
HAL Id: hal-03413531
https://hal.umontpellier.fr/hal-03413531v1

Submitted on 10 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trophic ecology of the juveniles of two jack species
(Caranx latus and C. hippos) in contrasted tropical

estuaries
Julio Guazzelli Gonzalez, Audrey M. Darnaude, Paulo J. Duarte-Neto,

Francois Le Loc’H, Mayara Constantino De Lima, Frédéric Ménard, Valdimere
Ferreira, Flavia Lucena Fredou, Jean-Marie Munaron, Thierry Fredou

To cite this version:
Julio Guazzelli Gonzalez, Audrey M. Darnaude, Paulo J. Duarte-Neto, Francois Le Loc’H, Mayara
Constantino De Lima, et al.. Trophic ecology of the juveniles of two jack species (Caranx latus and C.
hippos) in contrasted tropical estuaries. Estuarine, Coastal and Shelf Science, 2021, 255, pp.107370.
�10.1016/j.ecss.2021.107370�. �hal-03413531�

https://hal.umontpellier.fr/hal-03413531v1
https://hal.archives-ouvertes.fr


Journal Pre-proof

Trophic ecology of the juveniles of two jack species (Caranx latus and C. hippos) in
contrasted tropical estuaries

Júlio Guazzelli Gonzalez, Audrey M. Darnaude, Paulo J. Duarte-Neto, François Le
Loc'h, Mayara Constantino de Lima, Frédéric Ménard, Valdimere Ferreira, Flávia
Lucena Frédou, Jean-Marie Munaron, Thierry Frédou

PII: S0272-7714(21)00223-7

DOI: https://doi.org/10.1016/j.ecss.2021.107370

Reference: YECSS 107370

To appear in: Estuarine, Coastal and Shelf Science

Received Date: 13 October 2020

Revised Date: 13 March 2021

Accepted Date: 7 April 2021

Please cite this article as: Gonzalez, Jú.Guazzelli., Darnaude, A.M., Duarte-Neto, P.J., Le Loc'h, Franç.,
Lima, M.C.d., Ménard, Fréé., Ferreira, V., Frédou, Flá.Lucena., Munaron, J.-M., Frédou, T., Trophic
ecology of the juveniles of two jack species (Caranx latus and C. hippos) in contrasted tropical estuaries,
Estuarine, Coastal and Shelf Science (2021), doi: https://doi.org/10.1016/j.ecss.2021.107370.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier Ltd.

https://doi.org/10.1016/j.ecss.2021.107370
https://doi.org/10.1016/j.ecss.2021.107370


1 
 

Trophic ecology of the juveniles of two jack species (Caranx latus and C. hippos) in contrasted tropical 1 

estuaries. 2 

 3 

Júlio Guazzelli Gonzalez
a,b,*

, Audrey M. Darnaude
b
, Paulo J. Duarte-Neto

c
, François Le Loc’h

d
, Mayara 4 

Constantino de Lima
a
, Frédéric Ménard

e
, Valdimere Ferreira

a
, Flávia Lucena Frédou

a
, Jean-Marie 5 

Munaron
c
, Thierry Frédou

a
 6 

a
Universidade Federal Rural de Pernambuco, UFRPE, Departamento de Recursos Pesqueiros e 7 

Aquicultura, Rua Dom Manuel de Medeiros, s/n, Recife, PE. CEP: 52.171-900, Brazil. 8 

b
MARBEC, Univ. Montpellier, CNRS, IRD, Ifremer, Montpellier, France. 9 

c
Universidade Federal Rural de Pernambuco, UFRPE, Departamento de Estatística e Informática, Rua 10 

Dom Manuel de Medeiros, s/n, Recife, PE. CEP: 52.171-900, Brazil 11 

d
IRD, Univ Brest, CNRS, Ifremer, LEMAR, F-29280 Plouzane, France 12 

e
Aix Marseille Univ, Univ Toulon, CNRS, IRD, MIO, UM110, Marseille, France. 13 

*
Corresponding author: julio.guazzelli-gonzalez@etu.umontpellier.fr Tel (+55 81) 3320-6605 14 

  15 

Jo
urn

al 
Pre-

pro
of



2 
 

Abstract 16 

Jacks are highly prized tropical marine fish. Most of them complete their whole life cycle at sea but some 17 

use estuaries at the juvenile stage before moving back to coastal waters and joining the adult exploited 18 

stocks. Little is known about jacks’ trophic ecology in estuaries, although their juveniles' ability to 19 

successfully exploit available resources in these productive environments may strongly affect stock 20 

recruitment success in the species concerned. In this study, stomach content and stable isotope analyses 21 

were combined to investigate diet and food niche overlap of juveniles from two sympatric species of 22 

jacks (Caranx latus and C. hippos) in three contrasted estuaries (Suape, Sirinhaém and Santa Cruz) spread 23 

along the northeastern Brazilian coast. Overall, although the juveniles of C. latus exhibited a more 24 

piscivorous diet than those of C. hippos, the two species had very similar isotopic niches, with mean 
13

C 25 

and 
15

N values of -19.35 ± 2.10‰ and 11.03 ± 1.11‰ and of -19.10 ± 1.82‰ and 10.21 ± 1.21‰, for C. 26 

hippos and C. latus respectively. In all the estuaries sampled, both species mostly ate fish (Ni = 20.1 - 27 

46.2%, Wi = 60.1 - 75.1%, essentially Gobiidae and Clupeidae) and crustaceans (Ni = 26.0 - 65.9%, Wi = 28 

23.3 - 38.2%, mainly Penaeidae shrimps). As a result, the overlap between their global estuarine isotopic 29 

niches was >68%. However, diet composition for the two species varied among estuaries, indicating that 30 

their juveniles partly adapt their food preferences to local prey availability. Notably, prey preferences 31 

differed significantly between the two species only in the Santa Cruz estuary, where 
15

N values were the 32 

highest for both species. Conversely, interspecific differences in 
13

C ratios were greater in the Suape and 33 

the Sirinhaém estuaries, likely reflecting a wider diversity in the carbon sources sustaining local food 34 

webs. Thus, combined differences in juvenile diet and food web structure at each location resulted in 35 

much-reduced local isotopic niche overlaps between the two species (from 27% in Suape to 57% in Santa 36 

Cruz). These results have important implications for resource and ecosystem management in northeastern 37 

Brazil and call for systematic cross-site comparisons when evaluating fish ecology and resource 38 

partitioning within estuarine systems. 39 

Keywords: Marine fish, Trophic relationships, Stomach content, Stable isotope analysis, Carbon, 40 

Nitrogen. 41 
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1. Introduction 43 

Estuaries are highly exploited ecosystems a host a high number of fish species (Blaber 1997; 44 

Vasconcelos et al., 2015), many of which colonize them during the juvenile stage seeking for protection 45 

and favorable growth conditions (Nagelkerken et al., 2000; Beck et al., 2001; Dahlgren et al., 2006). 46 

Although knowledge on the use of estuaries by tropical fishes has significantly grown in recent years 47 

(Blaber, 2013), the information available concerns only a few estuarine systems so further research is 48 

needed to assess the actual value of tropical estuaries as fish juvenile habitats (Blaber and Barletta, 2016). 49 

Indeed, a variety of biological and physical factors might affect the physiology of fish and their resource 50 

use in estuaries (Blaber, 2007). For instance, estuaries' morphology and spatiotemporal dynamics 51 

modulate not only fish diversity (França et al., 2012; Vasconcelos et al., 2015), but also food web 52 

structure and composition (Harrison and Whitfield, 2006, 2012; Silva-Júnior et al., 2017), resource 53 

availability (Doi et al., 2009; Hoeinghaus et al., 2011; Boucek and Rehage, 2013) and seascape 54 

connectivity (Sheaves, 2009; Ogden et al., 2014). The degree to which each species benefits from 55 

available food resources in these complex environments may also influence the survival and fitness of 56 

fish juveniles (Le Pape and Bonhommeau, 2015; Yeung and Yang, 2017; Hiraoka et al., 2019). Therefore, 57 

investigating species' resource use in contrasted estuarine juvenile habitats can not only improve the 58 

knowledge and understanding of their ecology (e.g. Stevens et al., 2018) but also help defining local 59 

management strategies (Sheaves et al., 2015). This is particularly true in tropical regions where the socio-60 

economic demand for coastal fish resources is growing (Barlow et al., 2018; FAO, 2018) and where 61 

environmental awareness is only just emerging (Mitra and Zaman, 2016). 62 

Species ecological niches play a central role in defining available resource use and interspecific 63 

interactions at the community level (Van Valen, 1965; Ross, 1986). Among the many facets of the 64 

ecological niche, the trophic niche is perhaps the easiest to evaluate (Ross, 1986). It can be studied using 65 

empirical methods like stomach content analysis (SCA), which provides a snapshot of the items ingested 66 

by the individuals (Hyslop, 1980; Pinnegar and Polunin, 2000), or through the use of natural tags such as 67 

stable isotope analysis (SIA). This later approach, usually combines nitrogen (δ
15

