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 85 

Abstract 86 

A recently published study analyzed the phylogenetic relationship between the genera 87 

Centrodinium and Alexandrium, confirming an earlier publication showing the genus Alexandrium as 88 

paraphyletic. This most recent manuscript retained the genus Alexandrium, introduced a new genus 89 

Episemicolon, resurrected two genera, Gessnerium and Protogonyaulax, and stated that: “The 90 

polyphyly [sic] of Alexandrium is solved with the split into four genera”. However, these reintroduced 91 

taxa were not based on monophyletic groups. Therefore this work, if accepted, would result in 92 

replacing a single paraphyletic taxon with several non-monophyletic ones. The morphological data 93 

presented for genus characterization also do not convincingly support taxa delimitations. The 94 

combination of weak molecular phylogenetics and the lack of diagnostic traits (i.e., autapomorphies) 95 

render the applicability of the concept of limited use. The proposal to split the genus Alexandrium on 96 

the basis of our current knowledge is rejected herein. The aim here is not to present an alternative 97 

analysis and revision, but to maintain Alexandrium. A better constructed and more phylogenetically 98 

accurate revision can and should wait until more complete evidence becomes available and there is a 99 

strong reason to revise the genus Alexandrium. The reasons are explained in detail by a review of the 100 

available molecular and morphological data for species of the genera Alexandrium and Centrodinium. 101 

In addition, cyst morphology and chemotaxonomy are discussed, and the need for integrative 102 

taxonomy is highlighted.  103 

 104 

Keywords: taxonomy, phylogenetics, paraphyletic, saxitoxin, spirolides, harmful algal blooms 105 

 106 

Highlights 107 

• Morpho-molecular data do not support the split of Alexandrium into four genera. 108 

• The genera Episemicolon, Gessnerium, and Protogonyaulax should not be used.  109 

• A proposal to conserve Alexandrium against Centrodinium will be submitted. 110 

 111 
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Introduction and aims 112 

 113 

The genus Alexandrium includes many species that have caused extensive economic and human 114 

health impacts worldwide (e.g., Anderson et al., 2012). Alexandrium currently encompasses 34 115 

accepted species, with A. camurascutulum considered invalid (Guiry in Guiry and Guiry, 2020). Of 116 

these species, 14 are known to produce paralytic shellfish toxins (PSTs) (Moestrup et al., 2009), which 117 

have caused extensive damage to aquaculture industries. The wide range of toxins produced by 118 

Alexandrium species, belong to four families – PSTs (saxitoxin (STX) and its derivatives), spiroimines 119 

(spirolides and gymnodimines), goniodomins (e.g., Lassus et al., 2016), and lytic compounds (e.g., 120 

Tillmann and John, 2002; Blossom et al., 2019). The toxins with the most recognized potential for 121 

economic impact are the PSTs, which are responsible for outbreaks of paralytic shellfish poisoning 122 

(PSP), one of the most widespread harmful algal bloom (HAB)-related shellfish poisoning syndromes. 123 

PSP outbreaks can cause human illness and death from contaminated shellfish or fish, loss of wild and 124 

cultured seafood resources, impairment of tourism and recreational activities, alterations of marine 125 

trophic structure, and death of marine mammals, fish, and seabirds (Anderson et al., 2012). Symptoms 126 

of PSP in humans range from spreading numbness and tingling sensations, headache and nausea to 127 

more extreme fatal cases due to respiratory paralysis (Hallegraeff, 2003). Blooms of species such as 128 

Alexandrium catenella, A. minutum, and A. pacificum regularly cause losses of tens of millions of 129 

dollars to aquaculture industries in North and South America, Europe, Asia (e.g., Trainer and Yoshido, 130 

2014; Sanseverino et al., 2016), and Australia and New Zealand (e.g., Jin et al., 2008; MacKenzie, 131 

2014). For example, in late 2012, a single bloom of A. catenella along the east coast of Tasmania 132 

(Australia) resulted in ~AUD$ 23 million loss to the wild harvest and aquaculture industries (Condie 133 

et al., 2019). Monitoring of Alexandrium cells in the water column and of toxins in shellfish is 134 

therefore critical for avoidance of adverse effects on human health (e.g., Nagai et al., 2019; EFSA, 135 

