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THE HYPERELLIPTIC THETA MAP AND OSCULATING

PROJECTIONS

MICHELE BOLOGNESI∗ and NÉSTOR FERNÁNDEZ VARGAS

Abstract. Let C be a hyperelliptic curve of genus g ≥ 3. In this paper, we

give a new geometric description of the theta map for moduli spaces of rank 2

semistable vector bundles on C with trivial determinant. In order to do this, we

describe a fibration of (a birational model of) the moduli space, whose fibers are

GIT quotients (P1)2g//PGL(2). Then, we identify the restriction of the theta

map to these GIT quotients with some explicit degree 2 osculating projection.

As a corollary of this construction, we obtain a birational inclusion of a fibration

in Kummer (g− 1)-varieties over Pg inside the ramification locus of the theta

map.

§1. Introduction

Let C be a complex smooth curve of genus g ≥ 3 and SUC(r) the (coarse) moduli space

of semistable vector bundles of rank r with trivial determinant on C. It is well known that

this moduli space is a normal, projective, unirational variety of dimension (r2− 1)(g− 1).

The study of the projective geometry of moduli spaces of vector bundles in low rank and

genus has produced some beautiful descriptions, frequently mingling constructions issued

in the context of classical algebraic geometry and the geometry of Jacobians and theta

functions [11, 26, 28].

Let L be the determinant line bundle on SUC(r) and ϕL : SUC(r) 99K |L|∗ the map

induced by global sections of L. The linear system |L|∗ is isomorphic to the |rΘ| linear

series on the Jacobian variety Jac(C), by the first declination of strange duality [3]. This

way, we obtain a (in general) rational map

θ : SUC(r) 99K |rΘ|,

the celebrated theta map, which is canonically identified to ϕL [3] (see also [10, 16] for more

details on the injectivity of θ).

Let us now fix r = 2. In this setting, the map θ is a finite morphism [29]. When g = 2,

the map θ is an isomorphism onto P3 [25]. For g ≥ 3, the map θ is an embedding if C is

nonhyperelliptic, and it is a 2:1 map if C is hyperelliptic [9, 11, 30] (see Section 2.1 for

more details).

The goal of this paper is to describe the geometry associated to the map θ in the case

r = 2 when C hyperelliptic. In the nonhyperelliptic case, the papers [6] and [1] outline a

connection between the moduli space SUC(2) and the moduli space M0,n of rational curves

with n ordered marked points. A generalization of [1] for higher rank vector bundles has
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2 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

been given in [8]. In the present work, we develop once again the interplay with the moduli

space of pointed rational curves (more precisely with its GIT compactification MGIT
0,n ).

Thanks to some clever description of the GIT compactification in terms of linear systems

on the projective space due to Kumar [21], this also offers a new geometric description of

the θ-map if C is hyperelliptic.

Let C be a hyperelliptic curve of genus g ≥ 3 and D an effective divisor of degree g

on C.

Let us set P3g−2
D := PExt1(O(D),O(−D)) = |K+2D|∗, where K is the canonical divisor

on C. The projective space P
3g−2
D parametrizes equivalence classes of extensions

0→O(−D)→ E →O(D)→ 0,

and we denote by fD : P3g−2
D 99K SUC(2) the natural tautological classifying map sending

a semi-stable extension class onto its corresponding rank 2 vector bundle. Since the divisor

K + 2D is very ample, the linear system |K + 2D| embeds the curve C in P
3g−2
D . Let

N := p1+ · · ·+p2g be a general reduced effective divisor in the linear system |2D|, and let

P
2g−2
N be the (2g−2)-dimensional linear span in P

3g−2
D of the 2g marked points p1, . . . ,p2g

on C ( P2g−2
N has also a precise description in terms of extensions, see Section 3).

Theorem A.

1. There exists a fibration pD : SUC(2) 99K |2D| ∼= Pg whose general fiber is birational to

MGIT
0,2g .

2. For every generic divisor N ∈ |2D|, the restriction of fD to the projective space P
2g−2
N ⊂

P
3g−2
D dominates p−1

D (N)
birat
∼= MGIT

0,2g . The generic fiber of f
D|P2g−2

N
is a rational normal

curve passing through the 2g marked points.

3. The family of rational normal curves contracted by f
D|P2g−2

N
is the universal family of

pointed rational curves over (an open subset of) the generic fiber p−1
D (N)

birat
∼= MGIT

0,2g .

In fact, the restriction of fD to P
2g−2
N coincides on an open subset with a dominant

rational map hN : P2g−2
N 99K MGIT

0,2g (see Section 4.3 for more details) that contracts all

the rational normal curves passing through the 2g points of N. Via the Kapranov blow-up

construction of M0,2g (see Section 4.2.3) one sees that these rational normal curves, and

the rational map hN , make up the universal family of pointed rational curves over an open

subset of MGIT
0,2g .

Besides its independent interest, Thm. A is important since the map θ has a very explicit

geometric description, once it is restricted to the generic fibers of the fibration pD. To this

end, the following construction is crucial.

Let p, i(p) be two hyperelliptic involution-conjugate points in C ; and consider the line

l⊂ P
3g−2
D secant to C and passing through p and i(p). We show that this line intersects the

subspace P
2g−2
N in a point. Moreover, the locus Γ ⊂ P

2g−2
N of these intersections as we vary

p ∈ C is a rational normal curve passing by the points p1, . . . ,p2g. One of the consequences

of Theorem A, is that the map fD contracts the curve Γ onto a point w ∈ p−1
D (N) (recall

that p−1
D (N) is birational to M0,2g).

By using Kumar’s description [21] of certain rational involutions on MGIT
0,2g , we can prove

the following Theorem.
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 3

Theorem B. The map θ restricted to the fibers p−1
D (N) is a 2-to-1 osculating projection

πN of multiplicity g−2 centered at the point w= fD(Γ), up to composition with a birational

map.

In this theorem, and in the rest of the text, multiplicity one will mean the simple linear

projection. Furthermore, the image of πN can be identified with a connected component

of the moduli space SUCw
(2)inv of hyperelliptic invariant semistable vector bundles with

trivial determinant on Cw, where Cw is the hyperelliptic 2-to-1 cover of P1 ramifying over

the 2g points defined by w. Thanks to [21], we know that the ramification locus of the map

πN is the Kummer variety Kum(Cw)⊂SUCw
(2)inv. These results, combined with Theorem

B, allow us to give a quite accurate description of the ramification locus of the map θ:

Theorem C. The ramification locus of the map θ has an irreducible component

birational to a fibration in Kummer varieties of dimension g−1 over |2D| ∼= Pg.

In low genus, we are able to give a more precise description of the Theta map and its

interplay with maps classifying extensions. Let us define ϕD as θ ◦ fD. The map ϕD is

defined by the linear system |ISecg−2(C)(g)| (see Proposition 2.2).

Theorem D. Let C be a hyperelliptic curve of genus 3. Then, for generic N, the

restriction of ϕD to the subspace P
2g−2
N is exactly the composition πN ◦ hN . If g = 4 or

5, then Secg−2(C)∩P
2g−2
N is set-theoretically equal to the base locus of πN ◦hN .

Notation. Pn = P(Cn+1) will denote the n-dimensional complex projective space of

dim 1 subspaces. Throughout this paper, a form F of degree r on Pn will denote an element

of the vector space H0(Pn,OPn(r)) = Symr(Cn+1)∗. If we fix a basis x0, . . . ,xn of (Cn+1)∗,

F is simply a homogeneous polynomial of degree r in x0, . . . ,xn. Most of the maps in this

paper will be rational maps, hence we will often offend good taste by just dropping the

adjective rational. We apologize for that.

