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Abstract 23 

Spatial indicators are widely used to monitor species and are essential to management 24 

and conservation. In the present study, we tested the ability of 11 spatial indicators to quantify 25 

changes in species’ geographic patterns: (1) spatial displacement of a patch of biomass 26 

(‘shift’), (2) a spatial decrease in a patch, accompanied either by a loss of biomass (‘shrink0’) 27 

or (3) a relocation of the same biomass (‘shrink1’), and (4) splitting of a patch into smaller 28 

patches (‘split’). The geographic changes were simulated by manipulating the spatial 29 

distributions of the demersal species (observed during bottom trawl surveys). Hence, the 30 

spatial distributions of the latter being used as input data on which the manipulations were 31 

done. Additionally, other aspects of the indicators affecting the responses to the geographic 32 

changes were also tested, (1) homogeneous increase in biomass throughout the patch and (2) 33 

different sample sizes.  34 

The center of gravity (defined by latitude and longitude) was the only indicator that 35 

accurately detected the ‘shift’ in biomass. The index of aggregation identified a decrease in 36 

the area and biomass of the main biomass patch (‘shrink0’), while the Gini index, equality 37 

area and spreading area were accurately identified a decrease in the area of the main biomass 38 

patch when total biomass did not decreased (‘Shrink1’). Inertia and isotropy responded to all 39 

geographic changes, except for those in biomass or distribution area. None of the indicators 40 

successfully identified ‘split’ process. Likewise, one of the indicators were sensitive to a 41 

homogeneous increase in biomass or the type of spatial distribution. Overall, all indicators 42 

behaved similarly well when sample sizes exceeded 40 stations randomly located in the area. 43 

The framework developed provides an accessible and simple approach that can be used to 44 

evaluate the ability of spatial indicators to identify geographic processes using empirical data 45 



 

 

 

 

and can be extended to other indicators or geographic processes. We discuss perspectives of 46 

the development of spatial indicators especially within the application of EU’s Marine 47 

Strategy Framework Directive. 48 

Keywords: spatial metrics; monitoring; marine conservation; fisheries management;  49 

1. Introduction 50 

All life in Earth is both product and contributor to its place in space and time (David 51 

Attenborough, launch of ‘Our Planet’, 2019). Spatial indicators have been developed to 52 

represent and summarize species spatial patterns and their dynamics. They are often used in 53 

management (e.g. assess the state of species and ecosystems) (Bock et al., 2005; Greenstreet 54 

et al., 2012; Modica et al., 2016; Piet and Jennings, 2005; Rochet and Trenkel, 2009), and in 55 

ecology (e.g. to understand a species’ relationship with its environment, in face of habitat and 56 

climate change (Persohn et al., 2009; Yalcin and Leroux, 2017). Thus, the ability of indicators 57 

to identify an underlying geographic process accurately is crucial for their appropriate use in 58 

practical situations.  59 

Selecting indicators from the large list of those available is not straightforward and 60 

usually only a few indicators can be used. Previous studies have attempted to identify a small 61 

set of indicators that identified most of the spatial patterns observed and have better statistical 62 

properties (e.g. robust to outliers and changes in the distribution, regardless of abundance, 63 

Bock et al., 2005). Further, most indicators’ results are often highly statistically correlated 64 

with each other, and thus may be redundant. For example, Rufino et al. (2018) suggested 65 

grouping indicators into three categories that, reflect the main ecological patterns of species 66 

spatial distribution: occupancy, aggregation and quantity. Doing so would reduce the number 67 

of indicators to only three, each representing one category. 68 



 

 

 

 

Another important aspect of indicators that can influence their selection is their ability 69 

to identify spatial or geographic change. To our knowledge, one aspect of sampling design 70 

that has been poorly addressed when using empirical data is the number of samples required 71 

to identify a change in species distribution. However, Rindorf and Lewy (2012) analyzed the 72 

properties of several indicators analytically and by simulating abundance-occupancy 73 

relationships, in response to changes in species distribution and sample size.  74 