2009) and nationally and internationally standardized methods have been established to guide PSP 136 

testing (e.g., FAO Marine Biotoxins, 2004; [U.S.] National Shellfish Sanitation Program, 2017; 137 

Australian Shellfish Quality Assurance Program, 2019; Turner et al., 2019). The European Union 138 

requires all its member states to monitor coastal waters for toxin-producing plankton and toxins in 139 
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mussels (Directive 91/492d/EC and Commission Decision 2002/225/EC). In parallel, research on 140 

Alexandrium species is vigorous: since 1975, there have been 2,768 published studies that include the 141 

word Alexandrium, which have been cited 70,322 times, for an average of about 150 publications per 142 

year over the last 10 years (Clarivate Analytics search on Web of Science Core Collection on 20 143 

August 2020).  144 

The taxonomic history of the genus Alexandrium is complex, and nomenclatural stability was not 145 

attained for some time, as detailed by Balech (1995, pp. 1–3) and Taylor and Fukuyo (1998). The 146 

genus Alexandrium was erected by Halim (1960) with the PST-producing Alexandrium minutum as its 147 

type. A few years later, Halim (1967) erected Gessnerium with Gessnerium mochimaense Halim as its 148 

type; this species had a pentagonal first apical (1′) plate not in contact with the pore plate (Po). 149 

Loeblich III and Loeblich (1979) considered Alexandrium minutum to be inadequately described, left 150 

it in the genus Alexandrium and transferred seven Gonyaulax species and two Goniodoma species into 151 

the genus Gessnerium. At the same time, Taylor (1979) erected Protogonyaulax, with P. tamarensis as 152 

the type species and defined it as having a 1′ plate directly contacting the Po of the apical pore 153 

complex, and transferred eight species of the genus Gonyaulax and one Pyrodinium species into 154 

Protogonyaulax. Taylor’s proposal was followed by Fukuyo et al. (1985), who described two new 155 

Protogonyaulax species (P. affinis and P. compressa). After a detailed examination of samples from 156 

the type locality of A. minutum (the type species of Alexandrium), Balech (1989) noted that plate 1′ 157 

does not necessarily directly contact the Po in this species (the same applies to A. fraterculus and A. 158 

kutnerae). He therefore re-established the genus Alexandrium, considering Protogonyaulax a junior 159 

synonym of Alexandrium. All Protogonyaulax and Gessnerium species were thus transferred to 160 

Alexandrium (Balech 1985, 1995) and Gessnerium was retained as a subgenus of Alexandrium for 161 

species in which plate 1′ is not rhomboidal and does not contact the Po (Balech, 1995). Since Balech 162 

(1989), the consensus has been to only use the genus name Alexandrium. The currently accepted plate 163 
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formula for Alexandrium is Po, 4′, 6′′, 6c, 9–10s, 5′′′, 2′′′′ (Balech, 1980, 1995; Balech and Tangen, 164 

1985). 165 

The advent of molecular approaches provided significant contributions to the circumscription 166 

of species within this important genus. Morpho-molecular studies suggested that species placed in the 167 

subgenus Gessnerium do not form a monophyletic group (John et al., 2003; MacKenzie et al., 2004; 168 

Kim et al., 2005; Rogers et al., 2006; Penna et al., 2008; Gu et al., 2013). More recently, a detailed 169 

study encompassing the morphology of vegetative cells, phylogenies based on multiple molecular 170 

markers, mating compatibility and presence/absence of genes coding for STX and analogues has 171 

shown that morphological characters used to identify species within the Alexandrium tamarense 172 

complex (A. tamarense and related species) were not consistent, but that molecular markers were able 173 

to delineate unambiguous species boundaries (John et al., 2014; but see Fraga et al., 2015 and Litaker 174 

et al., 2018).  175 

Recently, Li et al. (2019) showed that the fusiform dinoflagellate Centrodinium punctatum 176 

forms a clade nesting within Alexandrium. Through a morpho-molecular study of two other 177 

Centrodinium species (C. eminens and C. intermedium), but without a re-investigation of the type, C. 178 

elongatum, Gómez and Artigas (2019) proposed to retain Centrodinium and subdivide the species 179 

formerly included in the genus Alexandrium, sharing a common thecal plate pattern, into four distinct 180 

genera, namely Alexandrium sensu stricto (s.s.) (emended diagnosis), the re-introduced genera 181 