Plan of the paper: In Section 2, we introduce some general results about moduli of vector

bundles and the maps classifying extension classes. Sections 3 and 4 are devoted to the

study of the restriction of the classifying maps to P
2g−2
N ⊂ P

3g−2
D (with N moving in |2D|)

and to the relation of such maps with forgetful linear systems contracting rational normal

curves. In Section 5, thanks to the projective geometry of the curve C embedded in P
3g−2
D

the hyperelliptic involution comes into play and we show Theorems A, B, and C. Finally,

Sections 6 and 7 are devoted to a more detailed study of the low genus cases, up to genus

6, which are resumed in Theorem D.

§2. Moduli of vector bundles

We briefly recall here some results about moduli of vector bundles.

2.1 Moduli of vector bundles and the map θ

Let C be a smooth genus g algebraic curve with genus g ≥ 2. Let us denote by Picd(C)

the Picard variety of degree d line bundles on C. The Jacobian of C is Jac(C) = Pic0(C).

As customary, we will denote by Θ⊂ Picg−1(C) the Riemann theta divisor.

The Picard group Pic(SUC(2)) is isomorphic to Z, and it is generated by the determinant

line bundle L [15]. For every E ∈ SUC(2), let us define the theta divisor

θ(E) := {L ∈ Picg−1(C) | h0(C,E⊗L) 6= 0}.
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4 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

In the rank 2 case, θ(E) is a divisor in the linear system |2Θ| ∼= P2g−1 and |2Θ| is

isomorphic to the linear system |L|∗ [3]. It is well known that we can identify the map

SUC(2)→ |L|∗ with the Theta map

θ : SUC(2)→ |2Θ|;

E 7→ θ(E).

In rank 2, the map θ is a finite morphism. If C is not hyperelliptic, θ is known to be an

embedding [9, 30]. This is also the case in genus 2, where θ is an isomorphism onto P3 [25].

If C is hyperelliptic of genus g ≥ 3, we have that θ factors through the involution

E 7→ i∗E

induced by the hyperelliptic involution i, embedding the quotient SUC(2)/i
∗ into |2Θ| [11].

An interesting explicit description of the image of the hyperelliptic theta map is given in

[11].

2.2 The classifying maps

Let D be a general degree g effective divisor on C. Let us consider isomorphism classes

of extensions

(e) 0→O(−D)→ Ee →O(D)→ 0.

These extensions are parametrized by the (3g−2)-dimensional projective space P3g−2
D :=

PExt1(O(D),O(−D)) = |K +2D|∗, where K is the canonical divisor of C. The divisor

K +2D is very ample and embeds C as a degree 4g− 2 curve in P
3g−2
D . Let us define

the rational surjective classifying map fD : P3g−2
D 99K SUC(2) which sends a semi-stable

extension class (e) to the vector bundle Ee. The composed map

ϕD := θ ◦fD : P3g−2
D 99K |2Θ|

can be described in terms of polynomial maps. From [4, Theorem 2] we have an isomorphism

H0(SUC(2),L)∼=H0(P3g−2
D ,Ig−1

C (g)), (1)

where IC is the ideal sheaf of C. In particular, we have

Theorem 2.1. The map ϕD is given by the linear system |Ig−1
C (g)| of forms of degree

g vanishing with multiplicity at least g−1 on C.

Let us denote by Secn(C) the variety of (n+1)-secant n-planes on C. We have that the

singular locus of Secn+1(C) is the secant variety Secn(C) for every n. The linear system

|Ig−1
C (g)| can be alternatively characterized as follows (see e.g., [1, Lemma 2.5]):

Proposition 2.2. The linear system |Ig−1
C (g)| and |ISecg−2(C)(g)| on P

3g−2
D are the

same.

2.3 The exceptional fibers of the classifying map fD

Since dimSUC(2) = 3g−3, the generic fiber of fD has dimension one. The set of stable

bundles for which dim(f−1
D (E))> 1 is a proper subset of SUC(2). For simplicity, let us define

the “Serre dual” divisor B :=K−D with deg(B) = g− 2. As in the previous paragraphs,
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 5

the isomorphism classes of extensions

0→O(−B)→ E →O(B)→ 0

are classified by the projective space

P
3g−6
B := PExt1(O(B),O(−B)) = |K+2B|∗,

which is endowed with the rational classifying map fB : P3g−6
B 99K SUC(2) defined the same

way as fD.

Proposition 2.3. Let E ∈ SUC(2) be a stable bundle. Then

dim(f−1
D (E))≥ 2 if and only if E ∈ fB(P

3g−6
B ).

Proof. Let E be a stable bundle. Then, by Riemann-Roch and Serre duality theorems,

the dimension of f−1
D (E) is given by

h0(C,E⊗O(D)) = h0(C,E⊗O(B))+2g−2(g−1)

= h0(C,E⊗O(B))+1

Thus, dim(f−1
D (E))> 2 if and only if there exists a nonzero sheaf morphism O(−B)→ E.

This is equivalent to E ∈ fB(P
3g−6
B ).

If g > 2, the divisor |K+2B| embeds C as a degree 4g− 6 curve in P
3g−6
B (recall that

PExt1(O(B),O(−B)) = |K +2B|∗). Again by Theorem 2.1, the map ϕB is given by the

linear system |Ig−3
C (g−2)|. Moreover, by [27, Theorem4.1] this linear system has projective

dimension
(∑g−2

i=0

(
g
i

))
−1.

Let us denote by Pc the linear span of θ(fB(P
3g−6
B )) in |2Θ|. Hence Pc has dimension(∑g−2

i=0

(
g
i

))
− 1, and Proposition 2.3 also applies to ϕD: the fibers of ϕD with dimension

≥ 2 are those over Pc.

§3. A linear projection in |2Θ|

The goal of this Section is to describe the map SUC(2) → Pg whose fibers will be

birational—and in some cases even biregular—to the GIT compactification of the moduli

space of 2g-pointed rational curves. In order to do this, we describe the projection with

center Pc, seen as a linear subspace of |2Θ|. So far we are not resricting to the case where

C is hyperelliptic.

Let pPc
be the linear projection in |2Θ| with center Pc. Recall that dimPc=

[∑g−2
i=0

(
g
i

)]
−1.

A straightforward calculation shows that the supplementary linear subspaces of Pc in |2Θ|

are of projective dimension g. Thus, the image of pPc
is a g-dimensional projective space.

Let us set

ŜUC(2) := SUC(2)\ (Kum(C)∪ϕD(P3g−6
B )).

This is the open subset of SUC(2) we will be mostly concerned by. Recall that the space

H0(C,E⊗O(D)) has dimension 2 for E ∈ ŜUC(2). Consequently, we can pick two sections

s1 and s2 that constitute a basis for this space.
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6 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

Theorem 3.1. The image of the projection pPc
can be identified with the linear system

|2D| on C, in a way such that the restriction of the projection pPc
to θ(ŜUC(2)) coincides

with the map

θ(ŜUC(2))→ |2D|

θ(E) 7→ Zeroes(s1∧s2)

Proof. A similar statement was proved in [1] for C non hyperelliptic, but the proof

extends to the hyperelliptic case with no big problem. We recall briefly the lines of

[1, Theorem 4.1] and will mention explicitly where the proof for C hyperelliptic differs.

