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BIRATIONAL GEOMETRY OF SOME UNIVERSAL FAMILIES OF

n-POINTED FANO FOURFOLDS

HANINE AWADA, MICHELE BOLOGNESI, AND GIOVANNI STAGLIANÒ

Abstract. The object of this note is the moduli spaces of cubic fourfolds (resp.,
Gushel-Mukai fourfolds) which contain some special rational surfaces. Under some
hypotheses on the families of such surfaces, we develop a general method to show the
unirationality of the moduli spaces of the n-pointed such fourfolds. We apply this to
some codimension 1 loci of cubic fourfolds (resp., Gushel-Mukai fourfolds) appeared in
the literature recently.

1. Introduction

One of the most active areas of research in algebraic geometry is related to the study
of the birational geometry of Fano varieties, notably those of dimension four. In the last
20 years, algebraic geometers have been working on the problem of rationality of smooth
cubic hypersurfaces in P5 (cubic fourfolds for short). Recall that cubic fourfolds are
parametrized by an open subset U in the 55-dimensional projective space P(H0(OP5(3))).
The moduli space of cubic fourfolds is the GIT quotient C = U//PGL6, a quasi-projective
variety of dimension 55 − 35 = 20. It is classically well-known that all cubic fourfolds
are unirational and that some of them are rational. While the general suspicion is that
most cubic fourfolds are non rational, no cubic fourfold has yet been proven to be non
rational.

Hassett, in his works [15, 16] (see also [17]), adopted a Hodge theoretic approach.
He defined the Noether-Lefschetz locus as the subset of the moduli space C consisting
of special cubic fourfolds, that is, fourfolds X containing an algebraic surface S that
is not homologous to a complete intersection. The discriminant of X is defined as
the determinant d of the intersection form on the saturated sublattice of H2,2(X,Z)
generated by h2 and [S], where h denotes the hyperplane section class of X. Using the
period map and the geometry of the period domain, Hassett proved that special cubic
fourfolds form a countably infinite union of irreducible divisors Cd ⊂ C, corresponding
to fourfolds having discriminant d, and where d runs over all integers d ≥ 8 with d ≡
0, 2 (mod 6). For small values of the discriminant d, these divisors are characterized by
the families of surfaces, not unique, that they contain (see [16, 28, 30, 32]). Moreover,
for an infinity of values of d, cubic fourfolds in Cd are associated to a degree d polarized
K3 surface via Hodge theory. This seems to relate strongly to the rationality of cubic
fourfolds. In fact, it is conjectured that fourfolds with an associated K3 surface should
be precisely the rational ones (see [22, 1, 23, 17, 5, 30, 32]).

Gushel-Mukai fourfolds (GM fourfolds, for short) are prime Fano fourfolds of degree
10 and index 2. By a result of Mukai [26], they can be realized as smooth dimensionally
transverse intersections of a cone C(G(1, 4)) ⊂ P10 over the Grassmannian G(1, 4) ⊂ P9
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with a linear subspace P8 ⊂ P10 and a quadric hypersurface Q ⊂ P10. The fourfolds
for which the P8 ⊂ P10 does not pass by the vertex of the cone are called ordinary.
These can be viewed as smooth quadric hypersurfaces in a smooth del Pezzo fivefold
Y5 = G(1, 4) ∩ P8 ⊂ P8, and are thus parametrized by an open subset V in the 39-
dimensional projective space P(H0(OY5(2))). Recall also that all the fivefolds Y5 are
projectively equivalent. The moduli space of GM fourfolds has dimension 24 and is
denoted by M4

GM (see [6]). The ordinary GM fourfolds correspond to the points of an

open subset M̊4
GM inM4

GM , which is the complement of an irreducible closed subset of

codimension 2 in M4
GM . We can view M̊4

GM as the quotient V//PGL9.
From the point of view of birational geometry, GM fourfolds behave very much like

cubic fourfolds and share many properties with them. They are again all unirational,
rational examples are easy to construct, but no examples have yet been proven to be
nonrational. Once again, by the study of the period map via Hodge theory, in [6] the
authors introduced the Noether-Lefschetz locus inside the moduli space M4

GM , defined
as the set of those fourfolds containing a surface whose cohomology class does not come
from the Grassmannian G(1, 4). This locus consists of a countable infinite union of
divisors (M4

GM )d ⊂M4
GM , labelled by the integers d > 8 with d ≡ 0, 2, 4 (mod 8). The

divisor (M4
GM )d is irreducible if d ≡ 0, 4 (mod 8), and it has two irreducible components

(M4
GM )′d and (M4

GM )
′′
d if d ≡ 2 (mod 8); see [6, 8]. Recently, the third-named author

[36] (see also [18]), inspired by the work of Nuer [28], gave an explicit description of
the first irreducible components of this Noether-Lefschetz locus in terms of classes of
rational smooth surfaces that the fourfolds contain.