N) and carbon (δ
13

C) 68 

isotopic ratios (Fry, 2006) to provide an integrated image of the food resources assimilated by the 69 

individuals over periods of time ranging from a few weeks to a few months (Herzka, 2005). The method 70 

relies on the assumption that the isotope ratios of an organism reflect, in a predictive way, those of its 71 

food sources (Fry, 2006). In general, the δ
15

N is used as a proxy for organisms' trophic position in the 72 
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food chain (Post, 2002; Martínez Del Rio et al., 2009), while the δ
13

C allows identifying the main organic 73 

matter source(s) supporting their growth (Fry, 2006; Layman, 2007). Combining SIA and SCA enables 74 

better resolution of dietary patterns and accurate identification of the food sources sustaining animal 75 

growth (Silveira et al., 2020). In this study, we applied these complementary methods to describe 76 

variations in diet and compare strategies of estuary resource use in the juveniles of two sympatric species 77 

of jacks along the northeastern coast of Brazil. 78 

Jacks (Caranx spp.) are marine fish found both in inshore and offshore coastal environments 79 

(Figueiredo and Menezes, 1980; Smith-Vaniz, 2002). Although these large predators are neritic and reef 80 

associated when adult, some of them may use a mosaic of habitats along their life cycle and colonize 81 

inshore estuaries as juveniles (Smith-Vaniz, 2002). This is the case for both the horse-eye jack (Caranx 82 

latus, Agassiz 1831) and the crevalle jack (Caranx hippos, Linnaeus 1766), two highly exploited species 83 

with a widespread distribution in the Atlantic Ocean (Figueiredo and Menezes, 1980). In Brazil, C. latus 84 

and C. hippos represent almost 75% of the national landings for jacks, with more than 6.000 tons fished 85 

annually between 2009 and 2011 (MPA, 2011). Yet, little is known about their life cycle and their 86 

ecology at the juvenile stage. The yearlings of the two species are found in a broad range of inshore and 87 

coastal habitats along the Brazilian coast (Figueiredo and Menezes, 1980; Paiva and Araújo, 2010), and 88 

information regarding their trophic ecology in estuaries is particularly scarce (e.g. Vasconcelos Filho et 89 

al., 2010; Medeiros et al., 2017). 90 

Differences in resource use among juvenile habitats may affect fish early growth and body 91 

condition (e.g. Isnard et al. 2015) and modulate recruitment success in exploited species (Gillanders et al., 92 

2015). To avoid competition for food and optimize energy acquisition, sympatric species usually tend to 93 

partition resources at multiple scales (Schoener, 1974; Losos, 2000). However, C. latus and C. hippos not 94 

only have similar body shapes and lengths, but they are also both reported to feed mainly on fish and 95 

crustaceans (Hofling et al., 1998; Smith-Vaniz, 2002; Vasconcelos Filho et al., 2010). Therefore, they 96 

might have similar uses of estuarine resources and their co-occurrence in certain estuaries might result in 97 

an interspecific competition for food, with potentially high consequences in terms of local fisheries 98 

production. To investigate this, we assessed variations in the diets and isotopic niches of their juveniles 99 

among three neighboring Brazilian estuaries with contrasted morphological and biological features, and 100 

where the relative densities for the juveniles of the two species differ markedly (Paiva and Araújo, 2010; 101 
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Silva-Júnior et al., 2017), which allowed exploring whether their feeding strategies change under different 102 

degrees of potential competition.  103 

 104 

2. Material and Methods 105 

2.1. Study area 106 

The three tropical estuarine systems selected for this work (Santa Cruz, Suape and Sirinhaém, Fig. 107 

1) are located in the western South Atlantic Ocean, along the coast of the Pernambuco state, on the 108 

northeastern coast of Brazil. In this area, the climate is sub-tropical, with annual temperatures ranging 109 

from 18 to 32ºC, around an annual mean of 24ºC (CPRH, 2003; 2003a). Rainfalls occur all year round 110 

along the shore but they are more intense in the late autumn and winter (May to August). The driest 111 

period of the year is late spring and early summer (from October to December) due to the northward 112 

displacement of the Intertropical Convergence Zone (ICTZ) in the Atlantic and the occurrence of stronger 113 

southeast trade winds (CPRH, 2003; 2003a; Hounsou-gbo, et al. 2015). The local climate is influenced 114 

both by seasonal (displacement of the ICTZ) and by inter-annual (e.g. El Niño Southern Oscillation – 115 

ENSO) meteorological phenomena, which results in a highly variable weather and precipitation patterns 116 

among years (Hastenrath, 2012). 117 

Although relatively close to each other, the Santa Cruz, Suape and Sirinhaém estuaries exhibit 118 

distinct morphological and biological features and are subject to different freshwater inputs and degrees 119 

of anthropogenic pressures (Table 1). Located in the north of the Pernambuco state, the estuarine complex 120 

of Santa Cruz is the largest estuary of the three, and one of the most important fishery ground of the state 121 

(Medeiros et al., 2001). It consists in a shallow U-shape channel that receives continental inputs from six 122 

rivers (draining three hydrological basins) and is connected to the sea by two large entrances (Silva et al., 123 

2011). Because the seawater inflow is high, the estuary is under a strong marine influence (Flores Montes 124 

et al., 1998; Figueiredo et al., 2006). Furthermore, the reduced current velocity in the inner part of the 125 

main channel results in a predominance of muddy substrates along the estuary (CPRH, 2003), where 126 

hypersaline conditions prevail during the driest months of the year (Medeiros and Kjerfve, 1993). The 127 

local fauna comprises a large number of marine and estuarine invertebrates and fish that use this estuary 128 

at different stages of their life (Vasconcelos-Filho and Oliveira, 1999). The fish assemblage is diverse, 129 

with numerous species with distinct morphologies, as illustrated by the presence of bottom-associated 130 

species like gobies (Silva-Júnior et al., 2017; Ferreira et al., 2019). 131 
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The estuaries of Suape and Sirinhaém, both situated in the south of the Pernambuco state, are 132 

smaller (Table 1). Because the annual rainfall in the state increases southwards (CPRH, 2003a), they 133 

receive higher freshwater inputs, especially Sirinhaém (Table 1). The Suape estuary is formed by two 134 

rivers, which flow into a shallow brackish lagoon with limited connection to the sea. It can be classified 135 

as euryhaline and exhibits the lowest primary productivity of the three estuaries studied (Silva et al., 136 

2019; Table 1). The estuary of Sirinhaém is the smallest estuary studied, but that with the highest 137 

percentage of mangrove cover (Table 1). Located within two marine protected areas (CPRH, 2003a), it 138 

gathers a variety of interconnected lagoons and channels that spread on the shallow flood plain around the 139 

main bed of the Sirinhaém river, which constitutes its sole connection to the sea (CPRH, 2003a). This 140 

particular configuration intensifies the effects of the watershed dynamics, with salinities ranging from 141 

nearly 0 at low tide to up to 30 at high tide (Silva et al., 2009). The fish assemblages of the Sirinhaém and 142 

Suape estuaries are similar, with a common dominance of pelagic species (Bezerra Junior et al., 2011). 143 

Moreover, both estuaries exhibit much lower densities of C. hippos than those observed in Santa-Cruz 144 

(Silva-Júnior et al., 2017). 145 

 146 

2.2. Fish sampling and diet composition 147 

The Caranx latus and C. hippos juveniles used for this work were captured over five successive 148 

years (2015-2019), using both beach seines (20 x 1.9 m, mesh 20 mm), trawled along the river banks, and 149 

block nets (350 x 2.9 m, mesh 70 mm) set close to mangrove creeks. Although sampling design was not 150 

even among years and estuaries, sampling surveys in each estuary were carried out for all months and 151 

always included the same locations (Fig. 1). To account for potential changes in feeding habitat 152 

preferences according to the season or increasing fish size, juvenile jacks were systematically sampled in 153 

all the main types of habitat they occupy in each estuary. These habitat types were determined according 154 

to local fishermen’s knowledge on Caranx sp. occurrence in the estuaries and confirmed by prior 155 

exploratory surveys. They comprise main foraging grounds for the two species, within and outside the 156 

shore-fringed mangroves that predominate in the three estuaries. In all three estuaries, both the mudbanks 157 

below fringing mangrove and the adjacent river banks, of maximum 1.5 m depth, were sampled at low 158 

tide. However, in the larger and deeper Santa Cruz estuary, juvenile jacks were also systematically 159 

collected within the central channel of the estuary, where water depth remains above 5 m at low tide. On 160 

the river banks and in the Santa Cruz central channel, sediments are composed of a mix of thin sand and 161 
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silt, and mangrove litter and macroalgae occasionally found on the bottom. Depending on the size and 162 

geomorphology of the estuary, fish juveniles were collected at 2 to 5 sites per habitat type for each 163 

sampling date. This allowed covering most of the spatiotemporal variability in juvenile distribution, and 164 

associated diet variation, between and within estuaries for the two species. 165 

Upon collection, all  juveniles were identified following specific literature (Figueiredo and 166 