The Picard variety Picg−1(C) contains a model C̃ of C, made up by line bundles of type

O(B+p), with p∈C. The span of C̃ inside |2Θ|∗ corresponds to the complete linear system

|2D|∗. Moreover, the linear span of C̃ is the annihilator of Pc. In particular, the projection

p
Pc|θ(ŜUC(2))

determines a hyperplane in the annihilator of Pc, which is a point in |2D|. This

projection can be identified with the map

p
Pc|θ(ŜUC(2))

: θ(ŜUC(2))→ |2D|,

θ(E) 7→∆(E),

where ∆(E) is the divisor defined by

∆(E) := {p ∈ C | h0(C,E⊗O(B+p)) 6= 0}. (2)

Equivalently, we have that ∆(E) = θ(E)∩ C̃. Now, in order to adapt to the hyperelliptic

case, it is enough to observe that since θ(E) = θ(i∗E), we directly obtain that ∆(E) =

∆(i∗E). Finally, an easy Riemann-Roch argument shows that that ∆(E) is the divisor of

zeroes of s1∧s2.

Recall that the linear system |K+2D| embeds the curve C in the projective space P3g−2
D .

Let N ∈ |2D| be a generic effective reduced divisor and consider the linear span 〈N〉 ⊂P
3g−2
D .

The annihilator of 〈N〉 is the vector space H0(C,2D+K−N), which has dimension g. In

particular, the linear span 〈N〉 has dimension (3g−2)−g = 2g−2. Let us write

P
2g−2
N := 〈N〉 ⊂ P

3g−2
D .

We will study the classifying map ϕD in relation with a fibration SUC(2) → Pg by

considering the restrictions of ϕD to P
2g−2
N , as N varies in the linear system |2D|. The

spaces P2g−2
N have a very explicit description in terms of extension classes (see [23]).

Notation. For simplicity, let us write ϕD,N for the restricted map ϕ
D|P2g−2

N
.

Before proceeding further, let us recall from [1], the following proposition, which is a

consequence of [23, Proposition 1.1].

Proposition 3.2. Let N in |2D| be a general divisor on C ⊂ P
3g−2
D . Then, the image

of

ϕD,N : P2g−2
N 99K θ(SUC(2))

is the closure in θ(SUC(2)) of the fiber over N ∈ |2D| of the projection pPc
.
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 7

§4. The modular fibration SUC(2) → Pg

Let C be a smooth genus g ≥ 3 curve (not necessarily hyperelliptic). Let D be a general

degree g effective divisor on C. Let N = p1 + · · ·+ p2g be a general divisor in the linear

system |2D|. Consider the span P
2g−2
N in P

3g−2
D of the 2g marked points p1, . . . ,p2g. In this

section, building on [7] and [1], we will give more information about the restricted map

ϕD,N . In particular, we will explain the interplay between these maps, rational normal

curves in P
2g−2
N and moduli spaces of rational pointed curves.

4.1 Linear systems in P
2g−2

N contracting rational normal curves.

Recall that the secant variety Secg−2(C) is the base locus for ϕD (see Theorem 2.1 and

Proposition 2.2). Hence we will distinguish the following two secant varieties in P
2g−2
N :

SecN := Secg−2(C)∩P
2g−2
N ,

Secg−2(N) :=
⋃

M⊂N
#M=g−1

span{M} .

Note that, since the points of N are already in P
2g−2
N , we have the inclusion Secg−2(N)⊂

SecN . We will also need to consider the linear systems on P
2g−2
N

ISecN (g), and ISecg−2(N)(g)

of forms of degree g vanishing on the corresponding secant varieties. The previous inclusion

of secant varieties implies that ISecN (g) is in general a linear subsystem of ISecg−2(N)(g).

Lemma 4.1. The restricted map ϕD,N is given by a linear subsystem R of |ISecN (g)|.

Proof. This is a direct consequence of Theorem 2.1 and Proposition 2.2.

4.2 Moduli spaces of pointed rational curves

In this section, we will outline the relation between the restricted map ϕD,N and the

moduli spaces of pointed rational curves.

4.2.1. Two compactifications of M0,n

The moduli space M0,n of ordered configurations of n distinct points on the projective

line is not compact. We will consider two compactifications of M0,n. The first one is the

GIT quotient

MGIT
0,n := (P1)n//PGL(2,C)

of (P1)n by the diagonal action of G=PGL(2,C) for the natural G-linearization of the line

bundle L = ⊠
n
i=1OP1(1) (see [12, 13]). The quotient MGIT

0,n is naturally embedded in the

projective space P(H0((P1)n,L)G) of invariant sections.

The second one is the Mumford–Knudsen compactificationM0,n [20]. The points ofM0,n

represent isomorphism classes of stable curves. More details on these constructions can be

found in [18] and [20].

Both MGIT
0,2g and M0,n contain M0,n as an open set. However, the Mumford–Knudsen

compactification is finer on the boundary: there exists a contraction dominant morphism

cn :M0,n →MGIT
0,n
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8 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

contracting some components of the boundary of M0,n, that restricts to the identity on

M0,n [7]. Moreover, we will denote by

λk :M0,n →M0,n−1,

for k = 1, . . . ,n, the forgetful morphism that forgets the labeling of the kth point.

4.2.2. A variety of rational normal curves

Let e1, . . .en ∈ Pn−2 be n points in general position. Let H be the Hilbert scheme of

subschemes of Pn−2. Let V0(e1, . . . , en) ⊂ H be the subvariety of rational normal curves

in Pn−2 passing through the points e1, . . . , en, and let V (e1, . . . , en) be the closure of

V0(e1, . . . , en) inside H. The boundary V (e1, . . . , en) \ V0(e1, . . . , en) consists on reducible

rational normal curves, that is reducible nondegenerate curves of degree n such that each

component is a rational normal curve in its projective span.

There exists an isomorphism V0(e1, . . . , en) ∼= M0,n (see [12]) associating to a rational

normal curve passing by e1, . . . , en the corresponding ordered configuration of n points in

P1. This can be extended [18] to an isomorphism between V (e1, . . . , en) and M0,n.

4.2.3. The blow-up construction

The following construction is due to Kapranov [17]: let e1, . . . , en−1 ∈ Pn−3 be (n− 1)

points in general position. Consider the following sequence of blow-ups:

1. Blow-up the points e1, . . . , en−1.

2. Blow-up the proper transforms of lines spanned by pairs of points from {e1, . . . , en−1}.

3. Blow-up the proper transforms of planes spanned by triples of points from

{e1, . . . , en−1}.
...

(n-4). Blow-up the proper transforms of linear subspaces spanned by (n−4)-ples of points

from {e1, . . . , en−1}.

Let Bl(Pn−3) be the (n− 3)-variety obtained in this way, and b : Bl(Pn−3) → Pn−3 the

composition of this sequence of blow-ups. We will call this map the Kapranov blow-up map

centered in the pointse1, . . . , en−1.

Theorem 4.2. (Kapranov [17]) Let n≥ 4. Then, the moduli space M0,n is isomorphic

to Bl(Pn−3).

Moreover, the images by b of the fibres of the map λk over the points in the open set

M0,n−1 ⊂M0,n−1 are the rational normal curves in Pn−3 passing through the n−1 points

e1, . . . , en−1 (see [19, Proposition 3.1]).

4.2.4. The Cremona inversion

Let e1, . . .en−1 ∈ Pn−3 in general position. Without loss of generality, we may assume

ek = [0 : · · · : 1 : · · · : 0] for k = 1, . . . ,n− 2; and en−1 = [1 : · · · : 1]. The Cremona inversion

with respect toen−1 is the birational map

Crn−1 : P
n−3

99K Pn−3

[x0 : · · · : xn−3] 7→ [1/x0 : · · · : 1/xn−3] .
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 9

On P2 the Cremona inversion is given by the linear system of quadrics passing through

e1, e2, and e3, on P3 by the cubics that vanish on the six secant lines of e1, e2, e3, and e4,

and so on. The Cremona inversion has the following property: any nondegenerate rational

normal curve passing through the points e1, . . . , en−1 is transformed into a line passing

by the point Crn−1(en−1). Let τn−1 : P
n−3

99K Pn−4 be the linear projection with center

Crn−1(en−1). From the previous property, we obtain that the composition τn−1 ◦Crn−1

contracts nondegenerate rational normal curves passing through e1, . . . , en−1.