Gessnerium and Protogonyaulax, and the new genus Episemicolon. Here, the data presented in Gómez 182 

and Artigas (2019) are critically discussed, and it is shown that they do not support such a drastic 183 

taxonomic rearrangement. The aim of this study is not to present an alternative analysis and revision, 184 

but to maintain the genus Alexandrium. Furthermore, it is emphasized to use integrative taxonomy 185 

which delimits taxa using multiple and complementary perspectives (Dayrat, 2005), including the 186 

consideration of cyst morphology in recognizing taxa (as previously suggested by Taylor and Fukuyo, 187 

1998, p. 6) and chemotaxonomy, amongst other criteria. 188 

 189 

The presented phylogenetic trees do not support the proposed subdivision of Alexandrium. 190 
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The finding that species of Centrodinium nest phylogenetically in Alexandrium (Li et al., 191 

2019; Gómez and Artigas, 2019) makes the latter paraphyletic. Gómez and Artigas (2019) proposed to 192 

taxonomically split Alexandrium into four separate genera (not including Centrodinium, which never 193 

belonged to Alexandrium). This proposal establishes a new genus Episemicolon, while the diagnosis of 194 

three other genera (Alexandrium, Gessnerium, and Protogonyaulax) was emended to group subsets of 195 

former Alexandrium species. The authors stated that “The polyphyly [sic] of Alexandrium is solved 196 

with the split into four genera”. Notably, Alexandrium was not polyphyletic, but paraphyletic. The 197 

suggestion that their proposal ‘solved’ this problem is the basis for our critique, and thus it is therefore 198 

worth evaluating the phylogenetic information presented by Gómez and Artigas (2019) in detail. Our 199 

question was: Does the data justify splitting a phylogenetically well-defined group (e.g., John et al., 200 

2003; Rogers et al., 2006; Orr et al., 2011; Anderson et al., 2012; Baggesen et al., 2012; Gu et al., 201 

2013; Murray et al 2015; Menezes et al., 2018; Kretzschmar et al., 2019), sharing the same Kofoidian 202 

plate tabulation, into segregate genera?  203 

Gómez and Artigas (2019) presented two phylogenetic trees, Fig. 4 a phylogenetic analysis of 204 

alignments of the SSU (18S) region of the rRNA operon and Fig. 5 the D1–D2 region of the LSU 205 

(28S) region of the rRNA operon. Each alignment was analyzed using a maximum likelihood (ML) 206 

approach and clades were given with bootstrap support. There was no information on the number of 207 

base pairs analyzed, the number of informative sites, and the alignments were not made available for 208 

evaluation. These phylogenetic analyses are problematic for several reasons:  209 

 210 

1. In their Fig. 5, the phylogeny using the D1–D2 regions of rRNA, which are generally ~600 bp in 211 

length, the proposed Alexandrium s.s. and Protogonyaulax are polyphyletic. In their Fig. 4, the 212 

phylogeny using (presumably) partial SSU regions of rRNA, of an unknown length, Protogonyaulax, 213 

Episemicolon and Alexandrium s.s. are all para- or polyphyletic. In other words, based on their own 214 

analysis, the authors propose the replacement of a single paraphyletic taxon (Alexandrium) with 215 

several non-monophyletic ones. The generic concepts are not substantiated by the molecular data. 216 

Thus, rather than solving the taxonomic problems, they exacerbate them.  217 

 218 
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2. There is very little genetic difference between species of Centrodinium and Episemicolon. In a 219 

comparison of sequences of C. punctatum in the NCBI database, a difference of < 1% and < 5% was 220 

found between it and A. affine in aligned sequences of SSU and LSU rRNA, which was less than the 221 

genetic differences among species of Centrodinium. Species that are highly similar in molecular 222 

genetic sequences of rRNA genes, with identical tabulation when considering plate homologies, need 223 

exceptionally different other autapomorphies in order to be placed in separate genera, and little 224 

evidence of this is found (see below).  225 

 226 

3. The Gómez and Artigas (2019) phylogenies have used short alignments with too few characters and 227 

taxon information to accurately infer deeper, clade level branchings within the genus Alexandrium 228 

which will be stable into the future. Of the major factors that impact the accuracy of phylogenetic 229 

inference, two are particularly important: the length of aligned sequence/number of genes used, and 230 

the taxon sampling. Past studies of Alexandrium phylogenetics were reviewed (Table 1, John et al., 231 