The aim of the current study was to determine the ability of several spatial indicators to 75 

identify changes in geographic patterns of demersal species, when the species main biomass 76 

patch moves (shift), when a larger patch splits into smaller ones (split) or when the area of 77 

highest biomass decreases (shrink, with a decrease in or relocation of biomass). The 78 

indicators were also assessed at higher levels of biomass (two and five times as high) and 79 

multiple sample sizes (20-160 stations). Conclusions are then drawn about management 80 

applications, especially in the European Union’s Marine Strategy Framework Directive 81 

(2008/56/EC) (MSFD), which requires that species and ecosystems be monitored using 82 

indicators that are operational and have clearly defined targets. 83 

2. Materials and Methods 84 

2.1. Data used 85 

The data analyzed came from a bottom trawl fishery survey (EVHOE)(Evaluation 86 

Halieutique de l’Ouest Européen, EVHOE cruise, RV Thalassa, IFREMER, Leaute and 87 

Pawlowski, 2015) that was performed in Autumn 2015 in the Bay of Biscay and the Celtic 88 

Seas. The survey covered a bathymetric range 20 up to 700 m deep and consisted of 148 89 

randomly stratified sampling stations (Fig. 2). The distribution of the biomass of 29 demersal 90 

species (Supplementary material 1) was interpolated onto a grid with 15 km × 15 km 91 



 

 

 

 

resolution that covered all species distributions, using ordinary kriging (see further details in 92 

Rufino et al., 2019). This interpolated area was the input data manipulated and from which the 93 

indicators were calculated. 94 

2.2. Geographical manipulation 95 

To determine whether the indicators were sensitive to the main geographic changes in 96 

species distributions, four types of naive spatial manipulation were performed: 1) shift; 2) 97 

shrink0 3) shrink1 and 4) split (Fig. 1). With this objective, an area was selected within the 98 

geographic distribution of each species and then manipulated to simulate the four geographic 99 

changes. More precisely, a rectangular area was extracted from the total area interpolated for 100 

all 29 species. The geographic range of this rectangular area was -10.482 to -7.145 in latitude 101 

and 48.289 to 51.439 in longitude, represented as 23 rows × 14 columns, on a grid with 15 km 102 

× 15 km resolution) (Supplementary material  1, Fig. S1, S2).  103 

 These raster grids were subjected to an initial treatment in which the biomass in a target 104 

area of nine rows in the center was left unchanged, while those in the remaining rows at the 105 

top and bottom were replaced with randomly generated values close to zero (i.e. mean equal 106 

to the 10% quantile of the biomass of the target area) and low variability (half the standard 107 

deviation of the target area). This treatment was performed to remove any patterns present in 108 

the top and bottom sections of the species distributions and to ensure that any differences in 109 

the indicators would be due only to the geographic changes simulated. Thus, the target area 110 

corresponded to nine contiguous rows with the highest biomass (Fig. S3). This area was then 111 

subjected to the four geographic manipulations: shift, split and shrink (with and without a 112 

decrease in biomass) (Fig. 2, Fig. S4). 113 

The ‘shift’ process illustrates when the center of a species distribution moves in a 114 

certain direction, without a change in biomass (e.g., as expected under climate change). This 115 



 

 

 

 

is not a change in the species distribution but simply reflects that the biomass has relocated. 116 

For this process, starting from the initial state, the target area was successively shifted, 117 

towards the bottom of the rectangle (south), by one row seven times (to the bottom of the 118 

raster rectangle). Each shift of one row corresponded to a ~ 4% shift in the species 119 

distribution. 120 

The ‘split’ manipulation mimics the process in which a larger patch with higher biomass 121 

is broken into smaller patches, without changing the total biomass. For this, starting from the 122 

initial state, the target area was split into thirds, and the three top and bottom rows were 123 

shifted successively towards the top and bottom of the rectangle, respectively five times. 124 