Menezes, 1980; Smith-Vaniz, 2002), measured (standard length – SL in mm) and stored frozen until 167 

further analysis. Their stomach contents were assessed under a stereomicroscope until 70 non-empty 168 

stomachs per species and estuary could be gathered. As densities for the two jack species are rather low in 169 

estuaries during the wetter months of the year (Vilar et al., 2011; Silva-Júnior et al., 2017; da Silva et al., 170 

2018), fish from different years had to be pooled to reach a minimum number of 10 non-empty stomachs 171 

for both the dry (September to March) and the rainy (April to August) seasons in the area (CPRH, 2003; 172 

2003a), and a maximum of 30 individuals per year for each estuary. Prey items in all stomachs were 173 

identified to the lowest taxonomic level possible, depending on their degree of digestion. All identified 174 

prey items were counted and weighed (g) and well-preserved ones, i.e. those only slightly digested, were 175 

measured (total length, in mm). 176 

For both species, global diet composition was characterized using the frequency of occurrence (Fi) 177 

and the relative percentage in number (Ni) and in weight (Wi) of each prey item. Fi corresponds to the 178 

number of individual stomachs containing the prey item i divided by the total number of stomachs 179 

containing food. Ni and Wi represent the relative number or weight of the prey item i divided by the total 180 

number or total weight of prey in the stomachs, respectively. In order to account for the uncertainty 181 

associated to these indexes and provide a confidence interval (95%) for each prey item, a bootstrap 182 

procedure based on 5000 re-sampling trials was used (Tirasin and Jorgensen, 1999). The importance of 183 

each prey item in the diet was estimated using the alimentary coefficient (Q) proposed by Hureau (1970):  184 

Q = Ni x Wi.  185 

According to Hureau (1970), prey items should be considered preferential when Q ≥ 200, secondary when 186 

20 ≤ Q < 200, and occasional (Q < 20). All dietary indexes were calculated both using major taxonomic 187 

groups (e.g. Teleostei) and applying the lowest possible identification levels, down to family. 188 

 189 

2.3. Stable isotope analyses (SIA) 190 
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For each species, 10 to 30 juveniles from each estuary were selected for SIA. As the minimum size 191 

for both species in our samples was 35 mm SL, these fish were chosen to measure at least 60 mm in size 192 

(SL) to ensure that the isotopic compositions from their local prey were incorporated within the tissue at 193 

the time of capture (Herzka 2005). Fish were collected in 2015, 2018 and 2019 during both the dry and 194 

the rainy seasons (APAC, 2019), so their isotopic ratios should accurately reflect the temporal (inter and 195 

intra-annual) variabilities in fish diet and food web composition at each estuary. Basal estuarine organic 196 

matter sources, i.e. the main benthic algae (Sargassum spp., Ulva spp., Gracilaria cervicornis), the 197 

microphytobenthos, the mangrove trees (rotten leaves from Rhizophorae mangle), and the organic matter 198 

present in the surface sediment (SOM) and in the water column (POM), were collected in each estuary in 199 

2015, both during the dry (January to March) and the rainy (July to September) seasons (APAC, 2019). 200 

Mangrove tree leaves and algae were collected manually at low tide. POM was obtained by filtering water 201 

(0.5 – 1 L) on precombusted fiberglass filters (0.75 µm), whereas SOM was sampled from the 2 mm 202 

surface layer of the sediment. Benthic microphytobenthos was collected from the sediment surface at low 203 

tide and extracted in the laboratory following Riera and Richard (1996). Other potential organic matter 204 

sources for the three estuaries studied, such as marine POM and SOM from the adjacent coastal zone 205 

were also collected, at two locations: one near the entrance of the Santa Cruz estuary and one further 206 

south, near the mouths of the Sirinhaém and Suape estuaries. 207 

For fish specimens, white muscle was extracted and rinsed with distilled water while, for organic 208 

matter sources, samples were analyzed whole. Samples were dried in an oven at 60°C for 48 hours and 209 

ground into a fine powder with a mortar and pestle. For all POM and SOM samples, a subsample was 210 

acidified to remove the inorganic carbon prior δ
13

C analysis, while the remaining material was used 211 

directly for δ
15

N analyses (Pinnegar and Polunin, 1999). Carbon and nitrogen isotope ratios were 212 

analyzed with a mass spectrometer (Thermo Delta V+) coupled to an element analyzer (Thermo Flash 213 

2000, interface Thermo ConFio IV) at the Pôle de Spectrométrie Océan (PSO - IUEM, Plouzané, France). 214 

Carbon and nitrogen isotopic ratios are reported as δ
13

C and δ
15

N values (in ‰), respectively, derived 215 

from the formula: 216 

 δX = [(Rsample / Rstandard) -1] × 10
3
  217 

where δX corresponds to δ
13

C or δ
15

N and R to the 
13

C/
12

C or 
15

N/
14

N ratios of the sample and a known 218 

standard, for carbon or nitrogen, respectively. The standards used for δ
13

C and δ
15

N were the Pee Dee 219 

Belemnite (PDB) limestone and atmospheric nitrogen, respectively. The analytical precisions of the 220 
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analyses, monitored through the repeated analysis (every six samples) of an internal standard (Thermo – 221 

Acétanilide), was of 0.10‰ and 0.07‰ for carbon and nitrogen isotopes, respectively. 222 

 223 

2.3. Data analysis 224 

All statistical analyses were made with the R software (R Core Team, 2019), using the packages 225 

vegan (Oksanen et al., 2017), boot (Canty and Ripley, 2020) and SIBER (“Stable Isotope Bayesian 226 

Ellipses in R” (Jackson and Parnell, 2016)). Only the prey items observed more than once within the 227 

stomachs analyzed were kept for SCA data analyses. 228 

Because body size modulates the type and size of the prey consumed by an organism (Shelton et 229 

al., 1977), potential differences in the size (SL in mm) of the fish used for SCA were investigated, among 230 

estuaries and between species. Kruskal-Wallis tests were used for this, as the assumptions of data 231 

normality and homoscedasticity were not met. Then, the relationship between fish size and prey length 232 

was assessed for each species using covariance analyses (ANCOVA). Differences in prey length 233 

according to the species and the sampling location were also tested, using Kruskal-Wallis tests as data did 234 

not meet the assumptions of normality and homoscedasticity. Lastly, differences in diet composition 235 

according to fish size were evaluated for both C. latus and C. hippos, using two non-parametric 236 

permutational multivariate analyses of variance (PERMANOVA), one per species. The PERMANOVA 237 

procedure performs a sequential test of terms based on distance matrices and allows for hypotheses 238 

testing between predictor variables (Anderson, 2001). 239 

PERMANOVA tests were also applied to investigate differences in diet composition between 240 

species (C. latus/ C. hippos), among estuaries (Santa Cruz/ Suape/ Sirinhaém) and between the two 241 

species in each estuary. Post-hoc comparisons were applied only for variables with a significant effect on 242 

the diet (p < 0.05). The distance matrices were based on Bray-Curtis dissimilarity computed from 243 

log(x+1) transformed data of prey relative weight for each individual fish. In addition, two dietary 244 

matrixes were used separately to assess the effect of prey identification on the analyses: one including all 245 

prey items and the other with only the prey items identified at least to the order level.  246 

Potential differences in the size (SL in mm) of the juveniles used for SIA and in their isotopic 247 

ratios (both for carbon and for nitrogen, separately) were tested between locations and fish species using 248 

separate ANOVA models. Post-hoc Tukey’s tests were applied on variables with significant effects in the 249 
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isotopic composition of jacks (p < 0.05). The trophic positions of the juveniles of the two jack species 250 

were compared by evaluating the areas occupied by their isotopic niches, computed using the corrected 251 

standard ellipses area (SEAC) method, which measures the space occupied by a species in a bi-252 

dimensional plane, here δ
13

C vs. δ
15

N (Jackson et al., 2011). This approach is less sensitive to variations 253 

in sample size than other conventional metrics (Jackson et al., 2011; Syväranta et al., 2013), and provides 254 

insightful information on predators' resource use by incorporating both the variance in the isotopic ratios 255 

of local basal food sources and the difference in the energy pathways that their prey rely on (Bearhop et 256 

al., 2004). Indeed, although a considerable part of the variation in predator isotopic niches can be 257 

attributed to diet, it may also reflect differences in prey isotope ratios and in the organic matter sources 258 

sustaining food webs (Newsome et al., 2007; Flaherty and Ben-David, 2010). Therefore, the percentage 259 

of overlap between the isotopic niches (SEAC) of the two species was used to measure the degree to 260 

which they may rely on similar food resources. In order to account for the uncertainty associated to SEAC 261 

overlaps, a Bayesian approach was applied to assess the mean and 95% credible intervals (CI95%) of 262 

isotopic niche overlaps between the two species (Jackson et al., 2011). 263 

 264 

3. Results 265 

Although the total sample of juvenile jacks gathered over the five years of survey was more than 266 

satisfactory (n = 439 of SL = 35 - 157 mm), the numbers and the sizes of the juveniles varied between 267 

species and estuaries. For example, while total abundances were comparable at all locations for C. latus, 268 

