
Experimental physiologists have focused heavily on the use of
aerobic scope to develop thermal performance curves (TPCs), in the
specific context of the OCLTT. We consider the value of TPCs that
use traits of physiological energetics, to broaden future
experimental research. The limitations of the critical thermal
protocol are reviewed, considering the various mechanisms that
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Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000
Montpellier, France.

*Author for correspondence (sjannie.lefevre@imbv.uio.no)

S.L., 0000-0003-0865-0561; D.J.M., 0000-0003-0961-9101

1

© 2021. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2021) 224, jeb238840. doi:10.1242/jeb.238840

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:sjannie.lefevre@imbv.uio.no
http://orcid.org/0000-0003-0865-0561
http://orcid.org/0000-0003-0961-9101


can be involved in morbidity and mortality from thermal stress on
different time scales. The review concludes by considering the value
of laboratory and field studies, in understanding mechanisms of
thermal tolerance in fishes and the physiological impacts of global
warming on natural populations.

Universal patterns – universal explanations?
The GOL paradigm has been proposed as a universal physiological
mechanism to explain the global decline in adult size of many fish
species (Pauly, 1981; Cheung et al., 2012). The OCLTT hypothesis
has a much broader scope; it seeks to explain all elements of thermal
tolerance in fishes, by defining their ability to perform over their
natural thermal range (or when exposed to future warming
scenarios), as well as their absolute upper and lower tolerance
boundaries (Pörtner, 2010). Both paradigms focus on
cardiorespiratory physiology and the capacity to supply oxygen
for aerobic metabolism when fishes are warmed. The basic premise
is that, because water is relatively poor in oxygen, meeting
requirements for aerobic metabolism may become challenging
when metabolic rate is raised by warming. There are, however,
distinct mechanistic physiological details to each model, and
distinct reasons why they are the focus of controversy.

The gill oxygen limitation paradigm
That adult body size decreases in fish grown at warm temperatures is
fairly well established based on laboratory and field measurements
(Audzijonyte et al., 2019; Hume, 2019; Loisel et al., 2019), and is
referred to as the temperature–size rule (TSR; Atkinson, 1994). The
mechanisms underlying the TSR remain to be understood and have
been carefully reviewed (Verberk et al., 2021). Although initial
theories focused on life history traits (Angilletta and Dunham, 2003;
Angilletta et al., 2004; Arendt, 2011), there has been growing
interest in a potential role for oxygen supply in fishes, stimulated to
some extent by the GOL paradigm (Hoefnagel and Verberk, 2015;
Leiva et al., 2019; Rubalcaba et al., 2020; Verberk et al., 2021). The
GOL model proposes that, as fishes grow, body volume increases
proportionally more than gill respiratory surface area, due to
geometric volume-to-surface scaling of spherical bodies. Fishes
would therefore become increasingly less able to meet their oxygen
requirements as they grow and are proposed to reach maximum size
when their gills can only meet oxygen demands of basal metabolism.
That is, larger fish would eventually have no aerobic scope (AS),
which is defined as the capacity to provide oxygen for all aerobic
activities beyond basal maintenance (Fry, 1971). Such activities
include tissue anabolism and growth (Pauly, 1981; Cheung et al.,
2011). As warming raises basal oxygen demands, the GOL model
predicts that the limited branchial capacity for oxygen uptake would
occur at smaller maximum sizes, and has therefore been used to
project global declines in fish size in a warmer future (Cheung et al.,
2011, 2012; Pauly and Cheung, 2017).
The GOL model is not, however, supported by physiological

knowledge or data. Fish gills are folded surfaces, and there is no
theoretical support for the notion that they suffer from surface-to-
volume constraints of spherical bodies (Lefevre et al., 2017, 2018).
Data on multiple fish species show that AS does not decline with
mass (Killen et al., 2016; Lefevre et al., 2017; Audzijonyte et al.,
2019; Blasco et al., 2020a preprint). The model also disregards
universal allometric scaling of basal metabolic rate with mass in
animals (Schmidt-Neilsen, 1982; Killen et al., 2010). Many studies
focus on food limitation as the causative factor for declining fish
sizes in the field (Morita et al., 2015; Myrvold and Kennedy, 2015;
Dantas et al., 2019; Huret et al., 2019; Queiros et al., 2019).

Reduced size with warming may also reflect changes to life history
traits that cause an earlier shift from investment in somatic growth to
investment in reproduction, resulting in smaller asymptotic size
(Audzijonyte et al., 2016; Audzijonyte and Richards, 2018).