The ‘shrink’ process reflects a decrease in species distribution, (i.e. when a large 125 

biomass patch decreases in size). For this, starting from the initial state, the two edge rows of 126 

the target area were successively replaced with randomly low values four times, until only 127 

one row of the target was left. Two shrink processes were considered: (1) total biomass 128 

decreases due to the decrease in the distribution areas (shrink.0, i.e. some of the population 129 

emigrated) and (2) the biomass of the reduced areas was randomly distributed in the complete 130 

area (shrink.1), representing relocation of the same population. 131 

2.3. Spatial indicators 132 

Eleven spatial indicators were calculated for each manipulated spatial distribution 133 

(Table 1). The indicators selected were not intended to be exhaustive, but rather to represent 134 

the three main categories identified by Rufino et al., (2018). Since the data were interpolated 135 

on a regular grid, the areas of influence of each data point were set to 1 for simplicity. Thus, 136 

indicators representing an area were expressed as a number of grid cells rather than in units of 137 

surface area. We denoted �� , � = 1, … , � the geographic location of data points. In two 138 



 

 

 

 

dimensions, this corresponds to 	
��
������, 
���������. Fish biomass was denoted �	��� =139 

��, � = 1, … , �. 140 

Center of Gravity also called center of mass, indicates the mean spatial location of the 141 

population (Bez and Rivoirard, 2001)(Supplementary material 2). Given the manipulations 142 

performed, we considered longitude and latitude of the center of gravity separately: 143 
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 146 

This indicator is sensitive to the spatial locations of data points. 147 

The Gini index is defined as the two times the area between the 1:1 line and the Lorenz 148 

curve (Supplementary material 2). It is considered a measure of statistical concentration since 149 

it is not sensitive to the spatial location of the data points (Petitgas, 1998, 1997; Reuchlin-150 

Hugenholtz et al., 2015) . When applied to fish density, the x-axis of Lorenz curve represents 151 

the area occupied by cumulative fish densities (ranked by increasing density) while the y-axis 152 

represents the corresponding percentage of the total population biomass. For fish density 153 

equally distributed among the samples, the Lorenz curve follows the 1:1 line. As the 154 

distribution of fish density becomes increasingly uneven (i.e., more concentrated) the Lorenz 155 

curve deepens. Gini index ranges from 0-1, the higher its value, the more concentrated the 156 

biomass is in fewer samples.  157 

The level of aggregation (Bez and Rivoirard, 2001) is calculated as follows: 158 
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It corresponds to the mean fish density at the location where an individual fish is randomly 161 

sampled from the population. This index is not sensitive to the spatial location of the data 162 

points. 163 

The index of aggregation is calculated by standardizing the level of aggregation by " 164 

the total biomass (Bez and Rivoirard, 2001). While the areas of influence of each sample have 165 

been set to 1: 166 

#�  =
��  

"
=

∑ ��
!�

���

�	∑ ��
�
��� �!

=
1

�$�%��
 167 

From this equation, the equivalent area represents the area covered by a population with 168 

constant density equal to the level of aggregation (Bez and Rivoirard, 2001).  169 

Spreading area measures whether the positive fish biomasses are statistically concentrated 170 

around their mean (Woillez et al., 2007; Supplementary material 2). It is the Gini index of the 171 

positive sample and thus related to the Gini index. 172 

Inertia represents the spatial dispersal of the population around its center of gravity, i.e. the 173 

mean square distance between individual fish and the center of gravity (Bez and Rivoirard, 174 

2001; Supplementary material 2). 175 
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Isotropy/anisotropy represents the shape (symmetry) of the inertia, i.e. round or ellipsoid, and 178 

equals the ratio of the two principal axes of inertia (Supplementary material 2).  179 

The index of dispersion and coefficient of dispersion also called variance-to-mean ratio 180 

(σ2:μ)  or relative variance, measure the aggregation of individuals (Taylor, 1961).  181 

2.4. Procedure 182 

 183 



 