Let k ∈ {1, . . . ,n− 1}. It is straightforward to see that one can let ek play the role of

en−1 in the definition of Crn−1, and define similarly the Cremona inversion Crk. Let τk :

Pn−3
99K Pn−4 be the linear projection with center Crk(ek).

Lemma 4.3. Let e1, . . .en−1 ∈ Pn−3 in general position. Then, the composition τk ◦Crk
contracts the nondegenerate rational normal curves passing through e1, . . . , en−1.

Let us denote Ht, for t 6= k, the hyperplane in Pn−3 spanned the points ei, with i 6= k,t.

There are n−2 such hyperplanes and each one is contracted to a point by Crk.

Proposition 4.4. [18] Let e1, . . .en−1 ∈ Pn−3 in general position. Let k ∈ {1, . . . ,n−1}.

Then, the following diagram is commutative:

M0,n M0,n−1

Pn−3 Pn−4

λk

b bk

τk ◦ Crk

Here, the map bk is the Kapranov blow-up map centered in the images of the hyperplanes

Ht, for 1≤ t≤ n−1 and t 6= k, by τk ◦Crk.

Remark. We observe here a little subtlety. We only get here n− 1 forgetful maps

through Cremona transformations, because we are tacitly assuming that Kapranov’s blow-

up construction of M0,n labels with integers from 1 to n−1 the points e1, . . . , en−1 of the

projective base of Pn−3, and labels as n the last point (which is free to move inside the

Pn−3, which is a birational model of M0,n). This is due to this small asymmetric aspect of

Kapranov’s construction, but it is clear that one could assume that the last, freely moving

point is labeled with any k ∈ {1, . . . ,n−1}, and obtain other forgetful maps.

4.2.5. Rationalizations of MGIT
0,2g

Let g ≥ 3, and let e1, . . . , e2g−1 ∈ P2g−3 in general position. Let Ω be the linear system of

(g−1)-forms in P2g−3 vanishing with multiplicity g−2 in e1, . . . , e2g−1 ∈ P2g−3.

Theorem 4.5. ([21]) Let g ≥ 3, and let e1, . . . , e2g−1 ∈ P2g−3 be in general position.

Then, the rational map

iΩ : P2g−3
99KΩ

∗

induced by the linear system Ω maps P2g−3 birationally onto MGIT
0,2g .

We also observe that the contraction map c2n can also be described in terms of Kumar’s

linear system Ω:
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10 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

Lemma 4.6. Let g ≥ 3, and let e1, . . . , e2g−1 ∈ P2g−3 in general position. Then, the

following diagram is commutative:

M0,2g

P2g−3 MGIT
0,2g

c2g
b

iΩ

Here, the map b is the Kapranov blow-up map centered in p1, . . . ,p2g−1.

Let e0 ∈ P2g−3 such that w= iΩ(e0) lies in the open set M0,2g ⊂MGIT
0,2g . The point w can

represent a hyperelliptic genus (g−1) curve Cw (namely the double cover of P1 ramifying in

the 2g marked points) together with an ordering of the Weierstrass points. Let SUCw
(2)inv

be the moduli space of rank 2 semistable vector bundles with trivial determinant over the

curve Cw, that are invariant with respect to the hyperelliptic involution.

Consider the partial linear subsystem Λ of Ω consisting of the (g− 1)-forms in P2g−3

vanishing with multiplicity g−2 in all the points e0, e1, . . . , e2g−1. Let κ :MGIT
0,2g 99K Λ

∗ be

the rational projection induced by the linear system Λ.

Theorem 4.7. ([21]) Let g ≥ 3, and let e1, . . . , e2g−1 ∈ P2g−3 be 2g−1 points in general

position. Let e0 ∈ P2g−3 such that w= iΩ(e0) lies in the open set M0,2g ⊂MGIT
0,2g . Then, the

map κ induced by the linear system Λ is a degree 2 osculating projection onto a connected

component of the moduli space SUCw
(2)inv. Furthermore, the map κ ramifies along the

Kummer variety Kum(Cw)⊂ SUCw
(2)inv.

P2g−3 MGIT
0,2g

SUCw
(2)inv

iΩ

iΛ
κ

In fact, one can talk of osculating projection (and this means MGIT
0,2g is embedded in

some known projective space) since iΩ embeds MGIT
0,2g in its natural projective space of

invariants, defined by the democratic polarization with weights vector (1,1, . . . ,1) (see also

Section 5.2.3).

4.3 Forgetful linear systems and MGIT

0,2g

Let C be a smooth genus g ≥ 3 curve (not necessarily hyperelliptic). Let D be a general

degree g effective divisor on C. Let N = p1+ · · ·+ p2g be a general reduced divisor in the

linear system |2D|. Consider the span P
2g−2
N in P

3g−2
D of the 2g marked points p1, . . . ,p2g.

We will now apply the discussion of Section 4.2 to the general points p1, . . . ,p2g in the

projective space P
2g−2
N , taking n = 2g+1 in the notation therein. For every k = 1, . . . ,2g,

we can compose Proposition 4.4 and Lemma 4.6 and get a commutative diagram

M0,2g+1 M0,2g

P
2g−2
N P2g−3 MGIT

0,2g

λk

b bk
c2g

τk ◦ Crk iΩ

(3)
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 11

where Ω is the linear system of (g−1)-forms in P2g−3 vanishing with multiplicity g−2 at

the 2g−1 points τk ◦Crk(Hi), with i 6= k and 1≤ i≤ 2g. Let us define the rational map

hN : P2g−2
N 99K |ISecg−2(N)(g)|

∗.

Proposition 4.8. ([7]) Let N = p1+ · · ·+p2g be a general reduced divisor in the linear

system |2D|. Then, the map hN coincides with the composition iΩ ◦ τk ◦ Crk for every

k = 1, . . . ,2g. In particular, the composition iΩ ◦ τk ◦ Crk does not depend on k.

This is due to the fact that the linear system |ISecg−2(N)(g)| is invariant with respect to

the action of the symmetric group Σ2g that operates on P
2g−2
N by linear automorphisms. Let

us put together the results of Lemma 4.3, Theorem 4.5 and Proposition 4.8 in the following

Proposition:

Proposition 4.9. The image of hN is isomorphic to the GIT moduli space MGIT
0,2g of

ordered configurations of 2g points in P1. The map hN is dominant and its general fiber is

of dimension 1. More precisely, hN contracts every rational normal curve Z passing through

the 2g points N to a point z in MGIT
0,2g . This point represents an ordered configuration of the

2g points N on the rational curve Z.

This is why these maps where dubbed “forgetful linear systems.” In fact the rational

normal curves passing through the 2g points make up the universal curve over an open

subset of MGIT
0,2g .

Remark. Since R is a linear subsystem of |ISecg−2(N)(g)| by Lemma 4.1, we have that

ϕD,N factors through hN :

P
2g−2
N MGIT

0,2g

θ(SUC(2))

hN

ϕD,N

(4)

4.3.1. A comparison of base loci.

For future use, we need to compare the locus Secg−2(N) and the more intricate locus

SecN obtained by intersecting the base locus of ϕD with P
2g−2
N . This section is devoted to

this comparison.