In a fashion very similar to curves and K3 surfaces [11, 12, 24, 3], universal families
were defined for cubic fourfolds in [2]. Since a general cubic fourfold lying in any divisor
Cd does not have projective automorphism, universal cubic fourfolds Cd,1 → Cd were
introduced over divisors for 8 ≤ d ≤ 42. These universal cubic fourfolds Cd,1 correspond
to the moduli space of 1-pointed cubic fourfolds. The authors prove [2, Theorem 4.10]
the unirationality of Cd,n for 8 ≤ d ≤ 42 and all n, using the presentation of the divisors
Cd as cubics containing certain rational surfaces (see [28, 32]). This, combined with an
induction argument based on a theorem of Kollár [20] on the unirationality of smooth
cubic fourfolds over an arbitrary field, gives the result.

In this paper we propose a general, abstract method to show the unirationality of
certain n-pointed universal (cubic and GM) fourfolds over their moduli spaces. By
definition, the moduli space of n-pointed fourfolds corresponds to the universal family
over the (n − 1)-pointed fourfolds moduli space. Our method holds both for certain
cubic fourfolds and for certain GM fourfolds. With respect to cubics, our argument is
completely different from those of [2], and part of the results from [2] become now a
special case of our main Theorem 1.1. In particular, Theorem 1.1 can be applied to any
family XS of (cubic and GM) fourfolds that contains surfaces from a given family S,
under some hypotheses (see Remark 3.2) on XS and S. In fact there are other higher
codimensional loci in the moduli space of GM fourfolds to which our theorem could
apply, but we refrained to describe them for sake of brevity.
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Theorem 1.1. The universal n-pointed fourfolds over the following irreducible codimension-
one loci:

C14, C26, C38, C42, (M4
GM )′10, (M4

GM )
′′
10, (M4

GM )20,

are unirational.

In the last section of the paper we restrict our attention to a codimension one locus
(M4

GM )nod20 inside (M4
GM )20, defined via certain genus 11 K3 surfaces contained in a

Noether-Lefschetz divisor. By describing the birational geometry of the NL divisor in
the moduli of K3 surfaces, and exploiting the relation between these surfaces and the
GM fourfolds, we prove that (M4

GM )nod20 and the universal family (M4
GM )nod20,1 above it

are rational.
Plan of the paper: in Section 2, we give explicit descriptions of certain divisors

parametrizing (cubic or GM) fourfolds in their moduli space. We recall the constructions
of several families S of surfaces characterizing these divisors and highlight some of their
properties crucial for the next section. Section 3 is devoted to the proof of the main
result of this paper. Finally, in Section 4 we describe the locus (M4

GM )nod20 ⊂ (M4
GM )20

and show its rationality as well as that of the universal family (M4
GM )nod20,1.

Acknowledgments: We heartfully thank the referees for insightful comments, that
help us to improve the paper in an important way. We also thank Michael Hoff for
inspiring conversations on these topics.

2. Explicit geometric descriptions of some Nother-Lefschetz divisors in
the moduli space C of cubic fourfolds and in the moduli space M4

GM of
GM fourfolds

In this section, we shall recall some explicit descriptions of unirational irreducible
families S in the Hilbert scheme of P5 (respectively in the Hilbert scheme of a fixed
smooth del Pezzo fivevold Y5 = G(1, 4) ∩ P8 ⊂ P8) such that the closure of the locus
of cubic fourfolds (resp., GM fourfolds) containing a surface of the family S describes a
Noether-Lefschetz divisor in the corresponding moduli space. Most of these properties
must be well-known to the experts of the field. Due to the plethora of references that
exist on these topics, and the fact that sometimes the properties we are interested in
are not really pointed out, we decided to resume them in this section. The properties of
these families will be an essential tool for our main results contained in Section 3.

We recall that the Hilbert scheme HilbPn of a projective space Pn parametrizes closed
subschemes of projective space (see for example [21, Chapter I]). The Hilbert scheme
decomposes as a disjoint union of pieces HilbP5(P ). Each component parametrizes sub-
schemes with given Hilbert polynomial P . It is not hard to generalize this definition to
any projective variety.

We shall focus on the fact that starting from a pair (S,X), where S is a general
member of the family S and X is a general fourfold containing S, we can build an

explicit birational map X
'
99K P4, defined over the same field of definition as S and X.

2.1. Cubic fourfolds containing a quintic del Pezzo surface. A quintic del Pezzo
surface is the image of P2 via the linear system of cubic curves with 4 base points in
general position.
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Definition 2.1. Let S ⊂ Pn a projective variety and C a curve in the same projective
space. The curve C is said to be n-secant to S if the intersection S∩C is a 0-dimensional
scheme of length n.