2003; Leaw et al., 2005; Rogers et al., 2006; Orr et al., 2011; Anderson et al., 2012; Baggesen et al., 232 

2012; Gu et al 2013; Murray et al., 2014; Murray et al., 2015; Menezes et al., 2018; Gottschling et al., 233 

2020), and this showed that clades within Alexandrium  differed depending on gene and taxon 234 

sampling (exemplified by basal clades shown in Table 1). All else being equal, more sequence data 235 

and greater taxon sampling generally leads to more accurate and well-supported phylogenies. Murray 236 

et al. (2015) conducted an analysis of Alexandrium using a concatenated alignment of eight genes, 237 

with a total length of 7308 bp. The position of several of the major clades of Alexandrium differed in 238 

that analysis, compared to the analysis presented by Gómez and Artigas (2019). Similarly, new 239 

ribotypes are still being reported, such as Alexandrium fragae (Branco et al., 2020) and three new 240 

phylotypes nested within the genus (Nishimura et al., in review). It is likely that these new discoveries 241 

and longer alignments/greater gene sampling will lead to more strongly supported phylogenies than 242 

those of Gómez and Artigas (2019), whose phylogenies appear to be too weak to support taxonomic 243 

rearrangements.  244 

As any taxonomic rearrangement of Alexandrium will potentially impact hundreds or 245 

thousands of scientists, government regulators, and the seafood industry, it is crucial that the 246 
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phylogenetic basis for such a change be exceptionally clear, highly stable, and reproducible by other 247 

scientists. However, this has not occurred in this case. Gómez and Artigas (2019) have not provided 248 

access to their alignment or details of their analytical output. Dinoflagellate lineages display major 249 

differences in evolutionary rates in ribosomal RNA genes, particularly in the gonyaulacoid lineage. 250 

Examples of this can be seen in Orr et al. (2012), Gu et al. (2013) and Gottschling et al. (2020), in 251 

which the species of the Gonyaulacales are generally present on much longer branches than most other 252 

clades of dinoflagellates, a difference not seen in analyses using nuclear genes (e.g., Kretzschmar et 253 

al., 2019). While Gómez and Artigas (2019) selected a potentially suitable model for their ML 254 

analyses, inclusion of divergent taxa can still lead to misplacement of taxa/clusters, with high support 255 

values, due to various long-branch effects (Kück et al., 2012). No phylogeny-testing (such as leave-256 

one-out testing and jackknifing by species/clusters) apart from the bootstrap support was used to 257 

determine whether the branch order of taxa/clusters was stable or unaffected by long-branch artifacts.  258 

 259 

The morphological concepts of the reinstated and emended genera proposed by Gómez and Artigas 260 

(2019) have little taxonomic value 261 

As mentioned in the introduction, Protogonyaulax was described by Taylor (1979) as having a 262 

plate 1′ in contact with the Po. As remarked by Balech (1989, p. 210) for the type species of 263 

Alexandrium, A. minutum, as well as for A. fraterculus and A. kutnerae, this feature is variable, and the 264 

plate 1′ can have an indirect contact with the Po through a filiform prolongation of plate 1′ 265 

(Alexandrium acatenella, A. andersonii, A. ostenfeldii, A. tropicale are additional examples; Balech, 266 

1995). Gómez and Artigas (2019) considered species exhibiting only a direct contact of plate 1′ to the 267 

Po as belonging to their emended concept of Protogonyaulax, and species with direct or indirect 268 

contact (presumably meaning displaying both types) as belonging to their emended genus 269 

Alexandrium. However, when reviewing the literature, it is clear that there is no consistency with the 270 

application of both genus concepts (Table 2); furthermore, the high variability of the contact between 271 

plate 1′ and Po within Alexandrium species speaks against considering this as a reliable taxonomic 272 



11 

 

 

 

character. In addition, Gómez and Artigas (2019) describe the 6′′ plate as being “usually narrow” in 273 

Alexandrium s.s., however, this is not so in A. insuetum, A. ostenfeldii, and A. tamutum, species which 274 

are retained in Alexandrium s.s. in their proposed phylogeny. Finally, the posterior sulcal plate (Sp) of 275 

the emended genus Protogonyaulax is longer than wide, and in Alexandrium s.s. wider than long, but 276 

the Sp of A. leei, included in Protogonyaulax, is wider than long and in A. margalefii, included in 277 