C. hippos juveniles were 2- to 3-fold less common in Sirinhaém and Suape (Fig. 2). As a result, the total 269 

number of juveniles collected was higher for C. latus (n = 266) than for C. hippos (n= 173). In turn, 270 

although the juveniles of C. latus (SL = 105 ± 25 mm) were consistently bigger (p < 0.001) than those of 271 

C. hippos (SL = 88 ± 26 mm), patterns of size variation between estuaries were similar for the two 272 

species, with consistently bigger juveniles (p < 0.001) in Suape and smaller ones (p < 0.001) in Sirinhaém 273 

(Fig. 2). These differences were considered during fish sub-sampling for both stomach content analysis 274 

and SIA, in order to reduce bias in our conclusions and provide a realistic overview of the global trophic 275 

ecology of the two species. 276 

Among the 394 fish selected for stomach content analysis, few had empty stomachs (33% for C. 277 

latus and 6% for C. hippos). Relative numbers and size distributions in the 338 remaining ones (207 C. 278 

latus and 131 C. hippos) were similar to those observed in the total catches, with slightly higher mean SL 279 
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values for C. latus than for C. hippos in every estuary, and larger juvenile sizes in Suape for both species 280 

(Table 2). Muscle samples from 112 juvenile fish (60 C. latus and 52 C. hippos) were analyzed in SIA 281 

(Table 2). To allow for muscle signature to reflect the diet in the estuaries, the minimum size of the fish 282 

selected for the SIA was 65 mm (SL). Altogether, the distribution of SIA juvenile sizes was similar for 283 

the two species (p = 0.905), however it varied between estuaries (p < 0.001), reflecting the differences in 284 

sizes observed in the field. As for SCA, this sub-sample contained a larger number of individuals from 285 

Santa Cruz in order to reflect the higher abundance of juvenile jacks at this estuary. 286 

 287 

3.1. Diet composition 288 

Overall, diet composition was not significantly different between the two jack species (p = 0.089) 289 

which both mainly ate fish and crustaceans (Q > 1205, Table 3). All other prey items were found to be 290 

occasional (Q < 20), irrespective of the species (Table 3). However, when considering only the prey items 291 

identified to at least the order level, the two species did show significant differences in diet composition 292 

(p = 0.010). Although fish remains in the stomachs were often too digested to be identified, fish prey 293 

belonged to at least nine different families for C. latus; six for C. hippos (Table 3). Fish (Teleostei) were 294 

the main prey of the juveniles of C. latus (Q = 3252), whereas C. hippos fed on fish (Q = 1205) and 295 

crustaceans (Q = 2537) in similar proportions (Table 3). Fish dominated the diet of both species in terms 296 

of occurrence and weight, but crustaceans prevailed in number in the diet of C. hippos (Table 3). For both 297 

species, most of the fish prey identified were Gobiidae (Fi = 19.0 to 23.6; Ni = 4.3 to 7.5; Wi = 33.2 to 298 

39.9%), but their consumption was higher in C. latus (Fi = 23.6; Ni = 7.5; Wi = 39.9%). Decapods, in 299 

particular Penaeidae shrimps, were the main crustacean prey found in the stomachs of the juveniles of the 300 

two species (Table 3). However, mysids also contributed significantly to their diet, especially for C. 301 

hippos, in which they were the most abundant crustacean prey (Ni = 36.6%).  302 

Overall diet composition was found to be similar across the full size-range of the juveniles studied 303 

irrespective of the species (C. latus: p = 0.089; C. hippos: p = 0.193) and, when considering only the prey 304 

items identified to at least the order level, significant differences in diet according to fish size were found 305 

solely for C. latus (p = 0.034). Even then, only a slightly higher contribution in weight of fish prey was 306 

observed in C. latus juveniles larger than 60 mm (SL). The standard length of the juveniles did not have 307 

any significant effect on the sizes of their two main prey, namely fish (adjusted r² = 0.01, p = 0.591) and 308 

shrimps (adjusted r² < 0.01, p = 0.376). The size of these later were similar in all estuaries (Fish, p = 309 
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0.292; Shrimps, p = 0.839) and for both jack species (Fish, p = 0.184; Shrimps, p = 0.515) 310 

(Supplementary Fig. S1).  311 

The diet of both species varied according to the estuary, regardless the level of prey identification 312 

applied (p < 0.002). Specifically, differences between estuaries were found only for Suape (Suape – Santa 313 

Cruz: p < 0.015; Suape – Sirinhaém: p < 0.027). In this estuary, C. hippos presented the most different 314 

diet, composed mainly of fish prey (Fi = 60.0; Ni = 33.8; Wi = 81.4%). The diets of the two species were 315 

similar between Santa Cruz and Sirinhaém, either when considering all prey items (p = 0.060) or only 316 

those identified to at lowest taxonomic level (p = 0.204). Moreover, interspecific differences in diet 317 

composition were only significant in Santa Cruz, independently of the level of prey identification applied 318 

(p < 0.025). In this estuary, Gobiidae fish prevailed in the diet of C. latus and decapod shrimps in that of 319 

C. hippos (Supplementary Table S1). Although the two species had similar overall diets in the two 320 

remaining estuaries (Suape: p > 0.236; Sirinhaém: p > 0.113), they presented slight spatial variations in 321 

their prey preferences. In Suape, the diet of the two species only differed in terms of the type of fish 322 

consumed, with higher contributions of Clupeidae and Engraulidae for C. hippos, and of Gobiidae and 323 

Gerreidae for C. latus (Supplementary Table S2) while, in Sirinhaém, significantly higher proportions of 324 

crustaceans (Penaeidae shrimps) were found in the diet of C. hippos than in that of C. latus 325 

(Supplementary Table S3). 326 

 327 

3.2. Stable isotopes analysis 328 

The juveniles from the two species had very variable δ
13

C and δ
15

N values irrespective of their 329 

estuary of capture, ranging from -24.36 to -15.73‰ and from 8.00 to 13.66‰, respectively (Table 2; Fig. 330 

3). Due to this variability, δ
13

C values were not significantly different among estuaries (p = 0.088) nor 331 

between species, with average values of -19.10 ± 1.82‰ for C. latus and -19.35 ± 2.10‰ for C. hippos. 332 

Differences in δ
13

C values between the two species were not significant either within each given estuary 333 

(p = 0.147). Conversely, significant differences in δ
15

N were found according to both the estuary (p < 334 

0.001) and the species (p < 0.001). Indeed, although δ
15

N values for both species did not differ 335 

significantly between Suape and Sirinhaém (p = 0.790; Fig. 3), they were consistently higher in Santa 336 

Cruz (p < 0.001). Similarly, although the δ
15

N values of the two species were similar within each estuary 337 

(p = 0.804; Fig. 4), the juveniles of C. hippos exhibited higher δ
15

N values in overall (11.03 ± 1.10‰) 338 

than those of C. latus (10.21 ± 1.21‰) due to differences in spatial distribution among them.  339 
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The global trophic (isotopic) niches of the two species were similar in size, with areas (SEAC) of 340 

7.3 and 7.0 ‰² for C. latus and C. hippos respectively. They largely overlapped, with 68.4% (CI95% 54.1 341 

– 82.6%) of their total area in common. However, both the SEAC sizes and their overlaps varied 342 

according to the estuary (Fig. 3). Juvenile C. latus exhibited slightly wider isotopic niches than C. hippos 343 

in both Santa Cruz (SEAC = 5.6‰² for C. latus and 4.5‰² for C. hippos) and Sirinhaém (SEAC = 7.9‰² 344 

for C. latus and 7.1 ‰² for C. hippos), with high isotopic niche overlaps at both sites (57.5%, CI95% 40.1 – 345 

73.8%, in Santa Cruz and 54.3%, CI95% 32.3 – 77.4%, in Sirinhaém). Conversely, in Suape, where the two 346 

species had the most different isotopic niches, niche area was much wider in C. hippos (SEAC =9.5 ‰²) 347 

than in C. latus (SEAC =2.7 ‰²). At this particular site, juvenile niche overlap between the two species 348 

was only of 27.13% (CI95% 11.5 – 45.0%), but the isotopic niche area (SEAC) of C. hippos covered up to 349 

94.6% of that of C. latus. In the two remaining estuaries (Santa Cruz and Sirinhaém), the two species 350 

shared between 63 to 87% of their isotopic niche areas. 351 

δ
13

C and δ
15

N values for the organic matter sources at the base of the food webs ranged from -352 