Theorem 2.2 ([10, 5]). The cubic fourfolds containing a quintic del Pezzo surface de-
scribe the divisor C14 ⊂ C of fourfolds of discriminant 14.

Theorem 2.3 ([25, 10, 5]). A quintic del Pezzo surface S ⊂ P5 admits a congruence of
secant lines: through the general point of P5 there is a unique secant line to S.

The general line of this congruence can be realized as the general fiber of the dominant
map

µ : P5 99K P4

defined by the linear system |IS(2)| of quadric hypersurfaces through S.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
'
99K P4.

2.2. Cubic fourfolds containing a 3-nodal septic scroll. Let S ⊂ P5 be the pro-
jection of a rational normal septic scroll Σ7 ⊂ P8 from a plane spanned by three general
points on the secant variety of Σ7. Thus S is a rational septic scroll having 3 non-normal
nodes.

Theorem 2.4 ([11]). The family of rational 3-nodal septic scrolls, constructed as above,
is irreducible, unirational and of dimension 44 = 74 + 5 · 3− dim PGL9 + dim PGL6.

The cubic fourfolds containing such a surface describe the divisor C26 ⊂ C of fourfolds
of discriminant 26.

Theorem 2.5 ([32, 31]). Let S ⊂ P5 be a general rational 3-nodal septic scroll. Then S
admits a congruence of 5-secant conics: through the general point of P5 there is a unique
conic curve which is 5-secant to S.

The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : P5 99K P4

defined by the linear system |I2
S(5)| of quintic hypersurfaces with double points along S.

If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
'
99K P4.

2.3. Cubic fourfolds containing a “generalized” Coble surface. Let S ⊂ P5 be
the image of P2 via the linear system of curves of degree 10 with 10 general triple points.
We have that S is a smooth rational surface of degree 10 and sectional genus 6 cut out
by 10 cubics.

Theorem 2.6 ([28]). The surfaces S ⊂ P5 obtained as above form an irreducible unira-
tional family S10,6 ⊂ HilbP5 of dimension 47 = 10 · 2− dim PGL3 + dim PGL6.

The cubic fourfolds containing a surface of the family S10,6 describe the divisor C38 ⊂ C
of fourfolds of discriminant 38.

Theorem 2.7 ([30, 32, 31]). A general surface [S] ∈ S10,6 admits a congruence of 5-
secant conics: through the general point of P5 there passes a unique conic curve which
is 5-secant to S.
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The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : P5 99K P4

defined by the linear system |I2
S(5)| of quintic hypersurfaces with double points along S.

If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
'
99K P4

2.4. GM fourfolds of discriminant 10.

2.4.1. τ -quadric surfaces. A τ -quadric surface is a two-dimensional linear section of a
Schubert variety Σ1,1 ' G(1, 3) ⊂ G(1, 4). Thus the class of such a surface in G(1, 4) is
σ2

1 · σ1,1 = σ3,1 + σ2,2. A standard parameter count (see [6, Proposition 7.4], and also
[36]) shows that the closure insideM4

GM of the family of fourfolds containing a τ -quadric
surface forms the divisor (M4

GM )′10 ⊂ M4
GM , one of the two irreducible components of

the Noether-Lefschetz locus in M4
GM parametrizing fourfolds of discriminant 10. In

particular, since the family of τ -quadric surfaces in G(1, 4) is unirational, we deduce
that the divisor (M4

GM )′10 is also unirational.

Theorem 2.8 ([6]; see also [18]). The projection of a general fourfold [X] ∈ (M4
GM )′10

containing a τ -quadric surface S, from the linear span 〈S〉 ' P3 of S, gives a birational
map X 99K P4.

2.4.2. Quintic del Pezzo surfaces. A quintic del Pezzo surface can be realized as a two-
dimensional linear section of G(1, 4). Thus the class of such a surface in G(1, 4) is σ4

1 =
3σ3,1 + 2σ2,2. A standard parameter count (see [6, Proposition 7.7], and also [36]) shows
that the closure inside M4

GM of the family of fourfolds containing a quintic del Pezzo

surface forms the divisor (M4
GM )

′′
10 ⊂ M4

GM ; one of the two irreducible components of
the Noether-Lefschetz locus inM of fourfolds of discriminant 10. In particular, since the
family of quintic del Pezzo surfaces in G(1, 4) is unirational, we deduce that the divisor

(M4
GM )

′′
10 is also unirational.

Theorem 2.9 ([29]; see also [6, 9, 35]). The projection of a general fourfold [X] ∈
(M4

GM )
′′
10 containing a quintic del Pezzo surface S, from the linear span 〈S〉 ' P5 of S,

induces a dominant map X 99K P2 whose generic fiber is a quintic del Pezzo surface.
In particular, X is rational. Indeed, by a classic result of Enriques, a quintic del Pezzo
surface defined over an infinite field K is rational over K.