Alexandrium s.s., longer than wide with an extremely oblique anterior margin (Balech, 1995). In 278 

summary, the considerations of Balech (1995) which support synonymization of Protogonyaulax with 279 

Alexandrium, still stand. 280 

The reinstated genus Gessnerium also presents problems. Gómez and Artigas (2019) included 281 

within this genus species with a pentagonal plate 1′ not in contact with the Po. They excluded three 282 

species with a plate 1′ not in contact with the Po from their concept of Gessnerium: A. insuetum, which 283 

they included in Alexandrium s.s. despite the fact that this species has a pentagonal 1′ plate that does 284 

not touch the Po (Balech, 1995, Plate XVII, Figs. 1–23), and A. pohangense and A. margalefii, which 285 

were not formally attributed to any genus, although were assigned to the Alexandrium s.s. clade in 286 

their Fig. 4. The authors considered the quadrangular plate 1′ of A. pohangense and A. margalefii as a 287 

unique character distinguishing them from the other Gessnerium. However, the plate 1′ in A. 288 

pohangense has a short suture with plate 2′ and can therefore be considered pentagonal (Lim et al., 289 

2015, their Fig. 4B), and such a short suture can also be observed in A. balechii and A. foedum 290 

according to Balech (1995, p. 103), which were classified as Gessnerium by Gómez and Artigas 291 

(2019). Within A. taylorii, the plate 1′ is known to vary between a quadrangular and pentagonal shape 292 

(Delgado et al., 1997). The infraspecific variability of the shape of this plate indicates that it cannot be 293 

used as a diagnostic character at the genus level (Table 2). Finally, the Sp of the emended genus 294 

Gessnerium is longer than wide and extending obliquely, but in A. monilatum, which is included in 295 

this genus, the Sp is rhomboid (Balech, 1995).  296 
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The main diagnostic character of the new genus Episemicolon is the presence of an anterior 297 

attachment pore placed on the dorsal side of the apical pore plate. However, in A. gaarderae the 298 

anterior attachment pore is defined as semi-dorsal (Larsen and Nguyen-Ngoc, 2004) and in A. 299 

monilatum, included in Gessnerium, the anterior attachment pore is slightly to the right of the dorsal 300 

side (Balech, 1995). Moreover, A. concavum, which also has a semi-dorsal attachment pore (Larsen 301 

and Nguyen-Ngoc, 2004) was placed in Gessnerium by Gómez and Artigas (2019). There is presently 302 

insufficient evidence to accept the location of the anterior attachment pore in the apical pore plate as a 303 

diagnostic character to separate these taxa at the generic level from other Alexandrium species. In 304 

addition, Gómez and Artigas (2019) claim that the shape of the apical pore of Episemicolon is unique 305 

because it is “oval or bullet” (their Table 1, as “Shape of apical pore plate”) which is incorrect because 306 

it is comma-shaped (Larsen and Nguyen-Ngoc, 2004), just like other Alexandrium species.  307 

The tabulation of the genus Centrodinium, as displayed in Centrodinium punctatum, is 308 

identical to that of Alexandrium when taking into account plate homologies (Li et al., 2019). It can not 309 

be excluded that some of the differences listed by Gómez and Artigas (2019) such as the shape of the 310 

apical pore, the presence of a pore in the anterior sulcal plate, etc., could be sufficient to separate this 311 

taxon on a subgeneric level. More detailed morphological information on the type species of 312 

Centrodinium, C. elongatum, is however required. The large variation in tabulation reported in species 313 

of Centrodinium by Hernández-Becerril et al. (2010, see their Table 1 for a summary) indicates that 314 

further investigation into this genus is needed to properly report on its phylogenetic placement. 315 

In summary, the morphological concepts used to separate the reinstated genera from 316 

Alexandrium s.s. are highly variable and insufficient to justify a split of the genus Alexandrium. There 317 

is also insufficient morphological evidence to decide whether Episemicolon and Centrodinium warrant 318 

separate generic names.  319 

 320 

The cyst morphology does not support the new genera 321 

Cysts of Alexandrium are morphologically diverse (Table 2) and different from cysts of 322 

closely related genera, such as Pyrodinium, which has process-bearing cysts (e.g., Wall and Dale, 323 