Although the GOL model is fundamentally flawed, this does not
mean that oxygen supply as such might not be one factor underlying
the TSR in water-breathing ectotherms (Atkinson et al., 2006;
Hoefnagel and Verberk, 2015; Leiva et al., 2019; Rubalcaba et al.,
2020; Verberk et al., 2021). The theory of ‘maintain aerobic scope
and regulate oxygen supply’ (MASROS) proposes that evolution
has modified growth trajectories to avoid oxygen limitation at warm
temperatures. If warming causes standard metabolic rate (SMR;
basal metabolic rate at the temperature) to rise more steeply with
mass than maximum metabolic rate (MMR; maximum rate of
oxygen consumption at the temperature), this will reduce AS
(calculated as MMR–SMR) with increasing mass. If AS is lower at
high temperatures, fishes may limit some oxygen-demanding
activities, like foraging and growth, if these would constrain their
ability to face transient demanding conditions such as disease,
episodes of hypoxia or predator attack (Atkinson et al., 2006;
Verberk et al., 2021). Modelling provides some support for this,
indicating that oxygen supply capacity might decline with body
mass in aquatic ectotherms at warm temperatures (Rubalcaba et al.,
2020). Such modelling is, however, largely based on metabolic data
that were collated from separate studies. Datasets that include
several temperatures and a sufficiently large range of body masses
for a single species, to determine the scaling exponents for
metabolic traits accurately, are very rare. In Atlantic cod Gadus
morhua, Tirsgaard et al. (2015) found that SMR rose more steeply
thanMMRwith mass at warm temperatures (15 and 20°C) but not at
cooler ones (2, 5 and 10°C), but the slope for MMR did not decline
at higher temperature. In European perch Perca fluviatilis, the slopes
for MMR and AS did appear to be lower at 28°C compared with
20°C, and Christensen et al. (2020) concluded that a reduction in AS
at the optimal temperature (ASTopt) with body size was due to
limitations of gas transfer. Messmer et al. (2017) found that the
slope for MMR was significantly higher at 33°C than at 28.5°C,
while the slope for AS did not differ. Although more studies of this
nature are clearly needed, the examples illustrate that caution is
warranted when using cross-species data to model the response of
individual species. Overall, the MASROS theory still awaits
concrete evidence.

If constraints on oxygen supply do occur with increasing size in
aquatic ectotherms, this might render larger animals less able to
perform aerobic activities at warm temperatures (Rubalcaba et al.,
2020). It is interesting, therefore, that acute thermal tolerance
declines with body size in many fish species (reviewed by
McKenzie et al., 2020). Blasco et al. (2020a preprint) evaluated
the capacity of Nile tilapiaOreochromis niloticus to perform intense
aerobic exercise when acutely warmed and found a negative
relationship between body mass and the temperature at which
animals fatigued. This was linked to a very significant mass-related
decline in MMR achieved at fatigue, which may indicate that the
warming challenge revealed constraints on capacity for oxygen
supply in larger animals (Blasco et al., 2020a preprint). Effects of
mass on oxygen supply capacity, and potential links to tolerance of
warming, are therefore topics for further research.

The oxygen- and capacity-limited thermal tolerance paradigm
Although the OCLTT paradigm has been proposed as a universal
explanation for the influence of temperature on performance in
fishes (Pörtner, 2010), the hypothesis is intensely debated with
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various reviews and experimental studies voicing major criticisms
(Clark et al., 2013; Pörtner, 2014; Farrell, 2016; Jutfelt et al., 2018).
The OCLTT paradigm is directly based on the Fry paradigm that
describes a TPC for AS in fishes (Fry, 1947, 1971). Briefly, fishes
are exposed (either acutely, acclimated or acclimatised) to a range of
temperatures, then SMR and MMR are measured by respirometry,
to calculate AS (Fry, 1971). In the Fry and OCLTT paradigms, a
unimodal curve for AS is expected due to the assumed differential
thermal responses of SMR and MMR: SMR would increase
exponentially due to direct kinetic effects, while the increase in
MMR is assumed to increase up until a maximum extent defined by
cardiorespiratory capacity, beyond which it increases no further
[Fry, 1971; see explanatory figures in McKenzie et al. (2016)
and Pörtner (2010)]. This would then reveal the temperature where
AS is maximal, which would presumably be the optimal
temperature (Topt,AS) for physiological performance. The TPCs for
AS have been reported in many species, with MMRmeasured either
in a swimming respirometer or by chasing to exhaustion. Indeed,
swimming or chasing fish to exhaustion has become the norm to
describe AS for most fish physiologists.
It seems intuitive that aerobic capacity is linked to Darwinian

fitness, as fish will die if unable to escape from predators or unable
to forage and feed. Moreover, although fish can survive for some
time without allocating energy to growth and reproduction, both are
essential for fitness. Fitness is, however, the outcome of a complex
interplay among physiology, behaviour and ecology. Thus, while it
may seem straightforward to assume that any reduction in AS will
reduce fitness (Fry, 1971; Pörtner and Farrell, 2008), direct evidence
is lacking. Furthermore, different species have different life histories
and many may rarely utilise their full AS, making it a complex task
to predict how short- or long-term reductions in AS affect fitness in
the wild. In addition to the problems of linking AS to fitness, the

universality of the OCLTT hypothesis is questioned by empirical
data. Many species do not show a unimodal TPC for AS, and
maintain high AS until very close to critical temperatures (Lefevre,
2016; see Table S1). Within a large diversity of species (Fig. 1) it is
clear that, in some, AS does decrease at high temperatures, but in
others, AS increases across the entire thermal tolerance range, while
numerous species maintain AS over a broad range of biologically
relevant temperatures. The shape of the TPC for AS could depend
on many factors, such as life stage, climatic region and abiotic
habitat characteristics. Methodological issues may also be
significant. We explored these possible variables using a multiple
correspondence analysis (MCA; Fig. 2) and, although there are
major disparities among studies (Fig. 2A), there are some interesting
tendencies.