29.25 to -14.50‰ and from -1.03 to 10.11‰, respectively, in the estuaries studied (Supplementary Table 353 

S4, Fig. 4). However, the variability in C and N isotopic ratios in the estuarine food webs depended 354 

greatly on the location: for example, the range in δ
15

N values for organic matter source was the widest, 355 

but that in δ
13

C values the lowest, in Santa Cruz (Fig. 4). 356 

 357 

4. Discussion 358 

While differences in resource use within estuarine fish assemblages are thought to be largely 359 

modulated by species' functional traits (Albouy et al., 2011), closely related species are expected to 360 

display contrasted diets to allow their populations to co-exist in the wild (Ross, 1986). However, very few 361 

cross-sites comparisons were carry out so far to investigate diet plasticity for closely related fish species 362 

co-occurring in diverse biotic and environmental settings (e.g., Mariani et al. 2011). Our results bring new 363 

insights on this matter, by revealing site-related variations in the trophic ecology of the juveniles of two 364 

commercially important species from the Caranx genus with similar ecological features. Indeed, Caranx 365 

latus and C. hippos not only have similar shapes and growth trajectories (Viana et al., 2016), but also 366 

reproduce on deep reefs along the shelf (Heyman and Kjerfve, 2008), and mostly colonize estuaries as 367 

juveniles, before moving to deeper waters when adults (Smith-Vaniz, 2002). In the estuaries, their 368 

juveniles have been similarly reported to feed on a broad diversity of fish and crustaceans (Vasconcelos 369 
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Filho et al., 2010; Medeiros et al., 2017), including key species in estuarine food webs (Ferreira, 2018; 370 

Lira et al., 2018). The present study however showed that, although gobies and decapod shrimps are the 371 

main food items ingested by both species, C. latus juveniles have a more piscivorous diet than those of C. 372 

hippos. These benthic prey represent a substantial part of the diet of juvenile jack species in general 373 

(Blaber and Cyrus, 1983; Smith and Parrish, 2002; Figueiredo and Pessanha, 2015; Medeiros et al., 2017) 374 

and are commonly eaten by other estuarine fish (Blaber, 1986; Vasconcelos Filho et al., 2003; Lira et al., 375 

2017). The juveniles of the two species were also found to largely prey on pelagic fish like engraulids and 376 

clupeids in the three estuaries studied, as already reported from visual census studies in these ecosystems 377 

(Cermak, 2002). This indicates that, at least in estuaries, C. latus and C. hippos juveniles forage both at 378 

mid-water and directly above the substrate, feeding on a mix of pelagic and benthic prey. 379 

 380 

4.1. Variation in food sources during juvenile life 381 

Body size plays a central role in determining the type and size of the prey consumed by fish 382 

(Shelton et al., 1977), particularly in species like jacks that display schooling behaviors (Figueiredo and 383 

Menezes, 1980; Graham and Castellanos, 2005). Although a marked increase in piscivory has been 384 

reported for jacks at sizes above 200 mm SL (Blaber and Cyprus, 1983; Sudekum et al., 1991; Smith and 385 

Parrish, 2002), in this study, significant changes in diet composition due to increasing body size were 386 

only found for juvenile C. latus, and only consisted in small differences in the prey species ingested. The 387 

relatively low taxonomic precision for prey identification in the stomachs (particularly for small fish 388 

prey) may have hampered the power of our analysis. Yet, for both species, juvenile fish size did not seem 389 

to significantly be related to the size of the prey ingested. The diet of the two species thus seems to be 390 

fairly stable over the size range studied here (35 – 157 mm SL). However, as major morphological 391 

changes in fish take place between the post-larval and juvenile stages (Nunn et al., 2012), dietary shifts in 392 

the two species might occur in smaller fish, i.e. before and during estuary colonization (Cocheret de la 393 

Morinière et al., 2003; Usmar, 2012). These dietary shifts can reflect either an increase in fish foraging 394 

ability as they grow, or changes in prey availability (Nunn et al., 2012). They probably also take place in 395 

larger fish, when they move towards offshore habitats (Cocheret de la Morinière et al., 2003). 396 

Differences in environmental characteristics are also a major source of variation in the diet of fish, 397 

as they influences both the type and the availability of local food resources (Dineen et al., 2007; Jensen et 398 

al., 2008; Evangelista et al., 2014). Given the differences in food web structure and fish assemblages 399 
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among the three estuaries studied, we expected the juveniles of the two species to display different food 400 

preferences and isotopic ratios among locations (Merigot et al., 2017; Silva-Júnior et al., 2017). However, 401 

although their prey preferences and isotopic niches varied from one estuary to the other, spatial 402 

differences in diet composition were surprisingly small, with only a greater consumption of fish 403 

(particularly of the Clupeidae and Engraulidae families) by C. hippos in Suape. As fish from different 404 

years and seasons were pooled in this work and because inter and intra-annual variations in food web 405 

composition and food availability may be significant in estuaries (e.g. Garcia et al. (2012) and Boucek 406 

and Rehage (2013)), seasonal processes might partly bias the results presented here, especially regarding 407 

the average isotopic compositions of jacks at each location. However, the δ
13

C and δ
15

N values observed 408 

are within the ranges reported in other tropical estuaries, both for primary producers and for juvenile jacks 409 

(Abrantes et al., 2014; Claudino et al., 2015; Dolbeth et al., 2016). Their high variabilities suggest that the 410 

amplitude in δ
13

C and δ
15

N isotopic compositions of the jacks at each estuary largely reflects those at the 411 

base of local food chains. Thus, in Suape and Sirinhaém, the wide range of δ
13

C values observed for 412 

organic matter sources is reflected in a greater range of  δ
13

C values for the two jack species. Similarly, 413 

the higher δ
15

N ratios of the juvenile jacks in Santa Cruz may partly reflect the incorporation of enriched 414 

15
N organic matter from coastal marine sources into the food web in this estuary, which has important 415 

connections with the marine realm (Flores Montes et al., 1998), although we cannot rule out this could 416 

indicate slightly higher trophic levels. Other sources may contribute to the local 
15

N enrichments such as 417 

agricultural and domestic wastes (Morris et al., 2015) given the proximity in the region of highly 418 

urbanized areas (CPRH, 2003). 419 

Potential biases in diet composition obtained from SCA may arise from the caveats inherent to the 420 

technique. In particular, differences in digestion rates among prey and the difficulty to identify some of 421 

them when partly digested can lead to an over-estimation of the contribution of the food items with low 422 

digestion rates and to greater proportions of unidentified prey in the diet of carnivorous species (Hyslop, 423 

1980). This could partly be the case in our study, as fish and crustaceans (i.e. relatively big prey with hard 424 

skeletons) are less easily digested than soft-bodied organisms (Buckland, et al., 2017). Moreover, 425 

sampling for SCA requires to match predators' local feeding strategies across time and space in order to 426 

produce a realistic image of their diets. Although this is yet to be demonstrated, feeding in juvenile jacks 427 

might also take place at times of the day not sampled during our survey. This would explain the high level 428 

of prey digestion in some of the stomachs analyzed and might have contributed to bias our results, by 429 
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further precluding identification of the prey items with high digestibility. Within estuarine systems, the 430 

types and abundances of the prey available for foraging fish strongly vary according to habitat type 431 

(Svanbäck and Eklöv, 2002; Lecomte and Dodson, 2005; Cardozo et al., 2020), which partly contributes 432 

to diet changes in the predators exhibiting seasonal or size-related shifts in habitat use (Stevens et al., 433 

2007; Ferreira et al., 2016; 2019). However, juvenile jacks are highly mobile within estuaries, using a 434 

wide diversity of estuarine habitats irrespective of their age (Medeiros et al., 2017). Moreover, the 435 

sampling design in this study attempted to capture most of the spatial and temporal variation in habitat 436 

use by the two species, by capturing juvenile jacks in all their main estuarine habitats (e.g. mangrove 437 

creeks, river banks) at each date, over multiple seasons and years. Because our sub-sampling strategy for 438 