1968, pp. 102–103) or Fragilidium, which has a very thick layer of mucus (12–18 μm; Owen and 324 
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Norris, 1985). Cyst morphology can serve to subdivide genera, as has been proposed for the genus 325 

Protoperidinium (Harland, 1982). Because cysts are well-known within the genus Alexandrium (e.g., 326 

Bolch et al., 1991; Matsuoka and Fukuyo, 2000; Bravo et al., 2006), they should be taken into account 327 

for the best possible integrative taxonomy. Since there is no consistent cyst morphology that can be 328 

associated with any of the genera proposed by Gómez and Artigas (2019), cyst morphology also does 329 

not unambiguously support the subdivision of Alexandrium into these genera.  330 

 331 

There is no evident relationship of the proposed genera to toxin production (chemotaxonomy). 332 

Toxin production has long been considered to be a character independent of chemical taxonomy 333 

because the same toxins have been described in very distantly related dinoflagellate genera, e.g., 334 

okadaic acid in Prorocentrum spp. and Dinophysis spp., STX or analogs in Alexandrium spp., 335 

Gymnodinium catenatum, Pyrodinium bahamense as well as in several cyanobacterial species (e.g., 336 

Aphanizomenon flosaquae and Lyngbya wollei), or domoic acid which is produced in several diatom 337 

genera of Pseudo-nitzschia and Nitzschia, as well as in the macroalga Chondria armata. 338 

For the genera in question here, three toxin groups are worth considering for chemotaxonomy: 339 

saxitoxins (STXs), spiroimines (spirolides and gymnodimines) and goniodomins. Based on John et al. 340 

(2014), Murray et al. (2015), Lassus et al. (2016), Lugliè et al. (2017), and Branco et al. (2020), STX 341 

or analogs are produced by 14 Alexandrium species (A. acatenella, A. affine, A. andersonii, A. 342 

australiense, A. catenella, A. cohorticula, A. fragae, A. leei, A. minutum, A. ostenfeldii, A. pacificum, 343 

A. tamarense1, A. tamiyavanichii, A. taylorii), which do not form a clear monophyletic cluster (Murray 344 

et al., 2015, Fig. 1). Due to the spread of STX-production across a range of phylogenetically different 345 

Alexandrium species, STX-production in this genus appears to be very common but it is not clear 346 

whether it should be considered a coherent taxonomic feature for this genus. The increasing number of 347 

STX analogues should be systematically re-verified in a large number of geographically diverse 348 

strains, with the limits of detection (LOD) and quantification (LOQ) provided.  349 

                                                           
1 Following the taxonomic concept of A. tamarense of John et al. (2014), only one strain of A. tamarense is 

currently considered to produce low amounts of gonyautoxins (Lugliè et al., 2017).  
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Spiroimines are solely known to be produced by Alexandrium ostenfeldii (= Alexandrium 350 

peruvianum; Kremp et al., 2014; Zurhelle et al., 2018).  351 

Goniodomins have been reported to be produced by Alexandrium monilatum, Alexandrium 352 

hiranoi and Alexandrium pseudogonyaulax (Harris et al., 2020).  353 

Overall, it should be noted that many papers only report positive presence of toxins in a strain 354 

but not the LOD or LOQ for those analogues that were not discovered. There are few studies 355 

systematically reporting comparative presence of analogues in a wide range of species, e.g. Wiese et 356 

al. (2010), for STX group toxins. However, spirolides have not been systematically searched in most 357 

Alexandrium species and goniodomins have been largely overlooked other than in the three species 358 

mentioned above.  359 

 360 

Conclusions 361 

The data presented by Gómez and Artigas (2019) are insufficiently robust to form the basis on 362 

which to subdivide species of the genus Alexandrium into four different genera, and maintain 363 

Centrodinium. Resolving consistent generic-level clusters within the genus Alexandrium and across 364 

the gonyaulacoids more generally, would require additional detailed morphological re-investigations 365 

and more extensive multigene phylogenies, with careful attention to rigorous testing of taxon sampling 366 

effects, branching order stability, long-branch effects, and careful selection of appropriate multiple 367 

outgroups for rooting local versus global dinoflagellate phylogenies. A secondary structure analysis of 368 

a more expanded dataset could also be beneficial. Inclusion of cyst morphology and chemotaxonomic 369 

information should also be strived for. There is an extensive literature on Alexandrium species and this 370 

is a very active area of research. If the proposal of Gómez and Artigas (2019) is adopted there will be 371 

considerable disruption and confusion to this field of study.  372 

Therefore, here it is recommended to continue using the generic name Alexandrium for 373 

species of this complex, and to refrain from using Protogonyaulax, Gessnerium, and Episemicolon. 374 