 

 

 

To determine whether the indicators were sensitive to a homogeneous increase in 184 

biomass (e.g. to represent a year with good environmental conditions overall, in which 185 

biomass increases proportionally at all points), the geographically manipulated raster was 186 

multiplied by two and five before the geographic manipulation (biomass effects, three levels, 187 

1, 2 and 5) and the indicators were estimated again. 188 

To determine whether the indicators were sensitive to sample size (i.e. the number of 189 

samples required to detect the geographic changes), 20 -160 random samples (in steps of 20) 190 

were taken from each of the manipulated raster’s (sample size effect, nine levels), and the 191 

indicators were estimated again using these data. 192 

Thus, the indicators differed as a function of the initial state, (1) the geographic 193 

manipulation (shift, split or shrink), (2) the level of biomass, and (3) the sample size. The 194 

difference in indicator value between the initial state and each configuration was calculated 195 

for each species and summarized (mean and 95% confidence interval estimated by bootstrap). 196 

Thus, a total of 3132 simulations were performed (29 species distribution × 4 manipulations × 197 

3 biomass levels × 9 sample sizes). 198 

All analysis and plotting were performed using R software (R Core Team, 2014). 199 

Indicators were estimated using the RGeostats (Renard et al., 2017) and ineq (Zeileis, 2014) 200 

packages of R, while rasters were manipulated using the raster package (Hijmans, 2016). 201 

3. Results 202 

The latitude of the center of gravity accurately identified the southward shift of the 203 

species biomass, although its relative change was smaller than that of the corresponding 204 

number of grid rows shifted (i.e. a 20% shift in latitude, for a 30% shift in rows, i.e. 7 out of 205 

23 in the target area). No change was detected for the shrink or split processes (Fig. 3; Table 206 



 

 

 

 

1). The longitude of the center of gravity did not change for the shift and split processes, but 207 

did changed slightly (by 0.02) for both shrink processes (shrink0 and shrink1), especially at 208 

higher levels of shrinkage (target area decreased by >50%, by 2-4), thus independent of total 209 

biomass. 210 

The Gini index, did not change for the shift or split processes, but progressively 211 

increased by up to 20% as the species distribution main occupied area decreased, when total 212 

biomass was redistributed (shrink.1) (Fig. 3; Table 1). However, when the biomass of the 213 

reduced area was lost (shrink0), the Gini index decreased slightly and then increased slightly 214 

(by ~5%) as the level of shrinkage increased. A similar but opposite pattern was observed for 215 

the equivalent area and spreading area. 216 

The index of aggregation showed an opposite pattern, increasing progressively up to 217 

0.03 units (shrink0) but not when the total biomass was maintained (shrink1) (Fig. 3; Table 218 

1). 219 

The inertia and isotropy decreased progressively with an increasing level of each 220 

geographic manipulation considered, although to a greater extent for the shrink1 and split 221 

(Fig. 3; Table 1). 222 

The index of dispersion, level of aggregation and the coefficient of dispersion all 223 

responded mainly to the increase in total biomass in the rectangular area, and only slightly to 224 

the geographic manipulations (Fig. 3; Table 1). 225 

For most indicators the influence of sample size on the ability to identify the underlying 226 

geographic manipulation was inconsistent when only 20 stations were considered (Fig. 4; 227 

Table 1). The indicators showed a consistent response to changes in geographic patterns when 228 

the sample size reached 40 stations, except for the level of aggregation, which required 80 229 



 

 

 

 

stations. Only equivalent area and spreading area had increasing ability to identify changes as 230 

the level of manipulation and sample size increased. 231 

Inertia and isotropy were generally sensitive to all geographic manipulations, although 232 

to a higher degree for shrink1 and split, and were not sensitive to changes in total biomass. 233 