Adults tend to reduce AS, while juveniles tend to maintain or
increase AS (Fig. 2B). A greater resilience of juveniles in terms of
sustaining AS under exposure to environmental stressors has also
been observed for the effect of elevated CO2 (Lefevre, 2019),
although interpretation is complicated by the limited number of
studies on different life stages of the same species. In sockeye
salmon Oncorhynchus nerka, reduced AS with warming has been
reported regardless of life stage (Brett, 1964; Lee et al., 2003;
Eliason et al., 2011); in common triplefinForsterygion lapillum, AS
is reduced in juveniles (McArley et al., 2018), but effects were
mixed in adults (Khan and Herbert, 2012; Khan et al., 2014).

Regarding region and temperature range (Fig. 2C), some polar
species tend to reduce AS (Lowe and Davison, 2006; Seth et al.,
2013) while others maintain it (Seth et al., 2013; Drost et al., 2016;
Kunz et al., 2018). Sub-tropical species more often maintain
(Marras et al., 2015; Fu et al., 2018; Laubenstein et al., 2018;
Frenette et al., 2019; Mohammadi et al., 2019) or increase AS (Fry,
1947; Claireaux et al., 2006; Tu et al., 2012; Pang et al., 2016; Zhou
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Fig. 1. Taxonomic orders to which
species in different studies belong.
For each study, it was determined
whether the aerobic scope at the
highest temperature used was
decreased, increased or maintained
compared with the temperature at
which it was maximised. Compared
with the number of species in the order,
salmonids stand out as having been
studied particularly often. The large
number of studies on Perciformes is not
surprising given that the order
comprises almost a third of all fish
species. The plot was generated using
circlize (v.0.4.12; Gu et al., 2014;
https://cran.r-project.org/
package=circlize) with R (v.4.0.2;
https://www.r-project.org/) in RStudio
(v.1.3.1093; https://rstudio.com/). All
collected details and references are
available in Tables S1 and S2.
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et al., 2019; Crear et al., 2019, 2020). This pattern may reflect that
sub-tropical species are more likely to occur over a broad temperature
range with larger variations and thus be eurythermal, while polar and
tropical species are adapted to a more narrow temperature range and
are typically considered stenothermal. A cross-species analysis found
that species with higher Topt,AS also tended to have a relatively higher
ASTopt, but there was no correlation, and hence no trade-off, between
this ASTopt and breadth of the thermal range (Nati et al., 2016).
While one might not expect salinity itself to play a major role in

how temperature affects AS, the majority of freshwater fishes studied
maintain or increase AS, while AS is reduced in half the marine
species studied (Fig. 2D; Table S1). This may be a result of many
freshwater species living in more variable thermal environments (i.e.
lakes or rivers) than most marine species. Some of the most heat-
tolerant freshwater species, in terms of AS, are the barramundi Lates
calcarifer that maintainAS from23 to 38°C (Norin et al., 2014, 2016;
Gomez Isaza et al., 2019), the hot-springs population of lake Magadi
tilapia Alcolapia grahami with highest AS at 39°C (Wood et al.,
2016), and central stoneroller Campostoma anomalum and Southern
redbelly dace Chrosomus erythrogaster that maintain AS from 10 to
30°C (Frenette et al., 2019). Most of the marine species that decrease
AS are tropical coral reef cardinalfishes (Apogonidae) and
damselfishes (Pomacentridae) (Nilsson et al., 2009; Gardiner et al.,
2010; Rummer et al., 2014; Motson and Donelson, 2017;
Laubenstein et al., 2019). Other marine species seem more resilient
(Duthie, 1982; Mallekh and Lagardere, 2002; Marras et al., 2015;
Mazloumi et al., 2017; Laubenstein et al., 2018; Crear et al., 2019,
2020; Bouyoucos et al., 2020; Table S1).

In addition to biological factors inherent to each species, there are
methodological factors that may influence study outcomes. There is a
problem of researchers using poor experimental methods, despite
numerous papers describing best-practices (Clark et al., 2013;Norin and
Clark, 2016; Rummer et al., 2016; Svendsen et al., 2016). Studies with
flawed respirometry are obviously unsound and pollute the literature
with invalid data, irrespective of how highbrow the hypothesis and
impactful the journal. Common flaws include very short recovery times
after handling, no mixing devices in respirometers, and very short
measurement periods to estimate metabolic traits. Ideally, fish should
not be air-exposed when transferred, given at least 4 h recovery
(overnight is best), then measured for at least 24 h.