The proposals by Gómez and Artigas (2019), if adopted, would introduce taxonomical instability into 375 

this group of species. A proposal to conserve Alexandrium against Centrodinium will be submitted to 376 

the International Nomenclature Committee for Algae (INA) in parallel to this note. The nomenclatural 377 
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stability has particular importance as many species of Alexandrium cause harmful algal blooms and 378 

produce potent biotoxins. In addition to the biological scientific community the generic name 379 

Alexandrium is used also by chemists, medical scientists such as toxicologists, veterinarians, seafood 380 

safety regulators, fisheries and aquaculture industry personnel, administrators, and environmental and 381 

fisheries policy makers as outlined by Litaker et al. (2018). Furthermore, Alexandrium species are an 382 

important component of planktonic assemblages and taxonomic changes can create confusion for 383 

climate change studies and interpretations of long-term data sets. Finally, it is recommended that 384 

morphological criteria used to separate taxa are unambiguous and leave no room for doubt in the 385 

attribution of taxa (cf. paragraph 1 of the preamble of the ICN, Turland et al., 2018), that authors make 386 

their alignments freely available to allow for coherent progress in the field, and that authors strive for 387 

integrative taxonomy (Dayrat, 2005). Conservation of taxon names has been promoted across all 388 

organisms, to avoid taxonomic anarchy (Garnett and Christidis, 2017). As such, taxonomists should 389 

aim to conserve original names as much as possible and new taxa and combinations should only be 390 

created when robust morpho-molecular data obliges it (cf. paragraph 12 of the preamble of the ICN, 391 

Turland et al., 2018).  392 
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Table 1: A summary of published Alexandrium phylogeneties carried out with different DNA regions; reference of the study, figure number 
in that study, basal species mentioned (question marks denote uncertainty), and accessory notes. ND: the basal species cannot be determined 
because the authors chose Alexandrium species as the outgroup. 

DNA region Reference Fig Basal species Note 

SSU Gómez and Artigas (2019) Fig. 4 A. satoanum, A. monilatum, A. 

taylorii, A. pseudogoniaulax 

 

John et al. (2003) Fig. 1 A. taylorii  
Rogers et al. (2006) Fig. 2 A. monilatum, A. taylorii  
Li et al. (2019) Fig. S1 A. pseudogonyaulax  

LSU Orr et al. (2011) Fig. 1 A. minutum, A. insuetum, A. 

ostenfeldii, A. tamutum, A. 

leei? 

 

Li et al. (2019) Fig. S2 A. minutum, A. ostenfeldii, A. 

andersonii, A. tamutum, A. 

insuetum, A. 

pseudogonyaulax? 

 

LSU D1/D2 Gómez and Artigas (2019) Fig. 5 A. leei  
John et al. (2003) Fig. 1 A. taylorii  
Leaw et al. (2005) Fig. 2 A. leei Pyrodinium nests 

within 
Alexandrium 

Anderson et al. (2012) Fig. 1 A. leei (+ A. satoanum, A. 

pseudogonyaulax, A. hiranoi, 

A. taylorii)? 

 

Baggesen et al. (2012) Fig. 3 ND  
Gu et al. (2013) Fig. 5 A. insuetum, A. minutum, A. 

tamutum, A. ostenfeldii, A. 

margalefii, A. leei? 

 

Menezes et al. (2018) Fig. 5 ND  
ITS region Gu et al. (2013) Fig. 5 A. leei  

Menezes et al. (2018) Fig. 4 A. margalefii  
Li et al. (2019) Fig. S3 A. pseudogonyaulax  

SSU+ITS region+LSU Orr et al. (2011) Fig. 2 A. ostenfeldii, A. andersonii, 

A. tamutum, A. leei, A. 

insuetum? 