The shift manipulation was detected only by the respective coordinate of the center of gravity, 234 

which was also relatively insensitive to a homogeneous increase in the biomass level. The 235 

shrink manipulation, in which the main biomass patch decreased, was identified by the Gini 236 

index, index of aggregation, equality area and spreading area. For shrink0, (i.e. total biomass 237 

decreases), the index of aggregation was more effective. For shrink1 (i.e. biomass missing 238 

from the decrease in the area is relocated over the entire area), the Gini index (increased), 239 

equality area (decreased) and spreading area (decreased) were more effective; however, the 240 

latter two were highly sensitive to smaller sample sizes. The ‘split’ manipulation was not 241 

detected by any of the indicators. 242 

Three indicators were not sensitive to any of the manipulations but did change with the 243 

increase in total biomass: coefficient of dispersion, index of dispersion and level of 244 

aggregation. 245 

4. Discussion 246 

A good suitable indicator should be calculated by a simple direct equation and clearly 247 

interpret the underlying process (Baddeley et al., 2015). Although previous studies 248 

recommend including multiple indicators (Petitgas and Poulard, 2009; Woillez et al., 2007b), 249 

monitoring programs, such as the MSFD often require parsimonious and non-redundant 250 

indicators. It is thus necessary to select few indicators, if possible, using objective criteria. We 251 

tested the ability of several indicators to detect the main geographic processes that are 252 



 

 

 

 

observed in species distributions and their sensitivity to changes in total biomass, and sample 253 

size.  254 

For the interpretation to remain unambiguous, each indicator should respond to only one 255 

change. However, if only one indicator can be used, one that is sensitive to several geographic 256 

changes can help identify spatial changes that can be investigated in detail in future studies. 257 

the indicator can be used as a preliminary signal to indicate that a population experienced a 258 

spatial change. For these situations, the inertia and isotropy indicators are the most adequate 259 

since they responded to all of the geographic processes considered: shift, shrink and split, 260 

although they did not respond to the level of biomass or the spatial distribution.  261 

The center of gravity was the only indicator that responded only to the ‘shift’ process 262 

(i.e. a patch of higher biomass moves in a certain direction without changing the total biomass 263 

or range. It is widely recognized that species are modifying their distributions due to climate 264 

change and other anthropogenic impacts (Hermant et al., 2010). Most previous studies on 265 

biogeography, however, use presence/absence data, and thus measure only species 266 

distributions. The center of gravity (through its coordinates) can accurately spot and quantify 267 

a biomass geographic shift of a species, when the species distribution does not change. 268 

Additionally, this indicator was not influenced by homogeneous changes in biomass. 269 

Nevertheless, the center of gravity can be highly sensitive to the presence of other patches 270 

within the sampled area or outliers and to non-homogeneous changes in biomass (data not 271 

shown). 272 

Four indicators responded only to the shrink process (i.e. a decrease in the size of the 273 

main biomass patch). If biomass is lost along with the decrease in the area, (shrink0), the 274 

index of aggregation should be used. However, if the biomass is relocated (i.e. total biomass 275 



 

 

 

 

does not change), Gini index, equivalent area and spreading area were more effective, 276 

although the latter two were highly sensitive to the sample size. 277 

None of the indicators detected a split of the main biomass patch into smaller patches. 278 

Other indicators, such as the number of patches or a geostatistical variogram model (through 279 

its range parameter, also known as patch size) may do so. Nether was included in the current 280 

study, however, because the former varies greatly depending on the parameters chosen for 281 

calculation, while the latter had no spatial structure to analyze, since the distribution was 282 

broken during manipulation. Additionally, it is difficult to identify a spatial model for many 283 

distributions because they are not visible for some species or years. Nevertheless, this aspect 284 

requires further study. 285 

For simplicity, we studied a rectangular sampling area, however, this is rarely possible 286 

in real world situations which are hindered by an irregular topography. For example, the areas 287 

sampled in coastal surveys are often long and narrow, with extremely irregular shapes 288 