2.5. GM fourfolds of discriminant 20. Throughout this subsection, we continue to
let Y5 ⊂ P8 denote a fixed del Pezzo fivefold.

Recall first two well-known ways to parametrize Y5 over its field of definition.

(1) If P ⊂ Y5 is a plane in Y5 with class σ2,2 in G(1, 4), then the projection of Y5

from P gives a birational map Y5 99K P5, whose inverse is defined by the linear
system of quadrics through a rational normal cubic scroll Σ3 ⊂ P4 ⊂ P5.

(2) If C ⊂ Y5 is a conic such that its linear span P is not contained in Y5, then
the projection of Y5 from P gives a birational map Y5 99K P5, whose inverse is
defined by the linear system of cubics through a rational quartic scroll Θ4 ⊂ P5,
obtained as a general projection of a rational normal threefold scroll in P6.
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Now we breafly recall the construction due to [32, 18] of a 25-dimensional unirational
family S9,2 ⊂ HilbY5 of smooth rational surfaces of degree 9 and genus 2 having class
6σ3,1 + 3σ2,2 in the Chow ring of G(1, 4).

Let T ⊂ P6 be the image of the plane via the linear system of quartic curves having
8 general base points p1, . . . , p8. Thus T is a smooth rational surface of degree 8 and
sectional genus 3 cut out by 7 quadrics. These 7 quadrics define a special Cremona
transformation

ϕ : P6 99K P6

of type (2, 4), which has been classically studied in [34] (see also [19]).

Let us recall a bit of geometry from the papers [34, 19]. The pencil of plane cubics
through the 8 base points p1, . . . , p8 yields a pencil of elliptic normal quartic curves on
T passing through a special point q ∈ T . The union of the linear spans of these curves
gives a cone of vertex q over a Segre threefold P1 × P2 ⊂ P5.

Let H ' P5 ⊂ P6 be a general hyperplane in P6. The restriction of ϕ to H gives a
birational map

ϕ|H : P5 99K Z ⊂ P6

onto a quartic hypersurface Z ⊂ P6, whose base locus, that is the intersection of T with
the hyperplane H, is an octic curve C ⊂ P5 of arithmetic genus 3 contained in a Segre
threefold Σ ' P1 × P2 ⊂ P5. The image ϕ(Σ) is a smooth quadric surface Q ⊂ Z ⊂ P6

(which, considered with a double scheme structure, is a component of the base locus
of the inverse of ϕ|H). The pullback via the restriction ϕ|H of a line in one of the two
pencils of lines on Q is a P2 of the ruling of Σ, while the pullback of a general line in
the other pencil of lines on Q is a smooth quintic del Pezzo surface containing C. In
particular, the curve C is the base locus of a pencil {Dλ}λ of quintic del Pezzo surfaces
contained in Σ and whose general member is smooth.

Everything we have said about C continues to hold true even if we take the hyperplane
H ⊂ P6 to be general among the hyperplanes containing a general tangent plane to T .
But in this case (and only in this case), the curve C has a node and it can be embedded
in a rational quartic scroll Θ4 ⊂ P5 as the one considered above. Indeed, such a nodal
curve C can be realized as a nodal projection of a smooth curve of degree 8 and genus 2
contained in a smooth rational normal quartic scroll threefold in P6; see [32, Section 4]
for more details on this last step. Then the birational map P5 99K Y5 ⊂ P8 defined by the
linear system of cubics through Θ4 induces an isomorphism between a general quintic
del Pezzo surface of the pencil {Dλ}λ with a smooth rational surface S ⊂ Y5 ⊂ P8 of
degree 9 and sectional genus 2, cut out by 19 quadrics, and having class 6σ3,1 + 3σ2,2 in
G(1, 4).

Theorem 2.10 ([32], see also [18]). The surfaces S ⊂ Y5 produced by the construction
above form an irreducible unirational family S9,2 ⊂ HilbY5 of dimension 25.

The closure of the family of quadric hypersurfaces in Y5 containing a surface of the
family S9,2, after passing to the quotient modulo PGL9, describes the divisor (M4

GM )20 ⊂
M4

GM , the irreducible component of the Noether-Lefschetz locus in M4
GM of fourfolds of

discriminant 20.



BIRATIONAL GEOMETRY OF SOME UNIVERSAL FAMILIES OF n-POINTED FANO FOURFOLDS 7

Remark 2.11. An implementation of the construction of the family S9,2 is provided by
the Macaulay2 package SpecialFanoFourfolds [14, 37]. In particular, one is able to find
explicit equations of a general member of the family.