Beyond these methodological faux pas, the form of an AS curve
may be affected by the choice of exposure temperatures, especially
how these relate to the acclimation (or acclimatisation) temperature
and the natural thermal range of the species. The number of test
temperatures is often limited, due to the labour-intensive and
lengthy nature of respirometry, and criteria for selecting the highest
temperature vary among studies. In roughly a third of studies, upper
temperature was based on climate change projections, while in
another large group, upper temperature was based on current
average maxima. A limited number of studies used temperatures that
are either lower or higher than the ecologically relevant range
(Table S1). Not surprisingly, in studies where the highest chosen
temperature is lower than the maximum of the natural thermal range,
AS increases with temperature, although this pattern can also be
observed for some species exposed to temperatures that exceed their
ecologically relevant maximum (Fig. 2E).
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A keymethodological constraint for laboratory experiments is the
difficulty of replicating the time scale at which climate change is
occurring, which questions their ecological validity. The general
expectation is that longer acclimation should be beneficial, giving
the fish time to make compensatory physiological modifications
that enable AS to be maintained over a broad range of temperatures,
i.e. reduced SMR and/or increased MMR in acclimated versus non-
acclimated individuals. In other words, longer acclimation periods
make it less likely to find a decline in AS at upper temperatures
(Lefevre, 2016). The number of studies using an acclimation period
of several weeks and even months has now increased (Habary et al.,
2017; Motson and Donelson, 2017; Slesinger et al., 2019; Vagner
et al., 2019; Zhou et al., 2019), although studies using
transgenerational and developmental acclimation remain quite
rare. In three coral reef wrasses (Labridae), AS at elevated
temperature did not improve with developmental exposure, and
the samewas the case for spiny chromis damselfish Acanthochromis
polyacanthus (Laubenstein et al., 2019), although in this case AS at
elevated temperature was restored with transgenerational
acclimation (Munday et al., 2017). Transgenerational studies on
reproduction, growth and size (Salinas and Munch, 2012; Shama
et al., 2014; Donelson and Munday, 2015; Donelson et al., 2016;
Loisel et al., 2019) indicate that there is potential for adaptation of
these traits, even in the most sensitive species. In addition to
exploring the role of transgenerational acclimation on whole-animal
performance, epigenetics and gene expression analyses are
increasingly being probed to gain insights into underlying
mechanisms (Veilleux et al., 2015; Bernal et al., 2018; Chen
et al., 2018; Metzger and Schulte, 2018; Ryu et al., 2018, 2020).
Another means of making temperature treatments more realistic is to
use a fluctuating regime; in lake trout Salvelinus namaycush the AS
of fish held and measured at 10°C was significantly improved by
daily short exposures to 17°C (Guzzo et al., 2019). When
considering the data collectively, the inclusion of more long-term
studies does not, however, reveal a clear effect of time scale of
acclimation (Fig. 2F). That is, among studies that compared acute
and longer acclimation periods, there are several cases where AS at
high temperatures is lower after longer acclimation. For example,
barramundi increased MMR and AS with an acute temperature
increase from 23°C and were highest at the highest temperature of
38°C, largely due to a faster increase in MMR then SMR. However,
after 5 weeks of acclimation, AS at 29 and 38°C was similar, mainly
due to a reduction in MMR (Norin et al., 2014). A very similar
pattern was observed in black sea bass Centropristis striata
(Slesinger et al., 2019). In common triplefin, there was a
reduction in AS after 12 weeks at 24°C, but AS was higher after
4 weeks of acclimation (Khan et al., 2014; McArley et al., 2017).
Looking at an even longer perspective, in populations of three-
spined stickleback (Gasterosteus aculeatus) with different
evolutionary thermal histories, fish from warmer lakes often had
lower AS than fish from colder lakes, and the response to
acclimation was more consistent across populations from warmer
lakes (Pilakouta et al., 2020). More studies are necessary to confirm
this pattern, but it raises a question regarding AS and MMR as
measures that are assumed to be set by limitation. If it is beneficial
to have higher AS at higher temperature, and it is evidently
physiologically possible for fishes to achieve a higher AS (i.e. the
cardiorespiratory system is capable of delivering the oxygen
needed), then why, in some cases, does MMR decline with time?
Perhaps there are costs of having a high MMR (e.g. a large
respiratory surface area increases infection risk and need for ion
regulation), which may be higher at high temperature, such that if

the achievable maximum is not actually needed to achieve sufficient
oxygen supply, it is more beneficial to reduce MMR slightly.

Recently it has been argued that AS, as measured in most of the
studies discussed above, is not an appropriate measure of aerobic
capacity and that ‘Analyses of the OCLTT should mimic natural
conditions and consider routine activities displayed by the animal in
the field, as well as minimising stress phenomena that would
transiently mobilise functional reserves’ (Pörtner et al., 2017). In
other words, the MMR and AS measured during exercise in the
laboratory over-estimate the aerobic capacity a fish would have
under ‘routine’ conditions, for their activities in the wild. Pörtner
et al. (2017) suggest ‘functional capacity’ and ‘functional scope’ as
more relevant terms, although it is unclear how this performance
should be measured in the laboratory to allow for experimentation
and hypothesis testing. The boundaries for AS, as it is most
commonly measured, are easy to interpret. The maximum (MMR) is
the maximum oxygen supply rate, whether this reflects limitation or
optimisation of cardiorespiratory systems. The minimum (SMR) is
set by the minimum oxygen uptake needed to sustain basal life
functions. That routine oxygen demand or ‘functional scope’would
be supply limited is not intuitive, given the knowledge we have of
both the long-term plasticity (acclimation) and ability to increase,
e.g. respiratory surface area. It should also be noted that in the above
analyses (Figs 1 and 2), for simplicity, the degree of reduction in AS
has not been taken into account, but obviously varies (Lefevre,
2016). According to the OCLTT hypothesis, any reduction would
represent a reduction in fitness, but this mechanistic link remains
hypothetical.