(Brind’Amour et al., 2014; Rufino et al., 2017, 2010). In such cases, irregularities in the 289 

sampling area can move the center of gravity outside the surveyed area and cause the inertia 290 

and isotropy indicators to calculate non-real distances. Artificially dividing the sampling area 291 

into several sub-areas may sometimes resolve this problem (Tableau et al., 2016). 292 

Nevertheless, future studies are required to develop indicators that are for areas with irregular 293 

shapes. 294 

One approach to address the sampling area issue is to split study areas into smaller 295 

spatial management units. When large areas, such as ocean, are sampled, several processes are 296 

combined that are difficult to distinguish. In this case it becomes essential to divide the areas 297 

into spatial management areas, which can then be monitored using indicators. For example, 298 

several fishery surveys are conducted on an annual basis in European waters. If indicators are 299 



 

 

 

 

to be used to monitor such a large area, spatial management areas are required. We 300 

recommend that the scales of underlying processes be identified as well as the methods to 301 

establish spatial management areas for relevant application of indicators.  302 

Empirical data on species distribution was used instead of simulated data to avoid 303 

making assumptions about factors, such as distribution parameters. Species distributions were 304 

then manipulated to specify define the spatial changes studied. This approach is generalizable 305 

to all indicators and case studies because it is simple, effective and available to all researcher. 306 

The MSFD criterion associated with the spatial distribution of species (D1C4) requires 307 

indicators that can identify two main processes: (i) species distribution range and, where 308 

relevant, (ii) pattern within this range. We chose three geographic changes that likely match 309 

the spatial processes highlighted in the MSFD. Hence, we suggest using the indicators that 310 

respond to the geographic 'shift' to assess species distribution and using those that respond to 311 

shrink (0 or 1) or split changes to assess the pattern within the species distribution. Based on 312 

Rufino et al. (2018), who classified indicators into three categories we suggest that 313 

'occupancy-related' indicators would correctly identify shift changes (i.e. distributional range) 314 

and 'aggregation-related' indicators would correctly identify shrink and split changes (i.e. 315 

pattern within the distribution).  316 

In conclusion this approach is a simple and straightforward way to determine the ability 317 

of indicators to identify certain spatial processes. Based on the indicators studied, the center 318 

of gravity (for shift process), Gini index, index of aggregation (for a shrink process), with 319 

more than 60 samples were the best indicators for options to identify the geographic processes 320 

underlying. Inertia and isotropy were two indicators that were sensitive to all processes, so 321 

can be used to trigger a spatial change in the species or community.  322 
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TABLES 456 

Table 1: Response of the spatial indicators to the handled distributions and biomass change (no change, vs. doble and 457 
quintuple).  458 
Indicator Description Manipulation      

  Shift Shirnk.0 Shrink.1 Split Biomass Spatial 
distribution 

  Migration of a 
species 
southward 
(without 
changing the 
species range) 

Decrease 
in the area 
occupied 
and 
biomass 

Decrease 
in the area 
occupied, 
with 
biomass 
relocated 

Split of 
the main 
occupied 
area in 
three 
smaller 
areas 

  

 Expectations Increase or 
decrease 
depending on 
the indicator 

Increase 
or 
decrease 
depending 
on the 
indicator 

Increase 
or 
decrease 
depending 
on the 
indicator 

Increase 
or 
decrease 
depending 
on the 
indicator 

No 
change 

No change  

Latitude of the  
centre of Gravity  
(CG.lat) 
 

Mean geographic 
location of the 
population (lat/long 
coordinates). 

Increase up to 
20% 

Stable Stable Stable No 
influence 

No 
influence 

Longitude of the  
Centre of Gravity  
(CG.long) 

 Stable Stable but 
increase 
variability 

Stable but 
increase 
variability 

Stable No 
influence 

Influence 
for RFo 
and TPS, 
in ‘shrink’ 

Gini (Lorenz 
curve) 

Represents the 
difference between 
the observed 
distribution and a 
distribution where 
every sample 
contains the same 
individuals [0-1]. 