By definition, the points in SecN are given by the intersections 〈Lg−1〉 ∩P
2g−2
N , where

Lg−1 is an effective divisor of degree g−1 and 〈Lg−1〉 is its linear span in P
3g−2
D . If Lg−1 is

contained in N, it is clear that 〈Lg−1〉 ⊂ Secg−2(N)⊂ P
2g−2
N .

Lemma 4.10. Let Lg−1 be an effective divisor on C of degree g−1, not contained in N.

Then,

〈Lg−1〉∩P
2g−2
N 6= φ if and only if dim |Lg−1| ≥ 1.

Moreover, if the intersection is nonempty, we have that

dim(〈Lg−1〉∩P
2g−2
N ) = dim |Lg−1|−1.
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12 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

Proof. First, let us suppose that Lg−1 and N have no points in common. The vector

space V := H0(C,2D+K−Lg−1) is the annihilator of the span 〈Lg−1〉 in P
3g−2
D . By the

Riemann-Roch theorem, we see that V has dimension 2g, hence

dim〈Lg−1〉= (3g−2)−2g = g−2.

Let d be the dimension of the span 〈Lg−1,N〉 of the points of Lg−1 and N. Since the

dimension of P2g−2
N = 〈N〉 is 2g−2, we have that d≤ (g−2)+(2g−2)+1 = 3g−3, where

the equality holds iff 〈Lg−1〉∩P
2g−2
N is empty.

In particular, this intersection is nonempty iff d ≤ 3g − 4. Since dim |K + 2D|∗ =

dimP
3g−2
D = 3g−2, this is equivalent to the annihilator space

W :=H0(C,2D+K−Lg−1−N) =H0(C,K−Lg−1)

being of dimension ≥ 2. By Riemann-Roch and Serre duality, we obtain that this condition

is equivalent to dim |Lg−1| ≥ 1.

More precisely, let us suppose that 〈Lg−1〉∩P
2g−2
N is nonempty and let e := dim(〈Lg−1〉∩

P
2g−2
N ). Then, we have that

d= 3g−3− (e+1),

and the annihilator space W is of dimension 2+e. Again by a Riemann-Roch computation,

we conclude that e= dim |Lg−1|−1.

Finally, if Lg−1 and N have some points in common, we have to count them only once

when defining the vector space W to avoid requiring higher vanishing multiplicity to the

sections.

From this Lemma, we conclude that Secg−2(N) is a proper subset of SecN if and only

if there exists a divisor Lg−1 not contained in N with dim |Lg−1| ≥ 1. By the Existence

Theorem of Brill–Noether theory (see [2, Theorem 1.1, page 206]), this is possible only if

g ≥ 4 in the nonhyperelliptic case, whereas such a linear system may exist also when g = 3

when C is hyperelliptic. We will discuss the first low genera cases in Section 7.

§5. The hyperelliptic involution and rational normal curves

From now on, C will be a hyperelliptic curve of genus g ≥ 3.

As we have seen in Lemma 4.1, the base locus of the map ϕD,N contains SecN . We have

seen that the secant variety Secg−2(N) is contained in SecN and that this inclusion is strict

for g ≥ 4 in the nonhyperelliptic case.

5.1 A rational normal curve coming from involution invariant secant lines.

In the hyperelliptic case, we have an additional base locus for every g ≥ 3, which appears

due to the hyperelliptic nature of the curve. This locus arises as follows. For each pair

{p, i(p)} of involution-conjugate points in C, consider the secant line l in P
3g−2
D passing

through the points p and i(p). Let Qp be the intersection of the line l with P
2g−2
N . Let us

define Γ ⊂ P
2g−2
N as the locus of intersection points Qp when p moves inside C.

Lemma 5.1. The locus Γ ⊂ P
2g−2
N is a nondegenerate rational normal curve in P

2g−2
N .

Moreover, Γ passes through the 2g points of N ⊂ C.
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Figure 1.

The situation in genus 3. The curves Γ and C intersect along the divisor D, of degree 6. The secant lines l

cutting out the hyperelliptic pencil define the curve Γ .

Proof. Let us start by showing that the intersection Qp is nonempty for every line

l= p, i(p), with p∈C. Since dim |p+i(p)|=dim |h|=1, the intersection l∩P
2g−2
N is nonempty

by Lemma 4.10.

Let us show that this intersection is a point, that is that the line l is not contained in

P
2g−2
N . Recall that P3g−2

D = |2D+K|∗; we will discuss three cases.

i) If the points p and i(p) are both not contained in the divisor N, the vector space

V :=H0(C,2D+K−N − (p+ i(p))) =H0(C,2D+K−N −h)

is exactly the annihilator of the span 〈l,P2g−2
N 〉 in P

3g−2
D . In particular, the codimension of

〈l,P2g−2
N 〉 in P

3g−2
D is the dimension of V. By Riemann-Roch and Serre duality, we get that

dimV = g−2, thus dim〈l,P2g−2
N 〉 = 3g−2− (g−2) = 2g. This means that the intersection

l∩P
2g−2
N is a point.

ii) For the case p ∈N and i(p) 6∈N , let us remark that the the annihilator of the span

〈l,P2g−2
N 〉 is now the vector space H0(C,2D+K−N − i(p)). Since

h0(C,2D+K−N − i(p))< h0(C,2D+K−N),

we conclude that the line l is not contained in P
2g−2
N .

iii) The case {p, i(p)} ⊂ N is excluded by our genericity hypotheses on N. Hence we

deduce that the locus Γ is a curve in P
2g−2
N .

Let q be a point of N ⊂ P
2g−2
N . The line q, i(q) intersects the plane P

2g−2
N at q. Thus Γ

passes through all the points of N. Moreover, it is clear that N is the only intersection of Γ

and C, that is Γ ∩C =N .

Let us prove now that Γ is a rational normal curve. Since Γ is defined by the hyperelliptic

pencil, it is straightforward to see that Γ is rational. Moreover, since the divisor D is general,
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14 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

the span of any subset of 2g− 1 points of D is P
2g−2
N . Thus, it suffices to show that the

degree of Γ ⊂ P
2g−2
N is precisely 2g−2.

Let us set N = q1+ · · ·+ q2g with q1, . . . , q2g ∈ C. By the previous paragraph, Γ passes

through these 2g points. Let us consider a hyperplane H of P2g−2
N spanned by 2g−2 points

of N. Without loss of generality, we can suppose that these points are the first 2g−2 points

q1, . . . , q2g−2. To show that the degree of Γ is 2g−2, we have to show that the intersection

of Γ with H consists exactly only of these points.

Let l be the secant line q, i(q), q ∈ C. The intersection l∩H is empty if and only if the

linear span 〈l,H〉 of l and H in P
3g−2
D is of maximal dimension 2g−1, that is of codimension

g−1 in P
3g−2
D . Consider the divisors

DH = q1+ · · ·+ q2g−2 and Dl = q+ i(q).

As before, if {q, i(q)}∩{q1, . . . , q2g−2} is empty, the vector space W = H0(C,2D+K−

DH −Dl) is the annihilator of the span 〈l,H〉 in P
3g−2
D . In particular, the codimension of

〈l,H〉 in P
3g−2
D is given by the dimension of W. Again by Riemann-Roch and Serre duality

theorems, we can check that

dimW = h0(C,−2D+DH +Dl)+g−1.

Thus, the codimension of 〈l,H〉 in P
3g−2
D is greater than g−1 if and only if h0(C,−2D+

DH +Dl) > 0. Since deg(−2D+DH +Dl) = 0, this is equivalent to −2D+DH +Dl ∼ 0.