Overall, it is clear from the growing number of papers that AS,
measured by traditional means using enforced exercise, is not
universally limited at warm temperatures, even if the OCLTT
paradigm holds true for some salmonids and coral reef species
(Table S1). There has been further debate on the hypothesis and its
underlying principles (Pörtner et al., 2017; Jutfelt et al., 2018), but
the current empirical data represent incontrovertible evidence that
the OCLTT paradigm is not a universal principle underlying heat
tolerance in fishes.

Using the OCLTT paradigm in modelling
If, however, the OCLTT paradigm holds for a species, and there is a
clear Topt,AS within the ecologically relevant temperature range, then
it can be a very useful tool for predicting impacts of global warming
(Eliason et al., 2011), although an explicit link between AS and
fitness remains to be demonstrated for any fish species. The form of
AS curves has been used to explain ongoing effects of warming
such as changes in fish population abundance (Pörtner and Knust,
2007), failure of reproductive migrations (Eliason et al., 2011) and
the spread of invasive species (Marras et al., 2015). The OCLTT has
also been used as a basis for modelling, for example of growth in the
field. Moyano et al. (2020) measured the Arrhenius breakpoint
temperature and critical temperature for heart rate of Atlantic herring
Clupea harengus in the laboratory, and showed that the number of
days that temperature had been above this temperature over the past
20 years correlated with growth in the field over that period. The
authors argue that these traits can therefore project further changes
expected from ocean warming.

That aerobic capacity can be limiting is theoretically conceivable,
given that ATP production must be aerobic to be sustainable.
Whether this is limiting in practice for fish in the wild is another
question, considering all the other factors that affect energy budgets
and survival. Modelling distribution based on a TPC and projected
temperature, regardless of which performance measure is used, may
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indicate the absolute theoretical physiological limit for the
distribution of a species, which can then reveal that certain areas
may become uninhabitable. Dahlke et al. (2017) measured egg
survival for polar cod Boreogadus saida and Atlantic cod at various
temperatures in the laboratory, and then mapped potential egg
survival (PES) across the seas in the North, using information about
known spawning sites from 1985 to 2004 as a baseline. They then
projected changes in the PES across the region, concluding that
suitable spawning habitat would shrink. The authors also measured
oxygen uptake of the eggs over the same temperature range as egg
survival was measured, but while egg survival dropped from 80% at
6°C to 40% at 9°C, oxygen uptake was highest at 9°C, and
maintained at 12°C, where egg survival was almost zero. In this
case, a limitation in oxygen supply would not seem to explain the
reduced survival at 9°C. It could be contributing at 12°C, but
without other measurements (e.g. anaerobic end-products, oxygen)
it is difficult to separate cause and effect. As spawning is a crucial
event in the life history of fishes, constraints on this stage are
obviously important. The problem of spawning habitat contraction
expected from ocean warming was recently emphasised using a
multi-species analysis (Dahlke et al., 2020), where the patterns were
attributed directly to OCLTT although it is not clear why, based on
the information provided.
Rather than temperature effects on capacity for oxygen supply

itself, Deutsch et al. (2020) argue that a metabolic index, which
includes hypoxia tolerance, may explain boundaries of the
geographical ranges of species, somewhat similar to the ‘oxygen-
and temperature-limited metabolic niche’ framework proposed by
Ern (2019). Although these examples illustrate that it is certainly
possible to model and project changes in distribution ranges using
physiological traits, wider applicability is less certain. For many
species, a 1–2°C increase in temperature would probably not restrict
the theoretical physiological maximum for the distribution but,
rather, expand it. Whether a species will actually be able to take
advantage and expand its range depends on many other factors in
addition to physiological performance, such as habitat and food
requirements (e.g. Feary et al., 2014). For many species, the
adaptation capacity is unknown, as is the relative importance of
different selection pressures (Crozier and Hutchings, 2014).

Thermal performance curves based on physiological
energetics
Despite the controversy surrounding OCLTT, the TPC is a valuable
concept in understanding thermal tolerance in fishes, towards
predicting future effects of global warming. TPCs do require
significant manpower, infrastructure and time, but it seems clear that
long-term studies are essential for climate change research. For
ectothermic fishes, all TPCs may share some common features,
notably that performance and scope for activity are low at the cold
end of the thermal range, but they then increase with warming due to
thermodynamic effects of water on biochemical and physiological
reactions (Schulte et al., 2011; Currie and Schulte, 2014). Why (and
if ) different performance measures decline beyond an optimum is a
more complex question, and mechanisms may differ depending
upon the trait in question (Clark et al., 2013). Furthermore, life
history, morphological and physiological differences among
species are likely to determine the ecological relevance of a given
trait and therefore the usefulness of its TPC in investigating
responses to climate warming at the population level (Clark et al.,
2013). There are TPCs based upon traits of cardiorespiratory
physiology other than AS. Aerobic locomotor performance curves
may be interesting for active species (Bennett, 1990; Claireaux

et al., 2006; Pang et al., 2013; Pang et al., 2016). Cardiac
performance curves (Casselman et al., 2012; Anttila et al., 2014;
Ferreira et al., 2014) are quick to perform but focus on a single organ
and results are always interpreted in relation to the OCLTT. Here we
consider TPCs for traits of physiological energetics, which rely on
the integrated function of multiple organ systems, have an outcome
that is readily related to fitness, and may apply to fishes of all
lifestyles.