Remark 2.12 ([36]). Let Σ3 ⊂ P4 ⊂ P5 be a rational cubic scroll surface, and let ψ :
P5 99K Y5 ⊂ P8 be the birational map defined by the quadrics through Σ3. Take D ⊂ P5

to be a quintic del Pezzo surface intersecting Σ3 along a hyperplane section of Σ3. Then
the restriction of ψ induces an isomorphism between D and a surface S belonging to the
family S9,2. However, the surfaces S obtained by this “simplified” construction do not
describe the whole family S9,2.

Theorem 2.13 ([18]). Let S ⊂ Y5 be a surface corresponding to a general member of
the family S9,2. Then S admits inside Y5 a congruence of 3-secant conic curves, that is,
through the general point of Y5 there passes a unique conic which is 3-secant to S and
is contained in Y5.

The general conic curve of this congruence can be realized as the general fiber of the
dominant map

µ : Y5 99K P4

defined by the linear system |I2
S,Y5(5)| of quintic hypersurfaces in Y5 with double points

along S.
If X is a general quadric hypersurface in Y5 containing S, then the restriction of µ

induces a birational map µ|X : X
'
99K P4.

Remark 2.14. The above theorem suggests an alternative construction for the general
surface S ⊂ Y5 of the family S9,2, which historically was the first to be discovered [18].

Indeed, the inverse map of µ|X : X
'
99K P4 is defined by the linear system |I2

U,P4(9)| of

hypersurfaces of degree 9 singular along a surface U which is obtained as an internal
projection of a triple projection of a minimal K3 surface of degree 20 and genus 11 in
P11. We can reverse this construction by starting with a general K3 surface of degree 20
and genus 11 in P11.

2.6. Cubic fourfolds of discriminant 42. The 25-dimensional family S9,2 ⊂ HilbY5

considered in the previous subsection and the 3-dimensional family of planes in Y5

with class σ2,2 can be combined together to get a family of surfaces in P5 of dimension
48 = 25+3−dim Aut(Y5)+dim Aut(P5). Indeed, let S ⊂ Y5 be a surface corresponding
to a general member of the family S9,2, and let P ⊂ Y5 be a general plane with class σ2,2

in G(1, 4). Then the projection of S from P gives a rational surface S̃ ⊂ P5 of degree
9 and sectional genus 2, cut out by 9 cubics and having 5 non-normal nodes. Let us

denote by S̃9,2 ⊂ HilbP5 the (closure of the) family of surfaces S̃ obtained as above.

Theorem 2.15 ([32]). The family S̃9,2 ⊂ HilbP5 is irreducible and unirational of di-
mension 48.

The cubic fourfolds containing a surface of the family S̃9,2 describe the divisor C42 ⊂ C
of fourfolds of discriminant 42.

Theorem 2.16 ([32]). Let S̃ ⊂ P5 be a surface corresponding to a general member of

the family S̃9,2. Then S̃ admits a congruence of 8-secant twisted cubic curves, that is,

through the general point of P5 there passes a unique twisted cubic which is 8-secant to S̃.
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The general cubic curve of this congruence can be realized as the general fiber of the
dominant map

µ : P5 99KW ⊂ P7

onto a smooth del Pezzo fourfold W = G(1, 4)∩P7, defined by the linear system |I3
S̃,P5

(8)|

of octic hypersurfaces with triple points along S̃.
If X is a general cubic fourfold containing S, then the restriction of µ induces a

birational map µ|X : X
'
99KW .

Remark 2.17. It follows from well-known classic results that a del Pezzo fourfold W =
G(1, 4) ∩ P7 defined over an infinite field K is rational over K.

3. Main Theorem

The goal of this Section is to prove the following result.

Theorem 3.1. The moduli spaces of n-pointed fourfolds over the following moduli loci
are unirational:

(1) C14: cubic fourfolds containing a quintic del Pezzo surface (Subsection 2.1);
(2) C26: cubic fourfolds containing a 3-nodal septimic scroll (Subsection 2.2);
(3) C38: cubic fourfolds containing a generalized Coble surface (Subsection 2.3);
(4) C42: cubic fourfolds containing a 5-nodal rational surface of degree 9 and sectional

genus 2 (Subsection 2.6);
(5) (M4

GM )′10: GM fourfolds containing a τ -quadric surface (Subsection 2.4.1);

(6) (M4
GM )

′′
10: GM fourfolds containing a quintic del Pezzo surface (Subsection 2.4.2);

(7) (M4
GM )20: GM fourfolds containing a smooth rational surface of degree 9 and

sectional genus 2 (Subsection 2.5);