Since N = q1+ · · ·+ q2g ∼ 2D, we have that

−2D+DH +Dl ∼ 0 ⇐⇒ q+ i(q)∼ q2g−1+ q2g

⇐⇒ h∼ q2g−1+ q2g

⇐⇒ i(q2g−1) = q2g.

By our genericity hypothesis on N, the last condition is not satisfied. Consequently, we

conclude that the line l intersects the hyperplane H iff {q, i(q)}∩{q1, . . . , q2g−2} is nonempty,

that is iff q or i(q) is one of the qk for k = 1, . . . ,2g−2. In particular,

Γ ∩H = {q1, . . . , q2g−2}

as we wanted to show.

Hence, the curve Γ is contracted by the map hN to a point w ∈MGIT
0,2g by Proposition 4.9.

The point w represents a hyperelliptic curve Cw of genus g− 1 together with an ordering

of the Weierstrass points that correspond to the points of N on the rational curve Γ .

5.2 The restriction of the theta map to MGIT

0,2g

Let us set once again N = p1+ · · ·+p2g, a general divisor in the linear system |2D|, and

consider the span P
2g−2
N in P

3g−2
D of the 2g marked points p1, . . . ,p2g.

In this section, we describe the interplay between θ and the linear systems presented in

Section 4.

5.2.1. The factorization of the map ϕD.

Recall that the base locus of the map ϕD is the secant variety Secg−2(C) by Proposition

2.2. As in [4], one can construct a resolution ϕ̃D of the map ϕD via a sequence of blow-ups
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 15

˜
P
3g−2
D

...

P
3g−2
D |2Θ|

Blg−1

ϕ̃D

Bl1

ϕD

along the secant varieties

C = Sec0(C)⊂ Sec1(C)⊂ ·· · ⊂ Secg−1(C)⊂ P
3g−2
D .

This chain of morphisms is defined inductively as follows: the center of the first blow-up

Bl1 is the curve C = Sec0(C). For k = 2, . . . ,g−1, the center of the blow-up Blk is the strict

transform of the secant variety Seck−1(C) under the blow-up Blk−1.

The map ϕD is, by definition, the composition of the classifying map fD and the degree

2 map θ. Thus, the map fD lifts to a morphism f̃D which makes the following diagram

commute:

˜
P
3g−2
D SUC(2)

|2Θ|

f̃D

ϕ̃D

θ
. (5)

5.2.2. Osculating projections

We recall here a generalization of linear projections that will allow us to describe the

map p in higher genus. For a more complete reference, see for example [24]. Let X ⊂ PN

be an integral projective variety of dimension n, and p ∈X a smooth point. Let

φ : U ⊂ Cn −→ CN

(t1, . . . , tn) 7−→ φ(t1, . . . , tn)

be a local parametrization of X in a neighborhood of p= φ(0) ∈X. For m≥ 0, let Om
p be

the affine subspace of CN passing through p ∈X and generated by the vectors φI(0), where

φI is a partial derivative of φ of order ≤m.

By definition, the m-osculating space Tm
p X of X at p is the projective closure in PN of

Om
p . The m-osculating projection

Πm
p :X ⊂ PN

99K PNm

is the corresponding linear projection with center Tm
p .

5.2.3. Osculating projections of MGIT
0,2g

In this section, we show how the map ϕD,N induces an osculating projection on the copies

of MGIT
0,2g that appear as factors of the map in Diagram 4.
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16 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

Lemma 5.2. Let Q be a r-form in Pn vanishing at the points P1 and P2 with multiplicity

l1 and l2 respectively. Then, Q vanishes on the line passing through P1 and P2 with

multiplicity at least l1+ l2− r.

Proof. See, for example, [22, page 2].

Let us now consider the linear system |ISecN (g)| on P
2g−2
N (see Section 4). The forms in

|ISecN (g)| vanish with multiplicity g−1 along the points of C (see Lemma 2.2). By Lemma

5.2, these forms vanish then with multiplicity (g−1)+(g−1)− g = g−2 along the secant

lines l cutting out the hyperelliptic pencil. Thus, these forms vanish with multiplicity g−2

on the curve Γ .

Let us consider the linear system |ISecg−2(N)(g)|. Let I(Γ)⊂ |ISecg−2(N)(g)| be the partial

linear system of forms vanishing (with multiplicity 1) along Secg−2(N), and with multiplicity

g−2 along Γ . By our previous observation and Lemma 4.1, we have the following inclusions

of linear systems:

R⊂ |ISecN (g)| ⊂ I(Γ)⊂ |ISecg−2(N)(g)|.

Recall that the map ϕD,N is induced by the linear system R. The above sequence of

inclusions yields the following factorization of maps

P
2g−2
N MGIT

0,2g ⊂ |ISecg−2(N)(g)|
∗ |I(Γ)|

∗

θ(SUC(2))

hN

ϕD,N

πN

lN
. (6)

The first map hN is the one defined in Section 4.3, its image is the GIT quotient MGIT
0,2g .

According to Proposition 4.9, this map contracts the curve Γ to a point hN (Γ).

Proposition 5.3. The map πN is the (g− 3)-osculating projection Πg−3
P with center

the point w = hN (Γ).

Proof. From the geometric description of the linear systems I(Γ) and |ISecg−2(N)(g)|

(Propositions 4.8 and 4.9), the base locus of the map πN is the point w = hN (Γ), with

multiplicity g−2. In particular, since the forms in I(Γ) vanish with multiplicity g−2 along

Γ , the order the projection πN is g−3.

According to Proposition 4.9, the map hN contracts the curve Γ to a point w in MGIT
0,2g

representing an ordered configuration of the 2g marked points N. This point in turn

corresponds to a hyperelliptic genus (g− 1) curve Cw together with an ordering of the

Weierstrass points. Now recall from Section 4.3 that the lower level composed map of

Diagram 3 is the map hN . The rational normal curve Γ ⊂ P
2g−2
N is contracted to a point

e0 ∈ P2g−3 s.t. w = iΩ(e0). Recall, once again from Section 4.3 that P2g−3 also contains the

2g−1 points τk ◦Crk(Hi), images of the hyperplanes Hi ⊂ P
2g−2
N , with i 6= k and 1≤ i≤ 2g.

Let us label them e1, . . . , e2g−1. Let now Λ be the partial linear system of Ω consisting of

the (g−1)-forms in P2g−3 vanishing with multiplicity g−2 in all the points e0, e1, . . . , e2g−1.

As it is explained in Theorem 4.7, the rational map induced by the linear subsystem Λ

factors through MGIT
0,2g , and the second map κ :MGIT

0,2g 99K Λ
∗ is the osculating projection

from the image of e0 inside MGIT
0,2g .
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 17

Theorem 5.4. The map πN coincides with the map κ. In particular, the map πN is of

degree 2.

Proof. Consider the GIT quotient MGIT
0,2g embedded in |Ω|∗ as we have seen in Theorem

4.5. The osculating projection πN is given by the linear system |H−(g−2)w| of hyperplanes

vanishing in w with multiplicity g− 2. By definition of Ω, this linear system pulls back

via iΩ to the linear system of (g− 1)-forms in P2g−3 vanishing with multiplicity g− 2 in

e1, . . . , e2g−1, and also with multiplicity g− 2 in e0, which is precisely Λ. Hence, the map

πN is the map induced by the same linear system as κ (see Theorem 4.7).

We will show in the next Section that the map lN from Diagram 6 is actually birational,

and that the map πN (birationally) coincides with the restriction of the map θ.