Specific dynamic action
The specific dynamic action of food (SDA) response is the
ubiquitous and transient rise in metabolism during digestion, and
probably has both ecological and evolutionary relevance because it
reflects processes and costs of nutrient handling, tissue turnover and
deposition, hence growth (Jobling, 1994; McCue, 2006; Wang
et al., 2006). The response requires the integrated performance of
multiple organs, including digestion and absorption by the gut,
nutrient and oxygen transport by the cardiovascular system, nutrient
handling by the liver, nutrient turnover and deposition in all body
tissues, plus gas exchange at the gills to support the rise in aerobic
metabolism as well as nitrogen excretion (McCue, 2006; Wang
et al., 2006). The SDA can occupy a sizable proportion of AS in
fishes (Sandblom et al., 2014; Steell et al., 2019) and is considered,
along with locomotor activity, to represent a major component of
the overall cost of living (Jobling, 1994). In some species, AS
measured in digestion may exceed that measured in activity (Steell
et al., 2019). The SDA response is measured by respirometry on
animals that either feed spontaneously or are force-fed (Chabot
et al., 2016). Measures of performance include the peak rate of
oxygen uptake, duration of the response, and the SDA coefficient,
which is the proportion of the SDA response to the amount of
energy in the meal, i.e. how much of the meal’s energy is used to
digest it (McCue, 2006; Chabot et al., 2016). There are theoretical
reasons to assume that warming should increase the peak, reduce the
duration but not affect the coefficient, and this has some empirical
support (Jobling and Davies, 1980; Jobling, 1994; McCue, 2006;
Wang et al., 2006; Luo and Xie, 2008; Steell et al., 2019). The SDA
performance can also, however, have a Topt in some species such
that warming can cause declines in performance, which can reflect
local adaptation to thermal regimes (McKenzie et al., 2013;
Tirsgaard et al., 2014). The response has been used to investigate
the functional consequences of exposure to future warming
scenarios (Sandblom et al., 2014) and the invasion potential of
species and how this will be affected by warming (Steell et al.,
2019). As such, the SDA response seems to hold promise as a means
of investigating thermal tolerance in fishes and predicting responses
to futurewarming, and is not that much more challenging to perform
than a TPC for AS.

Growth
Like the SDA, growth depends on multiple physiological systems
and behaviours including appetite, but with a temporal dimension
that can provide much greater insight into how fishes are affected by
temperature. Growth rate is a major component of life history
strategies in fishes and global warming has been shown to affect
growth (Metcalfe et al., 1995; Réale et al., 2010; Morrongiello et al.,
2012; Audzijonyte et al., 2020). Growth TPCs have been developed
extensively in aquaculture, where the objective is to maximise
growth potential under farming conditions, so feed is provided ad
libitum (Jobling, 1994; Imsland and Jonassen, 2001; Volkoff and
Rønnestad, 2020). The overall pattern of a growth TPC in farmed
fishes is a progressive increase in rate with temperature up to a
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maximum that is the optimum temperature for growth (Topt,G); this is
followed by a decline beyond Topt,G that can be very steep (Brett,
1979; Imsland and Jonassen, 2001; Volkoff and Rønnestad, 2020).
Scope for growth is determined by the balance of energy supply and
demand, namely the difference between energy consumed in feed
and energy dissipated to sustain metabolism (Brett, 1979). As
temperatures rise to Topt,G, thermal acceleration of metabolism
provides for increased rates of feed intake, capacity for processing
food, and the efficiency with which it is assimilated and deposited
as tissue (Brett, 1979; Brett and Groves, 1979; Imsland and
Jonassen, 2001; Volkoff and Rønnestad, 2020). This provides for
increased scope for growth, up to a maximum at Topt,G. Beyond this,
growth rates and scope for growth decrease because, while
metabolic costs continue to increase with temperature, there is a
progressive decline in feed conversion efficiency and appetite
(Imsland and Jonassen, 2001; Volkoff, 2020; Volkoff and
Rønnestad, 2020). The reduced conversion efficiency may just
reflect a changing balance of energy supply and demand, while the
mechanisms that cause the decline in appetite are not yet understood
(Volkoff and Rønnestad, 2020). One proximate cause of the decline
in appetite may be impaired mitochondrial function as temperatures
rise beyond the optimum (Salin et al., 2016), although the neural or
endocrine pathways by which such sub-cellular effects are
transduced into the observed feeding response remain to be
explored (Volkoff and Rønnestad, 2020).
Thus, fish physiologists would benefit from collaborating with

aquaculture researchers. It is commonplace to couple growth studies
with measures of feed intake in aquaculture; this reveals how
temperature affects appetite and feed efficiency (Imsland and
Jonassen, 2001). Tank respirometry can then provide simple energy
budgets on feeding, growing animals (McKenzie et al., 2007, 2012).
Variable thermal regimes can be incorporated, to improve
ecological realism (Morash et al., 2018; Guzzo et al., 2019).
Results can be interpreted further by sampling fish to measure
thermal impacts at a cellular level, like oxidative damage,
mitochondrial function and expression of heat shock proteins
(Khan et al., 2014; Salin et al., 2016; Stillman, 2019). Furthermore,
extreme events can be integrated into tank energetics studies, with
downstream tissue sampling, for example to investigate whether
there is evidence of cellular stress responses, from oxidative damage
to expression of heat shock proteins (Williams et al., 2016; Stillman,
2019) in different target organs and tissues (see below).
The advantage of growth rate as a TPC is that the response seems