Remark 3.2. Recall that we denoted by U ⊂ H0(OP5(3)) (respectively, V ⊂ H0(OY5(2)))
the open set parametrizing smooth cubic hypersurfaces in P5 (respectively, smooth
quadric hypersurfaces in Y5). Let S be a family of surfaces in the the Hilbert scheme
HilbP5 of P5 (respectively, in the Hilbert scheme HilbY5 of Y5). We will abuse slightly of
notation by denoting by XS both the cubic fourfold incidence correspondence {(S,X) ∈
S × U|S ⊂ X} and the GM incidence correspndence XS := {(S,X) ∈ S × V|S ⊂ X}.
Accordingly, we will denote by XS the image of XS inside U (respectively, inside V) via

the second projection, and define X̃S as the closure XS//SL6 inside the moduli space C,
or, respectively, XS//Aut(Y5) inside M4

GM . We observe that the families of fourfolds
described in Section 2 (and object of Theorem 3.1) all share the following properties:

(1) S is irreducible and unirational; so that the same holds true for the corresponding

family XS , and hence for X̃S .
(2) If (S,X) is a couple where S is a general member of the family S and X is a

general fourfold containing S, then we are able to build, starting from the pair

(S,X), an explicit birational map ψ(S,X) : P4 '
99K X, defined over the same field

of definition as S and X.

Remark 3.3. The family XS carries the universal 1-pointed fourfold XS,1 → XS . And
inductively one can define a tower of maps
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· · · → XS,n → XS,n−1 → · · · → XS,1 → XS .

By quotienting out by the automorphisms of P5 or Y5, we can give straight away the
following definition.

Definition 3.4. We will denote by X̃S,n the moduli space of n-pointed (cubic or GM)
fourfolds, that contain one (or more) surfaces from the family S. It is the quotient
of XS,n by the automorphisms of the ambient fivefold (P5 or Y5 for the corresponding
fourfold.

Remark 3.5. The existence over an open subset of X̃S of the moduli spaces in Defini-
tion 3.4 is guaranteed by the fact that the very general cubic fourfold and GM fourfold
has no nontrivial automorphisms ([13, Theorem 3.8], [7, Proposition 3.21]). In fact, a
family of cubic fourfolds with at least a non-trivial projective automorphism has dimen-
sion at most 14 [13, Theorem 3.8]. Since we are working in the birational category, it
will be enough to consider the subset given by smooth cubic or smooth GM fourfolds
with no non-trivial automorphism. This subset carries by definition a universal family,
and contains an open subset of the moduli space. The universal family over this open
subset is clearly birational to the universal family over the full moduli space.

Of course there are forgetful maps

X̃S,n
πn→ X̃S,n−1

πn−1→ X̃S,n−2 → · · · ,
with evident meaning.

Proof of Theorem 3.1. Let us consider the unirational family S of surfaces inside P5

(resp., Y5). Over the function field of S, we can write the equations of the surface
S ∈ S, and notably describe their ideal. Call m the dimension of H0(P5, IS(3)) (resp.,
H0(Y5, IS(2))). By semicontinuity, this is generically constant over S. This implies that
the incidence correspondence XS is birational to a Pm−1−bundle over S and hence it is
unirational.

By definition XS sits naturally inside the product S ×U , and has two natural projec-
tions to the two components. The image under the second projection is XS ⊂ U and is
unirational as well.

Now we observe that, by definition, over XS there is a natural double universal family.
That is: since XS parametrizes the couples (S,X), then on one side we have the universal
family S1 of 1-pointed surfaces - that is, the universal family of surfaces over S, pulled-
back to XS , on the other we have the universal family XS,1 of 1-pointed cubic (resp.,

GM) fourfolds with the forgetful map XS,1
π−→ XS . By definition there is a fiberwise

inclusion:

S1
� � //

  

XS,1

||

XS



10 H. AWADA, M. BOLOGNESI, AND G. STAGLIANÒ

Remark that different points of XS may parametrize the same Fano fourfold but a
different surface. We observe that XS,1 lives naturally inside S × U × P5 and it is easy
to see that the family XS,1 is the image of XS,1 into U ×P5 via the map that forgets the
surface. That is, we have a commutative diagram

XS,1 //

��

XS,1 ⊂ U × P5

��

XS // XS ⊂ U .

Now, by assumption (2) of our working hypotheses at the beginning of this section,
we have that - relatively over XS - we can define a linear system on XS,1 (with base
locus supported on S1) that defines a birational map from XS,1 to a P4-bundle over XS ,
that we denote P4

XS
. Now P4

XS
is rational over XS and XS is unirational, hence the

universal family XS,1 is unirational, since it is birational to P4
XS

.

Exactly as one does for XS , we can construct a universal cubic (resp., GM) fourfold
over XS,1, just by taking the pull-back π∗XS,1 over XS,1. We denote by XS,2 this family,
and we observe that it tautologically contains π∗S1, as the following diagram follows.