Stable Small 
decrease 
(<10%; 
stable) 

Increased Stable No 
influence 

Small 
influence 
only in 
‘shrink’ 

Equivalent area 
(eqarea) 

The area that would 
be covered by the 
population if all 
individuals had the 
same density, equal 
to the mean density 
per individual [0-
PosA](nmi2) 

Stable Small 
increase 
(stable) 

Decreased  Stable No 
influence 

Small 
influence 
only in 
‘shrink’ 

Spreading area  
(sparea) 

Index related to the 
Gini index, but 
which has the 
advantage of having 
no contribution from 
zero values of 
density (nmi2). 

Stable Small 
increase 
(stable) 

Decreased  Stable No 
influence 

Small 
influence 
only in 
‘shrink’ 

Index of 
aggregation 
(Iagg)  

Describes the level 
of aggregation 
independent of total 
abundance. 

Stable Decreased Small 
increase 
(stable) 

Stable No 
influence 

Small 
influence 
only in 
‘shrink’ 

Inertia Describes the 
dispersion of the 
population around its 
center of gravity 
(nmi2) 

Decreased  Decreased  Decreased  Decreased  No 
influence 

Small 
influence 

Isotropy Measures the 
elongation of the 
spatial distribution of 
the 
population.dispersion 
shape (symmetry) of 
the inertia around the 
center of gravity (i.e. 

Decreased  Decreased  Decreased  Decreased  No 
influence 

Small 
influence  



 

 

 

 

round or ellipsoid), 
and it is the ratio 
between the two 
inertia axes. [0-1] 

Index of dispersion 
(contagion)(MeVa) 

Used to measure the 
distributional pattern 
within the range 
(MSFD) 

Stable Stable Stable Stable Changed Small 
influence 
only in 
‘shrink’ 

Level of 
aggregation 
(Lagg) 

Mean density per 
individual, used to 
describe the level of 
aggregation. 

Stable Stable Stable Stable Changed Small 
influence 
only in 
‘shrink’ 

Coefficient of 
dispersion  
(σ2/mean 
ratio)(VaMe) 

This index gives 
indications on over 
or under dispersion 
compared to a 
Poisson distribution. 

Stable Stable Stable Stable Changed Small 
influence 
only in 
‘shrink’ 
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FIGURE LEGENDS: 460 

Summary of the process used to evaluate spatial indicator’s ability.  461 

Figure 1: Mean response and respective bootstrap 95% confidence intervals of spatial 462 

indicators as a function of three geographic manipulations Shift, Shrink, with biomass 463 

decrease (0) or biomass relocation (1) and Split) and of a a homogeneous increase in biomass 464 

(0 no increase, 2 two times and 5 five times) of the area analysed. Spatial indicators (Table 1): 465 

center of gravity latitude (CG.lat) and longitude (CG.long), Gini, equivalent area (earea), 466 

spreading area (sparea), index of aggregation (Iagg), inertia, isotropy (iso), index of 467 

dispersion (MeVa), level of aggregation (Lagg) and coefficient of dispersion (VaMe). The ‘d.’ 468 

preceding the indicator’s name means ‘difference’ from its value for the initial state.  469 

Figure 2: Mean response and respective bootstrap 95% confidence intervals of the 470 

spatial indicators as a function of three geographic manipulations manipulations (Shift, 471 

Shrink, with biomass decrease (0) or biomass relocation (1) and Split). Indicators are defined 472 

as in Figure 1. 473 

Figure 3: Mean response and respective bootstrap 95% confidence intervals of the 474 

spatial indicators as a function of sample size (20-160) and three geographic manipulations 475 

(Shift, Shrink, with biomass decrease (0) or biomass relocation (1) and Split). Indicators are 476 

defined as in Figure 1. 477 
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FIGURES: 480 

Graphical abstract. 481 

  482 



 

 

 

 

Figure 1: by biomass level 483 
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Figure 2: by method 486 
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Figure 3: by sample size 489 
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