SCA accounted for spatiotemporal differences in the abundances of the two species, among and within 439 

locations, the image of the global diet provided here should be rather realistic. Indeed, it reflects their 440 

habitat use but also the inter-annual and inter-seasonal variations in food source availability and food web 441 

structure in the three estuaries sampled, which are also likely to modulate fish diet composition (Boucek 442 

and Rehage, 2013; Garcia et al., 2017; Possamai et al., 2018). 443 

4.2. Possibility for trophic competition 444 

In estuaries, physico-chemical gradients (e.g. in salinity) drive food web structure and determine 445 

habitat suitability for fish (Barletta et al., 2008; da Silva et al., 2018). However, food abundance also 446 

modulates interactions between potential competitors (Sánchez-Hernández et al., 2017; Costa-Pereira et 447 

al., 2019). As a result, co-existing species tend to either share abundant food resources or differ in one or 448 

more dimensions of their environmental niche (Ross, 1986). One major caveat when evaluating resource 449 

partitioning between coexisting species is the measurement of only one dimension of their ecological 450 

niche (Costa-Pereira et al., 2019). With this regard, stable isotope analysis is a valuable complementary 451 

approach to common dietary methods (Silveira et al., 2020), calculating the isotopic niche as a proxy of 452 

the trophic niche (Newsome et al., 2007). However, although the position and the size of the isotopic 453 

niche of a species are primarily driven by variations in its diet, they can be influenced by its biology and 454 

physiology (Gorokhova, 2018; Karlson et al., 2018), and by habitat-driven differences in the isotope 455 

ratios of local food webs (Flaherty and Ben-David, 2010). In this study, SCA and SIA presented opposing 456 

results, especially in the Santa Cruz estuary where the greater difference in diet between the two species 457 

did not result in a reduction in their isotopic niche overlap. Moreover, the variability in 
13

C values for 458 

both species at each site largely followed that of the organic matter sources present in the estuary. This 459 
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suggests that the position and size of the isotopic niches for juvenile jacks in our study area largely reflect 460 

local variation in the isotopic signatures of their prey caused by local differences in food web structure. 461 

This confirms that the isotopic niche approach should be interpreted with caution, and does not 462 

necessarily provide accurate information to evaluate food partitioning between co-existing species 463 

(Flaherty and Ben-David, 2010; Petta et al, 2020; Shipley and Matich, 2020). Because tropical estuaries 464 

often exhibit a wide variety of organic matter sources and consumers, isotopic signals may be mixed 465 

along their food webs (Layman, 2007). Therefore, the isotopic niche approach might prove less valuable 466 

in these complex environments than in lakes or on land, where its application has been successful in 467 

elucidating biological processes at inter and intraspecific scales within food webs (Pettitt-Wade et al., 468 

2015; Mumby et al., 2018; Sheppard et al., 2018; Costa-Pereira et al., 2019). 469 

Resource partitioning has been reported for many fish species, and in diverse types of estuaries, 470 

including tropical ones (Pimentel and Joyeux, 2010; Le Loc’h et al., 2015; Moulton et al., 2017; Stevens 471 

et al., 2020). In the three estuaries studied here, although the two jack species had very similar prey and 472 

isotopic niches in overall, they exhibited slight spatial differences in their diet composition, which 473 

contributed to reduce the actual overlap in their niches at each studied location. This supports the idea that 474 

juvenile jacks adapt their feeding strategies to local food resources' availability in order to reduce trophic 475 

competition among them. This seems to occur in different ways though, depending on local 476 

environmental conditions. Indeed, although prey abundance was never directly assessed in any of the 477 

three estuaries studied, previous work concluded that Santa Cruz is that with the greatest fauna 478 

biodiversity in the area (Silva-Júnior et al., 2017). In particular, it sustains a wide variety of secondary 479 

consumers (Vasconcelos Filho et al., 2010; Ferreira, 2018), many of which are prey for juvenile jacks. In 480 

this rich environment, both C. latus and C. hippos juveniles occur at higher densities than in other 481 

estuaries (Paiva and Araújo, 2010, Silva-Júnior et al., 2017). They exhibit the most contrasting diets, but 482 

surprisingly also the most similar isotopic niches. Because the high diversity of secondary consumers in 483 

Santa Cruz allows many carnivores to feed upon both pelagic and benthic prey (Vasconcelos Filho et al., 484 

2003), the local similarity in juvenile jacks' isotopic niches likely reflects the isotopic ratios of their fish 485 

and crustacean prey, as most of these are small predators feeding on both food chains. Thus, it appears 486 

that, when the diversity and availability of food is high like in Santa-Cruz, the juveniles of the two species 487 

avoid trophic competition by exploiting different prey, matching their respective diet preferences. 488 

Nonetheless, they apparently have to adapt these later and partially compete for food in less favorable 489 
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environments. Indeed, in the Suape and Sirinhaém estuaries, where the diversity of available prey is 490 

limited, the two species focus on the same food resources. The greatest variability in their δ
13

C ratios at 491 

these sites indicates that they rely on a broader number of food chains though, including those based on 492 

allochthonous sources of organic matter, like freshwater inputs (Abrantes and Sheaves, 2010). This 493 

diversification of carbon sources can be seen as an ecological response to reduce competition between 494 

species (Lecomte and Dodson, 2005). It might allow C. latus and C. hippos to co-exist in Suape and 495 

Sirinhaém in spite of their similarities in diet. The fact that the abundances of both C. latus and C. hippos 496 

juveniles are lower in these two estuaries suggests that the higher trophic niche overlap observed at these 497 

sites result in an increased competition for food among them. However, further information on the 498 

temporal fluctuations in prey abundance and the timing of their consumption is needed before one can 499 

conclude about the actual intensity of this phenomenon. First, trophic competition between fish species 500 

with similar global diets can be reduced when these later largely reflect an opportunistic use of seasonal 501 

peaks in the abundances of the most shared prey (Lucena et al., 2000; Boucek and Rehage, 2013). This 502 

might very well be the case here, especially as this kind of opportunistic feeding behavior would explain 503 

the variability in δ
13

C ratios observed for both species. Differences in feeding rhythms between C. latus 504 

and C. hippos may also reduce the intensity of the trophic competition among their juveniles at the daily 505 

scale, as already observed for other jack species (Blaber and Cyrus, 1983). Lastly, competition for food is 506 

also often avoided through differences in the periods for juvenile occurrence in the estuaries, as observed 507 

in local snook species with similar diets but distinct spawning periods (Stevens et al., 2020). However, 508 

this does not really apply here as C. latus and C. hippos in northeastern Brazil both are expected to spawn 509 

from April to June (Heyman and Kjerfve, 2008), and their juveniles are mostly fished in local estuaries 510 

during the late summer (McBride and McKown, 2000; Vilar et al., 2011; da Silva et al., 2018).  511 

 512 

Conclusion 513 

This study contributes to better understanding the drivers of juvenile trophic ecology and its 514 

variation in tropical estuaries. Although the two close species of jacks studied here apparently globally 515 

rely on similar prey during their juvenile estuarine life, our results revealed some plasticity in their 516 

resource use, supporting the idea that resource partitioning processes between sympatric species are 517 

locally dependent (Costa-Pereira et al., 2019). Such plasticity in resource use according to local food web 518 

structure may not only favor the coexistence of a larger number of species but also provide greater 519 
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stability for estuarine food webs (Kondoh, 2003). In order to evaluate it, cross-sites comparisons should 520 

be systematically undertaken when investigating the trophic ecology of sympatric fish species, 521 

particularly in tropical estuaries that show a high diversity of food sources (Layman, 2007). As spatial 522 

variation in the trophic ecology of predators like C. latus and C. hippos may not only influence the 523 

growth and survival of their juveniles, but also modulate their respective roles in the functioning of 524 

estuarine food webs, such cross-sites comparisons could be key for evaluating the implications of 525 

different co-existence scenarios, not only on the maintenance of coastal fish stocks but also on the 526 

composition and functioning of estuarine systems. This should be undertaken keeping in mind that both 527 

anthropic pressures and Climate Change may displace the environmental boundaries of estuaries or alter 528 

the composition and productivity of their food webs (Araújo et al. 2016, Chevillot et al. 2019), thereby 529 

affecting the way fish species exploit estuarine resources and modifying their roles in food webs.  530 

 531 
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Figure Captions 927 

 928 

Fig 1 Study area in northeastern Brazil, showing sampling locations within the Santa Cruz (a.), Suape (b.) 929 

and Sirinhaém (c.) estuaries (black dots). For each estuary, mangrove cover is indicated in dark grey. 930 

 931 

Fig 2 Number of individuals (n) and length frequency distributions of the Caranx latus and C. hippos 932 

juveniles sampled in the estuaries of Santa Cruz, Suape and Sirinhaém. 933 

 934 

Fig 3 Carbon (δ
13

C) and nitrogen (δ
15

N) isotope ratios of the two jack species, Caranx latus and C. 935 

hippos, in three contrasted estuaries of northeastern Brazil (Santa Cruz, Suape and Sirinhaém). Ellipses 936 

represent the isotopic niche (SEAc) for both species. Pie charts present the global diet of each species 937 

based on prey relative weights (Wi, see Table 3). 938 

 939 

Fig 4 Carbon (δ
13

C) and nitrogen (δ
15

N) isotope ratios (mean ± standard deviation) of Caranx latus and 940 

C. hippos and the main available organic matter sources in three contrasted estuaries of northeastern 941 

Brazil (Santa Cruz, Suape and Sirinhaém). Isotopic signatures for the organic matter sources sampled in 942 

the estuaries and in adjacent coastal zones are represented by black and grey squares, respectively. Light 943 

grey polygons show the range of isotopic ratios of all estuarine organic matter sources except mangrove 944 

trees (R. mangle). Arrows in the bottom left corner of each panel illustrate the average isotopic 945 

enrichment per trophic level (+ 0.47 ± 1.23 ‰ for δ
13

C and + 2.54 ± 0.11 ‰ for δ
15

N) usually applied in 946 

aquatic environments (Vander Zanden and Rasmussen, 2001; Vanderklift and Ponsard, 2003). Pie charts 947 

present the local diets of each species based on prey relative weights (Wi, see Supplementary Tables S1, 948 