π∗S1
� � //

��

XS,2 = π∗XS,1

��

S1
� � // XS,1

Thus XS,2 has the same property (2) as XS,1 and one can define a relative linear
system defining the birationality between XS,2 and a P4-bundle over XS,1 - that we
denote by P4

XS,1
. By the same argument as above, since XS,1 is unirational, XS,2 is

unirational as well. Then, inductively, the same argument shows the unirationality of
the universal families XS,n, for all n.

Now, the maps σi : XS,i → XS,i forgetting the surfaces followed by the natural
classifying maps, given by the quotient by the automorphisms groups, make the following
diagram commute (that of course can be indefinitely vertically extended by induction).
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π∗S1
� � //

��

XS,2 = π∗XS,1

∼

&&

σ2 //

��

XS,2
//Aut

// X̃S,2

��

P4
XS,1

xx

88

S1
� � //

����

XS,1

π

��

∼

&&

σ1 // XS,1
//Aut

// X̃S,1

��

P4
XS

xx

77

S XSoo // XS
//Aut

// X̃S
It is then clear that also the corresponding moduli spaces X̃S,n, corresponding to the

families XS,n are unirational.

To conclude the proof we observe that, thanks to the properties (1) and (2), we can
plug any one of the seven loci mentioned in the claim inside this construction, and get
the result. �

Remark 3.6. There are other special families of cubic (resp., GM) fourfolds verifying the
hypotheses required in this section. We nevertheless decided to concentrate on certain
particular descriptions of codimension one loci.

In fact we did not only choose some codimension 1 loci, but we also chose a particular
description of them. For example, for cubic fourfolds in C14 we could have chosen quartic
scrolls as surfaces defining the divisor. We remark however that in that case our argument
would not have worked since the quartic scroll defines a birational map to a 4-dimensional
quadric, and a quadric bundle is not automatically rational over its base.

A celebrated codimension two locus of cubic fourfold for which our argument would
work is the locus of cubic fourfolds containing two planes [38].

Remark 3.7. A few words are in order to describe the difference between our result
here and [2, Theorem 4.10], where the unirationality of Cd,n is proven for any n and
8 ≤ d ≤ 42. The result of [2] holds for a larger set of Hassett divisors (for instance our
proof here does not work for C8 since the rationality of all cubics is essential to us), but
on the other hand it does only work for cubic fourfolds, relying on a result of Kollár for
cubic hypersurfaces. Theorem 3.1 is more abstract in its formulation, it only depends
on some general features of the Fano varieties considered, and on the families of surfaces
they contain. This implies that it holds also for some classes of GM fourfolds, and we
believe that, because of its generality, by mimicking its strategy one could obtain similar
results for other Fano fourfolds of K3 type, or even higher dimensional Fano varieties. Of
course a necessary condition is the knowledge of families of rational surfaces contained
in other Fano fourfolds (or possibly rational threefolds in Fano sixfolds, etc.). A wealth
of good candidates can be certainly found in the recent preprint [4].
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4. A rational Noether-Lefschetz divisor of genus 11 K3 surfaces, and
their associated GM fourfolds.

In this section we will consider a codimension 1 locus of (M4
GM )20, in order to show

that, once we restrict the family of GM-fourfolds to this locus, stronger rationality
statements hold.

As observed in Remark 2.14 (see also [18, 32]), for the generic X ∈ (M4
GM )20 there

exists a birational map P4 // X , defined by the linear system of hypersurfaces of
degree 9 having double points along a surface U , which is a projection of a genus 11 K3
surface.

More precisely, one starts from a K3 surface Z ⊂ P11 of degree 20 and sectional genus
11. We take two points p, q ∈ Z, and perform first a triple projection from p (i.e. a
linear projection with center a P5 ⊂ P11 intersecting Z with multiplicity 3 in p) to P5,
then a simple projection from q to P4. The image is the required surface U .

With this in mind, one can prove the following result in a new fashion. We remark
that this was already a part of our Theorem 3.1, but here we give a sketch of this different
proof, based on the birational geometry of certain moduli spaces of K3 surfaces, since it
will be necessary in the following.

Theorem 4.1. The universal family (M4
GM )20,1 of 1-pointed GM-fourfolds is unira-

tional.

Proof. The philosophy is to mimic the above rationality construction over F11,2. We
will then consider the moduli space F11,2 of polarized K3 surface of genus 11 with two
marked points. The moduli space F11,3 comes equipped with an embedding inside a
P11-bundle over F11,2 and with two sections δ1, δ2 : F11,2 → F11,3. Performing a relative
triple projection from the image of δ1 and a simple one from the image of δ2 we obtain
a P4-bundle P(E) over F11,2 containing the family U of degree 10 surfaces.