5.3 The hyperelliptic theta map and rational involutions on MGIT

0,2g and

SUC(2)

The resolution ϕ̃D of ϕD factors through the degree 2 map θ as shown in Diagram 5.

In the preceding section, we have shown that, when we restrict ϕD,N to P
2g−2
N , it factors

through the degree 2 map πN . Now, we link these two factorizations. The identification of

maps in the following claim must be intended as rational maps, since for example πN is not

everywhere defined.

Theorem 5.5. Let N ∈ |2D| be a general effective divisor. Then, the restricted map

θ|
fD(P2g−2

N ) is the map πN up to composition with a birational map.

Proof. Let us place ourselves on the open set ŜUC(2)⊂SUC(2) of general stable bundles.

First we remark that the factorization ϕ̃D = θ ◦ f̃D of Diagram 5 is the Stein factorization

of the map ϕ̃D along ˜
P
3g−2
D . Indeed, the map θ is of degree 2 as explained in Section 1.

Moreover, the preimage of a general stable bundle E by the map fD is the P1 arising as

the projectivization of the space of extensions of the form

0→O(−D))→ E →O(D)→ 0.

In particular, the fibers of f̃D over ŜUC(2) are connected.

The restriction of ϕD to P
2g−2
N factors through the maps hN and πN (see Diagram 6),

followed by the map lN . According to Proposition 4.9, the fibers of hN are rational normal

curves, thus connected. Moreover, the map πN is degree 2 by Theorem 5.4. By unicity of

the Stein factorization, we have our result.

Comparing with the factorization ϕ̃D = θ ◦ f̃D, we see that lN cannot have relative

dimension > 0. Hence, lN is a finite map. Since the degree of the map θ in the Stein

factorization is 2, which is equal to the degree of πN , we have that lN cannot have degree

> 1. In particular, we have that the map lN is a birational map.

We are now in the position to show the following.

Proposition 5.6.

1. There exists a fibration pD : SUC(2) 99K |2D| ∼= Pg whose general fiber is birational to

MGIT
0,2g .

https://www.cambridge.org/core/terms. https://doi.org/10.1017/nmj.2020.37
Downloaded from https://www.cambridge.org/core. IP address: 176.142.253.155, on 07 Dec 2020 at 20:55:56, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/nmj.2020.37
https://www.cambridge.org/core


18 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

2. For every generic divisor N ∈ |2D|, the the restriction of fD to the 2g-pointed projective

space P
2g−2
N ⊂ P

3g−2
D dominates p−1

D (N)
birat
∼= MGIT

0,2g . The generic fiber of f
D|P2g−2

N
is a

rational normal curve passing through the 2g marked points.

3. The family of rational normal curves contracted by f
D|P2g−2

N
is the universal family of

pointed rational curves over (an open subset of) the generic fiber p−1
D (N)

birat
∼= MGIT

0,2g .

Proof. The fibration pD is defined by the composed map pD := pPc
◦θ : SUC(2) 99K |2D|.

The birationality p−1
D (N)

birat
∼= MGIT

0,2g for a general N ∈ |2D| is given by the classifying map

fD. In fact, if we fix N ∈ |2D|, then by Proposition 3.2 we know that the (closure of the)

image of the restricted map ϕD,N is the fiber of pPc
. Thanks to the discussion in Section

5.2.3 (see in particular Diagram 6 and Theorem 5.4) we know that birationally ϕD,N factors

via the map hN that contracts rational normal curves through the 2g points of N (see

Proposition 4.9), and the degree 2 osculating projection πN . Finally, from Theorem 5.5 and

its proof we see that birationally hN is equal to the restriction of fD to P
2g−2
N , the rational

normal curves contracted by hN are the fibers of the classifying map fD, and πN is the

restriction of θ to fD(P2g−2
N ). This implies claims (1) and (2). Claim (3) is a consequence

of the properties of hN described in Proposition 4.9 and the fact that over an open set

f
D|P2g−2

N
coincides with hN . Remark that the existence of this universal family also induces,

in a more intrinsic way, the birational map p−1
D (N)

birat
∼= MGIT

0,2g by means of the universal

property of the categorical quotient MGIT
0,2g .

Remark. With a little effort, it is also possible to reconstruct a semistable, rank 2

vector bundle on C with trivial determinant starting from a general configuration of points

in MGIT
0,2g

birat
∼= p−1

D (N), thus producing an inverse to the birational map p−1
D (N) 99KMGIT

0,2g

induced by fD, but we will refrain to develop the details.

The results proved and collected in the preceding sections put us now in the position to

claim the following theorem.

Theorem 5.7. The restriction of θ to the general fiber of the fibration pD : SUC(2) 99K

|2D| ∼= Pg has a ramification locus birational to the Kummer variety of dimension g− 1,

obtained from the Jacobian of the hyperelliptic curve that is the double cover of P1 ramified

along the 2g points represented by w = hN (Γ).

Proof. The proof of this theorem is a collection of the results that we have developed

so far. We will refer to Figure 2 as a guiding line. As we have observed (see Proposition

5.6 (2)—top right corner of Figure 2), the generic fiber of the projection pD is birational to

MGIT
0,2g , and on an open subset of the fiber the map θ coincides with the degree 2 map πN

(Theorem 5.5—vertical map on the RHS of the figure). In turn, the map πN coincides with

the osculating projection κ (Theorem 5.4) defined on MGIT
0,2g . Hence, by Kumar’s beautiful

description (see [21] and Theorem 4.7—bottom right corner of the figure) of the Kummer

variety as the ramification locus of κ, we have the claim. Let us also underline that we are

also tacitly showing that the map pD factors through the map θ (this is the full RHS of the

diagram in Figure 2).
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 19

Figure 2.

An intuitive view of our construction.

Corollary 5.8. One of the irreducible components of the ramification locus of the

theta map is birational to a fibration in Kummer (g−1)-folds over Pg.

Results from [31, App. E] imply that the ramification locus is in fact nonirreducible.

§6. The case g = 3

Let us now illustrate the geometric situation by explaining in detail the first case

in low genus. Let C be a hyperelliptic curve of genus 3. In this setting, we have that

the map θ factors through the involution i∗, and embeds the quotient SUC(2)/〈i
∗〉 in

P7 = |2Θ| as a quadric hypersurface (see [11]). Let D be a general effective divisor of degree

3. The projective space P7
D, as defined in Section 1, parametrizes the extension classes

in Ext1(O(D),O(−D)). The classifying map ϕD is given in this case by the complete

linear system |I2
C(3)| of cubics vanishing on C with multiplicity 2. The forms from this

linear system vanish along the secant lines of C, and in particular along the secant lines

passing through involution-conjugate points. These form a pencil parametrized by the linear

system |h|.

The image of the projection of θ(SUC(2)) with center Pc = P3 ⊂ |2Θ| is also a P3, that

is identified with |2D| by Theorem 3.1. Let N ∈ |2D| be a general reduced divisor. By

Proposition 3.2, the closure of the fiber p−1
Pc

(N) is the image via ϕD of the P4
N spanned by

the six points of N.
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20 M. BOLOGNESI AND N. FERNÁNDEZ VARGAS

6.1 The restriction to P4

N

The base locus of the restricted map ϕD,N = ϕD|P4

N
contains SecN = Sec1(C)∩P4

N by

Lemma 4.1. The secant variety Sec1(N)⊂ SecN is the union of the 15 lines passing through

pairs of the 6 points of N. According to Lemma 4.10, the further base locus SecN \Sec1(N)

is given by the intersections of P4
N with the lines spanned by degree 2 divisors L2 on

C not contained in N satisfying dim |L2| ≥ 1. By Brill–Noether theory, there is only one

linear system of such divisors on a genus 3 curve, namely the hyperelliptic linear system

|h| (see, e.g., [2], Chapter V). We will review these ideas in Section 7. This linear system

traces the curve Γ that we introduced in Section 5 as the set of intersection points of P2g−2
N

with the lines spanned by the divisors in the hyperelliptic pencil. Hence, we have that

SecN = {15 lines}∪ Γ , and the restricted map ϕD,N factors as

P4
N MGIT

0,6 ⊂ P4

P3

hN

ϕD,N
πN

where hN is the map defined by the complete linear system |ISec1(N)(3)| of cubics vanishing

along the 15 lines defined by the points of N, and πN is the projection with center the image

via hN of the rational normal curve Γ .