to be universal across fish species, with a definable Topt,G followed
by a decline linked to reduced appetite (Volkoff and Rønnestad,
2020). Interestingly, in the Atlantic halibut Hippoglossus
hippoglossus, the effects of temperature acclimation on growth
and AS are not linked: growth declines at high temperatures while
AS does not (Gräns et al., 2014). The major drawbacks are the
technical challenges of long-term growth studies and their lack of
ecological realism. Growth rates of fishes in the wild are not solely
driven by effects of temperature on energy demand, feed intake and
scope for growth. Factors such as food availability, time and energy
spent foraging, and how foraging rates are affected by perceived
risks, will all contribute to the capacity of a fish to allocate energy to
growth in the wild (Holt and Jørgensen, 2015; Guzzo et al., 2017;
Neubauer and Andersen, 2019; van Denderen et al., 2020).
Growth rate seems, nonetheless, to be the most promising

alternative TPC to those that focus on the OCLTT. In terms of
experimental biology in climate change research, growth rate has
been used to investigate mechanisms that define tolerance of
warming in fishes (Gräns et al., 2014; Salin et al., 2016) and to

develop dynamic energy budget models and to map habitat
suitability (Teal et al., 2012, 2018). Childress and Letcher (2017)
modelled a TPC for growth on wild salmonids based on repeated
field observations and found that it returned a significantly lower
Topt,G than when modelled on data for growth of captive
conspecifics, such that TPCs developed in the laboratory may
over-estimate Topt,G for wild fishes. Wild fishes also show weaker
effects of temperature on growth rates than fish in aquaculture (van
Denderen et al., 2020).

Tolerance of extreme events
Not only the slow and long-term change in temperature with global
warming impacts fishes. Extreme heatwave events, or thermal
pulses, may cause increased morbidity and even direct mortality in
fishes, either due to direct effects of temperature or to associated
biotic interactions, such as increased susceptibility to parasites,
disease and predation (Hinch et al., 2012; Miller et al., 2014;
Roberts et al., 2019; Till et al., 2019). Magel et al. (2020) found that
heatwaves caused a 50% reduction in abundance and diversity in a
coral reef fish community, notably due to emigration of several
species, among which coral-dependent species never returned. This
example highlights the complexity and severe consequences
extreme temperature events can have, and why measures of acute
and upper thermal tolerance limits remain ecologically relevant.

The upper limit of thermal tolerance that might be tested by
heatwaves is typically estimated in the laboratory using the critical
thermal maximum (CTmax) protocol. Temperature is increased in
increments until the fish loses equilibrium (LOE), an incipient lethal
threshold because the moribund animal would be unable to escape
the conditions (Lutterschmidt and Hutchison, 1997; Beitinger and
Lutterschmidt, 2011). There are quite major limitations to the
critical thermal protocol as an experimental tool (Rezende et al.,
2014; Blasco et al., 2020b). Notably, the idea that the complexity of
thermal tolerance limits can be captured by a single measure is a
major oversimplification (Rezende et al., 2014; Rezende and
Bozinovic, 2019). There are also methodological issues;
particularly that the measured CTmax depends upon heating rate
(Becker and Genoway, 1979; Lutterschmidt and Hutchison, 1997;
Rezende et al., 2014; Vinagre et al., 2015). Furthermore, the
mechanism(s) that causes LOE are not known (Currie and Schulte,
2014; Healy et al., 2018; Blasco et al., 2020b) and may differ among
species and with warming rate (e.g. Wang et al., 2014; Brijs et al.,
2015; Ekström et al., 2016; Ern et al., 2016; Vinagre et al., 2016;
Jutfelt et al., 2019). This lack of mechanistic understanding hinders
comprehension of essential questions such as why fish species differ
in their CTmax, or why it is modified by thermal acclimation (Currie
and Schulte, 2014; Comte and Olden, 2017b; McKenzie et al.,
2020). Also, much of the search for physiological mechanisms
underlying acute tolerance has focused on the function of organs
that are critical for immediate survival, the heart and brain (e.g.
Friedlander et al., 1976; Ekström et al., 2014, 2017; Gilbert et al.,
2019; Jutfelt et al., 2019) (Fig. 3) and mechanisms related to oxygen
supply, such as mitochondrial function (Chung and Schulte, 2020).
This is a problem because dire effects on other organs may limit
thermal tolerance during longer exposures to more benign
temperature, but will not be identified with the same ease in
current protocols. Thus, there is the danger that fast rates of
temperature increments to determine CTmax will pinpoint the organs
with the most immediate effects, namely the brain or the heart, but
these organs are merely identified because destruction of their
functions leads to immediate death. An equally destructive effect by
heat on the intestines or the liver would kill the fish in days, and with
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the same effect on fitness (i.e. no reproduction, no fitness). In other
words, we tend to make the mistake that the organs with fastest
effects are identified as the culprits for thermal tolerance, while the
more correct picture is likely to be that most organs fail at similar
temperatures, but the time course of the effects vary. Seeking a
single ubiquitous mechanism that explains CTmax in all fish species
therefore seems an illusion.
Nevertheless, the CTmax protocol has provided important