F11,3 ⊂ P11 //

��

U ⊂ P(E)

��

F11,2

δ1

II

δ2

UU

F11,2

Since F11,2 is unirational [3, Theorem 0.1] , the projective bundle P(E) is unirational.
The relative linear system of degree 9 hypersurfaces, with multiplicity two along U gives
a rational dominant map between the P4-bundle P(E) and (M4

GM )20,1 �

In [18], Hoff and the third named author also consider a codimension one subfamily of
genus 11 K3 surfaces, that forms a Noether-Lefschetz (NL in what follows) divisor inside
F11. This divisor seems particularly interesting under our point of view, since the wealth
of geometry going on here allows us to strengthen our rationality results concerning the
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corresponding universal families of GM fourfolds related to these K3 surfaces. But let
us give a couple more details about these surfaces.

We start from a smooth Fano threefold Y of type X22 ⊂ P13. It is well known that
the generic tangent hyperplane sections of Y are one-nodal (a double point) K3 surfaces
(see [26], [33]). The projection from the node of such a K3 surface gives a K3 surface
in P11, of degree 20 and sectional genus 11, containing a further conic (the exceptional
divisor over the node). In fact, such a construction gives a Noether-Lefschetz divisor
inside the 19-dimensional moduli space of K3 surfaces of genus 11, and the intersection
lattice of these surfaces contains a sublattice of type(

20 2
2 −2

)
.

Before studying the universal family of GM fourfolds obtained from these special K3
surfaces, we need to show some results on the birational geometry of their Noether-
Lefschetz locus. We will denote by Vnodn the moduli space of n−pointed one nodal
K3 surfaces of sectional genus 12, obtained by cutting a X22-type 3fold with tan-
gent hyperplanes as above. The generic element of Vnodn is represented by a vector
(Y, p,H, q1, . . . , qn), where Y is a Fano threefold of type X22, p is a point of Y , H is a
hyperplane tangent to Y in p, and q1, . . . , qn are n points on the surface SH := Y ∩H.
We will also denote by X22 the (rational, see [27]) moduli space of Fano threefolds of

type X22. All these Fano threefolds are rational, and we will need to fix one X̃22 ∈ X22.

Theorem 4.2. The moduli space Vnodn is rational if n ≤ 9.

Proof. Let us consider the rational map

ϕ : Vnodn → X22 × X̃n+1
22(4.1)

(Y, p,H, q1, . . . , qn) 7→ (Y, p, q1, . . . , qn).(4.2)

Remark that X22×X̃n+1
22 is rational (and of dimension 3n+9) since it is the product of

rational varieties. Then, the fiber of ϕ over (Y, p, q1, . . . , qn) is exactly the linear system
of hyperplanes in P13 that are tangent to Y in p, and pass through q1, . . . , qn. This

shows that Vnodn is birational to a P9−n−projective bundle over X22 × X̃n+1
22 , and hence

is rational if n ≤ 9. �

We recall that the projection from the node sends birationally Vnodn onto a (18 + 2n)-
dimensional NL locus inside F11,n. Let us denote by (M4

GM )nod20 , the moduli space of

GM fourfolds obtained from the NL K3 surfaces described above, and by (M4
GM )nod20,1 the

universal family above, obtained by restricting the construction of Theorem 4.1. The
moduli space (M4

GM )nod20 is of dimension 22, and is contained in (M4
GM )20.

Corollary 4.3. The universal family (M4
GM )nod20,1 is rational. The moduli space (M4

GM )nod20

is rational.

Proof. The moduli space Vnod3 of nodal, 3-pointed K3 surfaces can be embedded in a
P12-bundle, and endowed with two sections δ1, δ2 : Vnod2 → Vnod3 , over Vnod2 . Since we
are working in the birational category, we can even consider (at least an open subset of)



14 H. AWADA, M. BOLOGNESI, AND G. STAGLIANÒ

Vnod2 as contained in F11,2. Now, we project fiberwise off the node, obtaining a family

of NL K3 surfaces in a P11-bundle, with two sections, over Vnod2 . Then, as we did in
Theorem 4.1, we perform the two projections off the sections and we obtain a P4-bundle
over Vnod2 , containing a family T of degree 10 surfaces. The moduli space Vnod2 is rational,
hence the P4-bundle is rational as well. Then, by applying the relative linear system
of degree 9 hypersurfaces through T as in Theorem 4.1, we obtain a rational family of
GM fourfolds over Vnod2 , hence (M4

GM )nod20,1 is rational. By construction (M4
GM )nod20 is

birational to Vnod2 and hence rational. �
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M. Mustaţă, and M. Popa, eds.), London Math. Soc. Lecture Note Ser., Cambridge Univ. Press,
2015, pp. 123–155.

7. O. Debarre and A. Kuznetsov, Gushel-Mukai varieties: classification and birationalities, Algebr.
Geom. 5 (2018), no. 1, 15–76. MR 3734109

8. , Gushel–Mukai varieties: moduli, Internat. J. Math. 31 (2020), no. 2.
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