The image of ϕD,N is a P3. Indeed, this image cannot have higher dimension, since

the map factors through the projection from a point of MGIT
0,6 ⊂ P4. Also, it cannot have

dimension strictly smaller than 3 since otherwise the relative dimension of ϕD,N would be

bigger than 1, or equivalently the global map ϕD would not surjet onto SUC(2). Hence, in

this case the map ϕD,N is defined exactly by the system of cubics in P4
N vanishing on SecN .

According to Proposition 4.9, the image of hN is the GIT moduli space MGIT
0,6 if N is

general and reduced. It is a classical result that this GIT quotient is embedded in P4 as

the Segre cubic S3 (see for instance [12] or [14]). This three-fold arises by considering the

linear system of quadrics in P3 that pass through five points in general position, thus it

is isomorphic to the blow-up of P3 at these points, followed by the blow-down of all lines

joining any two points. The composition of this map with the projection off a smooth point

of S3 gives a 2 : 1 rational map P3
99K P3 whose ramification locus is a Weddle surface

[21, 5]. The curve Γ ⊂ P4
N is a rational normal curve by Lemma 5.1, hence Γ is contracted

to a point w by hN again by Proposition 4.9.

By [4] and Lemma 4.1, the linear system |OS3
(1)| of hyperplanes in S3 is pulled back

by hN to |ISec1(N)(3)| on P4
N . The linear system |OS3

(1)−w| of hyperplanes in S3 passing

through w is pulled back to the complete linear system |ISecN (3)| defining ϕD,N . Hence,

the map πN is the linear projection with center w. Since S3 is a cubic, the projection πN

is a degree 2 map. We will see in the next Section that this will be also the case for higher

genus. The following proposition resumes what we have seen so far in this section.

Proposition 6.1. Let C be a hyperelliptic curve of genus 3. Then, for generic N, the

restriction of ϕD to the subspace P
2g−2
N is exactly the composition πN ◦hN .

The point w in MGIT
0,6 represents a rational curve with six marked points. Let C ′ be the

hyperelliptic genus 2 curve constructed as the double cover of this rational curve ramified

in these six points. According to Theorem 4.2 of [21], the Kummer variety Kum(C ′) is
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THE HYPERELLIPTIC THETA MAP AND OSCULATING PROJECTIONS 21

contained in the image of πN , and it is precisely its ramification locus. Recall that, when

g = 3, the linear system |2D| is a P3. By Proposition 3.2, the image of P4
N by ϕD is the

closure of the fiber p−1
Pc

(N). For each point N in |2D|, this image is P3 = |I2
SecN

(3)|∗, which

is the image of the Segre variety MGIT
0,6 under the projection with center P. Thus, the image

of the global map ϕD is birational to a P3-bundle over |2D|= P3. Of course this is also the

case since the image of the theta map is a quadric hypersurface in P7 [11].

§7. Explicit descriptions in low genera

In this section, we will go through an explicit description of the classifying maps and

how they factor through forgetful linear systems and osculating projections, for low values

of the genus g(C) of the hyperelliptic curve. In these cases the map remains fairly simple.

These computations seem completely out of reach without the help of a computer for higher

genus.

Recall from Section 4 that the intersection SecN = Secg−2(C)∩P
2g−2
N arises naturally as

part of the base locus of the restricted map ϕD,N . The subvarieties Secg−2(N) and Γ of

SecN yield the factorization of ϕD,N through the maps hN and πN of Proposition 5.3. Let

us now describe the set

SecN
′
:= SecN \{Γ ∪Secg−2(N)}.

This set is empty for g = 3, and the map ϕD,N is exactly the composition of hN and πN ,

as described in Section 6. In higher genus, the existence of nonempty additional base locus

SecN corresponds to the fact that the map ϕD,N may not be exactly the composition of

the maps hN and πN . In other words, the map lN from Diagram 6 may not be nontrivial

in higher genus.

This supplementary base locus is given by the intersections of P
2g−2
N with (g − 2)-

dimensional (g − 1)-secant planes of C in P
3g−2
D , which are not already supported on

Secg−2(N) and Γ . According to Lemma 4.10, these intersections are given by effective

divisors Lg−1 on C of degree g−1, not contained in P
2g−2
N , and satisfying dim |Lg−1| ≥ 1.

Again by Lemma 4.10, we obtain dim(〈Lg−1〉∩P
2g−2
N ) = dim |Lg−1|−1.

We will now give account of the situation in low genera.

Case g = 4

In this case, the divisor N is of degree 8 and the map ϕD,N : P6
N 99K |2Θ|= P15 is given

by the restriction of the linear system |I3
C(4)| to P6

N . This map factors through the map

πN which coincides with the one-osculating projection Π1
w, where w = hN (Γ).

We are looking for degree 3 divisors L3 with dim |L3| ≥ 1. These satisfy all dim |L3|= 1

and are of the form

L3 = h+ q for q ∈ C,

where h is the hyperelliptic divisor. Let p be a point of C. Then L3 = p+ i(p)+ q. Since

dim |L3|= 1, the secant plane P2
L3

in P10
D spanned by p, i(p) and q intersects P6

N in a point.

But this point necessarily lies on Γ , since the line passing through p and i(p) is already

contained in this plane. Hence, we do not obtain any additional locus.
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Case g = 5

In this case, the divisors L4 of degree 4 are all of the form

L4 = h+ q+ r for q,r ∈ C,

and satisfy dim |L4| = 1. Thus, the corresponding secant P3
L4

spanned by p, i(p), q and r

intersects P8
N in a point. As before, this point lies on Γ , thus we do not obtain any additional

locus. The upshot is the following

Proposition 7.1. Let C be a hyperelliptic curve of genus 4 or 5, then ϕD is defined by a

(possibly equal) linear subsystem of the linear system defining πN ◦hN , and set-theoretically

the base locus of πN ◦hN coincides with Secg−2(C)∩P
2g−2
N .

Case g = 6

Here we have, as in the genus 5 case, the divisors of the form

L3 = h+ q for q ∈ C,

which do not give rise to any additional base locus. But there is a new family of divisors

L5 = 2h+ r for r ∈ C.

These divisors satisfy dim |L5|= 2. In particular, the intersection of the P4
L5

spanned by

p, i(p), q, i(q), and r, for p,q ∈C, with P10
N is a line m in P10

N . The line l1 (resp. l2) spanned

by p and i(p) (resp. q, i(q)) intersects Γ in a point p̃ (resp. q̃). In particular, the line m is

secant to Γ and passes through p̃ and q̃. Since every point of Γ comes as an intersection of

a secant line in C with P10
N , we obtain the following description of the base locus of ϕD,N :

Proposition 7.2. Let C be a curve of genus g=6. Then, the base locus of the restricted

map ϕD,N contains the ruled three-fold Sec1(Γ).
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