S2 and S3). 949 
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Tables 951 

 952 

Characteristics 
Estuary 

Santa Cruz Suape Sirinhaém 

Type Ria Coastal lagoon Coastal plain 

Human pressures 
Aquaculture, agricultural, industrial 

and domestic waste 

Industrial harbour, 

industrial and 
agriculture waste 

Industrial and domestic 

waste 

Vegetated area (km²) † 48.0 23.1 17.0 

Water surface area (km²) † 25.5 6.6 1.7 

Mean depth (m) 3.0 3.1 2.6 

Max. depth (m) 20 5 5 

N of marine entrances 2 1 1 

Width of marine entrances (km, mean 

and range) † 

0.9 

(0.5 - 1.3) 
0.3 0.4 

Pelagic productivity (mgCm-3h-1) 14.7 2.0 34.2 

Temperature (°C, mean± SD) ‡ 28.5 ± 1.1 27.1 ± 1.1 27.2 ± 2.4 

Salinity (mean± SD) ‡ 31.1 ± 2.9 17.7 ± 2.4 9.5 ± 3.6 

Pluviometry (mm, mean± SD) 1517 ± 122 1869 ± 367 2053 ± 699 

References 

Medeiros and Kjerfve, 1993; Medeiros et al., 2001; Neuman-Leitão et al., 2001; CPRH, 

2003, 2003a; Borges, 2011; Silva, 2009; Guimarães et al., 2010; Silva et al., 2011; APAC, 
2019; Gonzalez et al., 2019; Silva et al., 2019 

Type, geomorphological classification on the type of estuary according to Pritchard’s classification. Human pressure, existent anthropogenic activity with potential 953 
impact on the estuary. Vegetated area, area of mangrove cover vegetation. Max. depth, maximum depth during the high tide, usually near the estuary’s entrance. N 954 
of marine entrances, number of connections to the sea. Pelagic productivity, mean annual phytoplankton productivity. Temperature, water surface temperature. 955 
Pluviometry, annual rainfall between 2014 and 2018.

 956 

Table 1 Summary of morphological characteristics, environmental settings and anthropogenic activities 957 

of the three estuaries (Santa Cruz, Suape and Sirinhaém) along the coast of Pernambuco, northeastern 958 

Brazil 959 
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Estuary Species 
Stomach content analysis†   Stable isotopes analysis 

n SL (mm)  n SL (mm) δ13C (‰) δ15N (‰) 

Santa Cruz 
C. latus 70 

98 ± 17 

[50 – 135] 
 30 

109 ± 18 

[80 – 138] 

-18.85 ± 1.59 

[-23.4 – -16.5] 

10.89 ± 1.09 

[8.6 – 13.0] 

 C. hippos 70 
82 ± 24 

[36 – 131] 
 30 

111 ± 17 

[82 – 142] 

-18.94 ± 1.66 

[-22.3 – -16.3] 

11.61 ± 0.87 

[10.4 – 13.7] 
   

      

Suape 
C. latus 67 

129 ± 18 

[82 – 157] 
 15 

113 ± 16 

[86 – 141] 

-18.65 ± 1.45 

[-21.9 – -16.6] 

9.38 ± 0.73 

[8.0 – 10.2] 

 C. hippos 20 
112 ± 29 

[49 – 156] 
 10 

114 ± 29 

[65 – 145] 

-20.25 ± 2.77 

[-23.6 – -15.7] 

10.28 ± 1.00 

[8.8 – 12.0] 
   

      

Sirinhaém 
C. latus 70 

79 ± 16 

[35 – 116] 
 15 

90 ± 20 

[70 – 124] 

-20.07 ± 1.08 

[-24.4 – -15.9] 

9.34 ± 1.16 

[8.2 – 11.6] 

 C. hippos 39 
73 ± 12 

[47 – 98] 
 12 

87 ± 27 

[65 – 138] 

-19.64 ± 2.39 

[-23.6 – -16.1] 

10.22 ± 0.86 

[8.7 – 11.7] 
† Fish with non-empty stomachs only. 961 

Table 2 Number of individuals (n), their mean standard length (SL ± S.D.) and isotopic ratio mean values 962 

(± S.D.) for carbon (δ
13

C) and nitrogen (δ
15

N) of Caranx latus and C. hippos analysed for stomach 963 

content and stable isotopes compositions, in the three estuaries (Santa Cruz, Suape and Sirinhaém). 964 

Minimum and maximum values of each variable are between brackets. 965 
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Item 

Species 

Caranx latus (n = 207; 102±27 mm)  Caranx hippos (n = 131; 84±25 mm) 

Fi (%) Ni (%) Wi (%) Q  Fi (%) Ni (%) Wi (%) Q 

ALGAE   12.08 
[7.7 – 16.9] 

4.19 
[2.4 – 6.6] 

0.29 
[0.1 – 0.7] 

0.82  2.90 
[0.8 – 6.1] 

0.86 
[0.1 – 2.2] 

0.18 
[0 – 0.6] 

0.14 

 
Chlorophyta (Unidentified)   0.97 

[0 – 2.4] 
0.40 

[0 – 1.1] 
0.01 

[0 – 0.1] 
0.01  - - - - 

 
Unidentified Algae   11.11 

[7.2 – 15.5] 
4.87 

[2.6 – 7.9] 
0.28 

[0.1 – 0.7] 
1.36  3.05 

[0.8 – 6.1] 
1.00 

[0.1 – 2.6] 
0.18 

[0 – 0.6] 
0.18 

             

FORAMINIFERA (Unidentified)   0.48 
[0 – 1.4] 

0.08 
[0 – 0.3] 

<0.01 0.01  - - - - 

 
    0.48 

[0 – 1.4] 
0.10 

[0 – 0.3] 
<0.01 0.01      

NEMATODA (Unidentified)   5.31 
[2.4 – 8.7] 

1.11 
[0.5 – 1.8] 

<0.01 0.01  2.90 
[0.8 – 61] 

0.48 
[0.1 – 1.1] 

<0.01 0.01 

 
    5.31 

[2.4 – 8.7] 
1.39 

[0.6 – 2.3] 
<0.01 0.01  3.05 

[0.8 – 6.1] 
0.56 

[0.1 – 1.3] 
<0.01 0.01 

              

BIVALVIA (Unidentified)   0.48 
[0 – 1.4] 

0.32 
[0 – 1.0] 

<0.01 0.01  0.72 
[0 – 2.3] 

0.10 
[0 – 0.4] 

<0.01 0.01 

 
    0.48 

[0 – 1.4] 
0.40 

[0 – 1.3] 
<0.01 0.01  0.76 

[0 – 2.3] 
0.11 

[0 – 0.4] 
<0.01] 0.01 

              

GASTROPODA (Unidentified)   2.90 
[1.0 – 5.3] 

1.26 
[0.3 – 2.6] 

0.01 
[0 – 0.1] 

0.01  - - - - 

 
    2.90 

[1.0 – 5.3] 
1.59 

[0.3 – 3.3] 
0.01 

[0 – 0.1] 
0.01      

Table 3 Frequency of occurrence (Fi), relative abundance (Ni) and weight (Wi) and alimentary coefficient (Q) of prey items of Caranx latus and Caranx hippos in northeastern 

Brazil estuaries. Dietary indexes estimate for major taxonomic groups are shown in bold. Confidence interval estimates (95%) for dietary indexes are displayed between 

square brackets. The number of fish specimens (n) and their mean standard length (SL, ±SD) are presented for each species.  
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POLYCHAETA (Unidentified)   0.48 
[0 – 1.4] 

0.08 
[0 – 0.3] 

<0.01 0.01  1.45 
[0 – 3.8] 

0.57 
[0 – 1.7] 

0.01 
[0 – 0.1] 

0.01 

     0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

<0.01 0.01  1.53 
[0 – 3.8] 

0.67 
[0 – 1.9] 

0.01 
[0 – 0.1] 

0.01 

              

OLIGOCHAETA (Unidentified)   0.48 
[0 – 1.4] 

0.08 
[0 – 0.3] 

<0.01 0.01  2.17 
[0 – 17.1] 

0.29 
[0 – 0.7] 

<0.01 0.01 

     0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

<0.01 0.01  2.29 
[0 – 5.3] 

0.33 
[0 – 0.9] 

<0.01 0.01 

              

CRUSTACEA    49.28 
[42.5 – 56.0] 

26.07 
[19.7 – 33.3] 

23.30 
[14.2 – 34.6] 