knowledge about potential impacts of global warming on fishes,
e.g. to demonstrate that tropical fish species live closer to their
upper thermal limits and are, consequently, more vulnerable to
future warming than temperate species (Comte and Olden, 2017a;
Pinsky et al., 2019). Also, the latitudinal range boundaries of
fishes and how these are being modified by global warming are
related to their limits of thermal tolerance as measured by CTmax

and the equivalent for cold tolerance (CTmin) (Sunday et al., 2011,
2012, 2019). Tolerance thresholds based upon fatigue from
exercise performance are, potentially, preferable to LOE at
CTmax, because fatigue may have a common physiological
mechanism across all species (Steinhausen et al., 2008; Blasco
et al., 2020a preprint, 2020b). This does not move away from the
limitations of having a single value that is expected to define
‘tolerance’ (Rezende et al., 2014). As argued above, we need to
move beyond the heart and brain and must consider other organ
systems (osmoregulation, digestion, immune system) that may
cause mortality and declines in fitness as a result of extreme
events, and thresholds for such effects (Fig. 3).
Mortality, or reduced fitness due to carry-over effects (Stillman,

2019), could depend upon impacts on multiple organ systems that

become significant over time scales of days to weeks, rather than
hours in the laboratory (Fig. 3). Coping with thermal stress may
have physiological costs and consequences, for example in the
increased production of heat shock proteins (Kingsolver and
Woods, 2016; Williams et al., 2016) that, coupled with a loss of
appetite, would challenge energy balance at warm temperatures.
This may weaken fishes and render themmore at risk from predation
and disease. Warm temperatures, especially pulse heat stress, can
increase susceptibility to both parasites and bacterial infections over
a time scale of days and weeks (Miller et al., 2014; Bruneaux et al.,
2017; Teffer et al., 2019; Claar and Wood, 2020), which can then
cause further declines in physiological performance (Bruneaux
et al., 2017). Examination of mortalities after heatwaves
consistently finds evidence of high tissue bacterial and/or parasite
loads, and disease is considered a major factor in die-offs (Miller
et al., 2014; Strepparava et al., 2018; Roberts et al., 2019).

Conclusions and perspectives
Our analysis aims to highlight the challenges experimental fish
physiologists face when seeking to provide a mechanistic foundation
to predict the effects of global warming. While the importance of
physiology seems beyond intuitive dispute, we need evidence-based
approaches in moving forward. The GOL hypothesis is not based on
current knowledge and data. It has been valuable in focusing attention
on a possible role for respiratory physiology in size-related
differences in thermal tolerance, but should be disregarded as an
explanation for why fishes might be shrinking. The evidence
collected to date clearly indicates that the OCLTT is not a universal
paradigm, so the time seems ripe to move on to different paradigms
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Fig. 3. Upper thermal temperature as a function of time. The upper temperature that causes mortality and morbidity shows an exponential decline with
exposure duration in ectotherms (Rezende et al., 2014). Physiologists have focused on acute tolerance over time scales of hours (or less) using the critical thermal
maximum protocol, where fish are warmed incrementally until loss of equilibrium due, presumably, to dysfunction of critical organs such as the nervous system
and heart. Over longer durations, morbidity and mortality from chronic thermal stress may reflect impaired energy balance due to increased metabolic costs
coupled with loss of appetite. The energy imbalancewould reduce health, visible as increased parasite and bacterial loads, and reduce performance, in particular
swimming ability. Thus, over longer durations at less extreme warm temperatures, major die-offs may occur due to disease and predation.
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for TPCs. Traits of physiological energetics, particularly SDA and
growth, seem promising candidates. Growth studies have the
advantage of a temporal dimension that can incorporate thermal
variation and extreme events.
Laboratory studies can never capture the complexity of real life

and the multiple interacting stressors that a fish may face (Currie and
Schulte, 2014; Williams et al., 2016; Morash et al., 2018; Stillman,
2019). Technologies for biologging and biotelemetry hold much
promise and are advancing (Treberg et al., 2016), but field
physiology on fish lags far behind research on mammals and
birds, due to the problems with transmitting data through water or
recapturing animals to retrieve data from biologgers. Some species,
such as smallmouth bassMicropterus salmoides that guard nests in
lakes (Prystay et al., 2019) or sockeye salmon from populations that
spawn and die in a particular mountain stream (Prystay et al., 2017),
provide increased likelihood of recovering loggers, which is
promising for future studies. Marine species present major
technical challenges, but the economic value of species like
bluefin tuna may drive advances in the field.
Laboratory studies can continue to be used to investigate

mechanisms, especially of thermal tolerance, acclimation and
plasticity, but also, conceivably, of evolutionary adaptation to
temperature, especially when including genomics. Field studies can
reveal mechanisms but also the impacts of thermal stress on fishes,
and the consequences for their fitness. We clearly need more
knowledge onmore species to improve our ability to predict effects of
global change, including warming. We hope that advances in
techniques for biotelemetry and biologging will provide information
about what is happening under natural conditions. If we can
understand what has and is happening with populations, this can
only improve our ability to predict what may happen in the future.
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