705.34  60.87 
[51.9 – 68.7] 

65.97 
[51.7 – 75.4] 

38.22 
[22.8 – 60.3] 

2537.20 

 Cirripedia (Unidentified)   0.48 
[0 – 1.4] 

0.60 
[0 – 2.0] 

<0.01 0.01  0.76 
[0 – 2.3] 

0.78 
[0 – 2.9] 

<0.01 0.01 

 Copepoda (Unidentified)   1.45 
[0 – 3.4] 

1.79 
[0 – 4.6] 

<0.01 0.01  7.63 
[3.1 – 12.2] 

2.12 
[0.8 – 2.1] 

<0.01 0.01 

 Malacostraca Decapoda Brachyura Portunidae 0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.10 
[0 – 0.4] 

0.01  1.53 
[0 – 3.8] 

0.22 
[0 – 0.6] 

0.05 
[0 – 0.2] 

0.01 

    Sesarmidae 0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.05 
[0 – 0.2] 

0.01  - - - - 

    Unidentified Brachyura 0.97 
[0 – 2.4] 

0.70 
[0 – 2.1] 

0.14 
[0 – 0.5] 

0.09  1.53 
[0 – 3.8] 

0.33 
[0 – 1.0] 

0.32 
[0 – 1.2] 

0.10 

   Caridea Alpheidae 4.83 
[1.9 – 8.2] 

1.99 
[0.7 – 3.9] 

1.56 
[0.1 – 4.7] 

3.10  1.53 
[0 – 3.8] 

0.22 
[0 – 0.6] 

1.22 
[0 – 4.8] 

0.26 

    Unidentified Caridea 2.90 
[1.0 – 5.3] 

0.99 
[0.7 – 2.0] 

1.38 
[0.3 – 2.9] 

1.36  - - - - 

   Dendrobranchiata Aristeidae 0.48 
[0 – 1.4] 

0.20 
[0 – 0.7] 

0.06 
[0 – 0.2] 

0.01  - - - - 

    Penaeidae 11.59 
[7.2 – 15.9] 

4.87 
[2.6 – 7.7] 

14.60 
[7.8 – 23.5] 

71.10  20.61 
[13.7 – 27.5] 

8.37 
[3.8 – 15.4] 

19.26 
[9.9 – 33.3] 

161.20 

   Unidentified Decapoda 15.46 
[10.6 – 20.3] 

8.84 
[4.6 – 15.0] 

4.86 
[2.2 – 8.6] 

42.96  23.66 
[16.8 – 31.3] 

15.07 
[7.9 – 15.4] 

10.56 
[4.0 – 22.2] 

159.13 

  Isopoda (Unidentified)  2.90 
[1.0 – 5.3] 

0.79 
[0.2 – 1.6] 

0.01 
[0 – 0.1] 

0.01  3.82 
[0.8 – 7.6] 

0.56 
[0.1 – 1.2] 

0.06 
[0 – 0.2] 

0.03 
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  Mysida (Unidentified)  1.93 
[0.5 – 3.9] 

0.79 
[0.1 – 1.7] 

0.01 
[0 – 0.1] 

0.01  7.63 
[3.1 – 12.2] 

36.61 
[12.7 – 53.9] 

4.67 
[0.9 – 11.1] 

170.96 

  Stomatopoda (Unidentified)  - - - -  0.76 
[0 – 2.3] 

0.11 
[0 – 0.4] 

0.03 
[0 – 0.1] 

0.01 

 Ostracoda (Unidentified)   4.35 
[1.9 – 7.2] 

2.78 
[0.8 – 5.6] 

<0.01 0.01  1.53 
[0 – 3.8] 

0.56 
[0 – 1.5] 

<0.01 0.1 

 Unidentified Crustacea   14.98 
[10.1 – 19.8] 

8.34 
[4.5 – 13.2] 

0.90 
[0.4 – 1.7] 

7.50  9.92 
[5.3 – 15.3] 

9.49 
[2.9 – 17.9] 

2.61 
[0.2 – 6.9] 

24.76 

             

HEXAPODA    0.48 
[0 – 1.4] 

0.08 
[0 – 0.3] 

<0.01 0.01  - - - - 

 Unidentified Insecta   0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

<0.01 0.01      

             

VERTEBRATA    84.06 
[78.8 – 88.9] 

46.29 
[37.7 – 54.9] 

75.10 
[63.5 – 84.4] 

3252.60  71.74 
[64.1 – 79.4] 

20.17 
[13.8 – 29.1] 

60.13 
[37.9 – 76.0] 

1205.15 

 Thaliacea Salpida  Salpidae 0.97 
[0 – 2.4] 

0.20 
[0 – 0.5] 

0.09 
[0 – 0.3] 

0.01  - - - - 

 Teleostei Clupeiformes  Clupeidae 1.93 
[0.5 – 3.9] 

0.70 
[0.1 – 1.6] 

2.61 
[0 – 6.8] 

1.82  2.29 
[0 – 5.3] 

0.89 
[0 – 2.5] 

7.18 
[0 – 19.5] 

6.39 

    Engraulidae 4.35 
[1.9 – 7.2] 

1.59 
[0.5 – 3.1] 

2.46 
[0.4 – 5.7] 

3.91  3.05 
[0.8 – 6.1] 

0.45 
[0.1 – 1.0] 

4.43 
[0.6 – 9.9] 

1.99 

  Gobiiformes  Eleotridae 1.45 
[0 – 3.4] 

0.30 
[0 – 0.7] 

0.44 
[0 – 1.1] 

0.13  0.76 
[0 – 2.3] 

0.11 
[0 – 0.4] 

0.90 
[0 – 3.4] 

0.09 

    Gobiidae 23.67 
[17.9 – 29.9] 

7.55 
[5.3 – 10.4] 

39.99 
[19.7 – 57.6] 

301.92  19.08 
[12.2 – 26.0] 

4.35 
[2.4 – 7.3] 

33.28 
[7.4 – 57.7] 

144.76 

  Perciformes  Carangidae 0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.16 
[0 – 0.6] 

0.01  2.29 
[0 – 5.3] 

2.01 
[0 – 5.9] 

0.74 
[0 – 2.6] 

1.48 

    Gerreidae 9.66 
[5.8 – 14.0] 

4.37 
[2.0 – 7.8] 

2.73 
[0.6 – 6.0] 

11.93  0.76 
[0 – 2.3] 

0.11 
[0 – 0.4] 

0.08 
[0 – 0.3] 

0.01 

    Scianidae 0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.24 
[0 – 0.9] 

0.02  - - - - 
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  Pleuronectiformes  Cynoglossidae  0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.14 
[0 – 0.5] 

0.01  - - - - 

    Paralichthyidae 0.48 
[0 – 1.4] 

0.10 
[0 – 0.3] 

0.04 
[0 – 0.2] 

0.01  - - - - 

 Unidentified teleostei   60.39 
[53.6 – 67.1] 

43.00 
[32.2 – 53.6] 

27.12 
[18.2 – 39.0] 

1166.18  
54.20 

[45.8 – 62.6] 
14.96 

[9.4 – 23.5] 
14.40 

[8.4 – 24.0] 
215.2 

              

DEBRIS    29.47 
[23.7 – 35.7] 

20.46 
[14.9 – 26.2] 

1.30 
[0.3 – 3.2] 

-  33.59 
[26.0 – 42.0] 

11.64 
[7.2 – 18.3] 

1.46 
[0.4 – 3.1] 

- 

 Plastic debris    19.81 
[14.5 – 25.6] 

13.90 
[9.3 – 18.8] 

<0.01 -  18.12 
[12.2 – 25.2] 

6.50 
[3.5 – 10.8] 

<0.01 - 

 Unidentified organic matter and sediment debris  14.98 
[10.1 – 19.8] 

6.56 
[3.5 – 10.2] 

1.30 
[0.3 – 3.2] 

-  18.84 
[12.2 – 26.0] 

5.07 
[2.7 – 8.8] 

1.45 
[0.4 – 3.1] 

- 
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Santa Cruz

Suape

Sirinhaém

C. latus
C. hippos

C. latus n( : 98)
C. hippos n( : 97)

C. latus n( : 88)
C. hippos n:( 27)

C. latus n:( 80)
C. hippos n:( 49)
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C. latus
C. hippos

Santa Cruz

Suape

Sirinhaém

Fish

Other prey

Shrimps

Other crustaceans

Prey Item

Mysids

C. latus C. hippos
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Tatuoca River

Carrapicho River

Arataca River

Botafogo River

Congo River

Igarassu River
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Highlights 

 The trophic ecology of two jack species was described for three tropical estuaries 

 Both species mostly eat fish and crustaceans during their estuarine juvenile life 

 Their overall isotopic niches are very similar and the overlap between them is >68% 

 However, spatial changes in diet allow to reduce this latter to 27-57% 

 Food partitioning strategies between the two species differ among estuaries 
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