 

Murray et al. (2014) Fig. 8 A. hiranoi, A. 

pseudogonyaulax, A. taylorii, 

A. monilatum, A. satoanum 

 

Gottschling et al. (2018) Fig. 4 A. margalefii Coolia nests 
within 
Alexandrium 

SSU+ITS 
region+LSU+cox1+cob+hsp90 

Li et al. (2019) Fig. 10 A. pseudogonyaulax  

SSU+ITS region+LSU+actin+beta-
tubulin+cytochrome b+cox1+hsp90 

Murray et al. (2015) Fig. 8 A. insuetum, A. ostenfeldii, A. 

andersonii, A. tamutum, A. 

minutum, A. margalefii, A. 

leei, A. diversaporum 

 

  



Table 2: Summary of characters discussed in the text: name of taxon used in Gómez and Artigas (2019), species name, contact between plate 1' 
and Po, shape of plate 1',  and resting cyst morphology. 1 = Balech, 1995; 2 = Balech, 1989; 3 = Lim et al., 2015;  4 = Montresor et al., 2004; 5 
= John et al., 2014;  6 = Murray et al., 2014;  7 = MacKenzie and Todd, 2002; 8 = Gaarder, 1954; 9 =  Larsen and Nguyen-Ngoc, 2004;  10 = 
Yuki and Fukuyo, 1992; 11 = Li et al., 2019; 12 = Fukuyo, 1985, as A. catenella; 13 =  Delgado et al., 1997; 14 =  Montresor et al., 1998; 15 = 
Shin et al., 2014; 16 =  Bravo et al., 2006; 17 =  Bolch et al., 1991; 18 = Kremp et al., 2009; 19 =  Montresor et al., 2004; 20 = Yoshida et al., 
2003; 21 = Anderson and Wall, 1978;  22 = Fukuyo and Pholpuntin, 1990a; 23 = Nagai et al., 2009; 24 =  Fukuyo and Pholpuntin, 1990b; 25 = 
Nagai et al., 2003; 26 =  Fukuyo and Inoue, 1990;  27 = Garret et al., 2011; 28 =  Kita et al., 1993;  29 = Walker and Steidinger 1979; 30 =  
Montresor et al., 1993. 31 = Branco et al., 2020. * = not all strains produce saxitoxins. # = most strains do not produce saxitoxins. & = 
although also placed in Alexandrium s.s. by Gómez and Artigas (2019). 

Taxon used in Gómez 
and Artigas (2019) Species name 

Contact between plate 
1′ and Po 

Shape of plate 
1′  

Resting cyst 
morphology 

Alexandrium s.s. A. andersonii Direct or indirect1  Pentagonal1 Spherical14 

Alexandrium s.s. A. diversaporum Direct6 Pentagonal6 Spherical6  

Alexandrium s.s. A. insuetum None1 Pentagonal1 Spherical15 

Alexandrium s.s. A. margalefii None1 Quadrangular1 Spherical16 

Alexandrium s.s. A. minutum Direct or indirect2  Pentagonal1 Discoid17 

Alexandrium s.s. A. ostenfeldii Direct or indirect1  Pentagonal1 Spherical18 

Alexandrium s.s. A. pohangense None3  Pentagonal3 - 

Alexandrium s.s. A. tamutum  Direct4 Pentagonal4 Discoid19 

Protogonyaulax A. acatenella Direct or indirect2  Pentagonal1 Ellipsoidal20 

Protogonyaulax A. australiense Direct5 Pentagonal5 Ellipsoidal5  

Protogonyaulax A. catenella  Direct1  Pentagonal1 Ellipsoidal21 

Protogonyaulax A. cohorticula Direct1  Pentagonal1 Ellipsoidal22 

Protogonyaulax A. compressum Direct1  Pentagonal1 - 

     

Protogonyaulax A. fraterculus  Direct or indirect2  Pentagonal1 Spherical to ovoid23 

Protogonyaulax A. kutnerae  Direct or indirect2  Pentagonal1 Ellipsoidal16 

Protogonyaulax& A. leei  Direct1  Pentagonal1 Spherical24 

Protogonyaulax A. mediterraneum  Direct5 Pentagonal5 Ellipsoidal5  

Protogonyaulax A. pacificum  Direct5 Pentagonal12 Ellipsoidal12 

Protogonyaulax A. tamarense  Direct1  Pentagonal1 Ellipsoidal21 

Protogonyaulax A. tamiyavanichii Direct1  Pentagonal1 Spherical25 

Protogonyaulax A. tropicale Direct or indirect1  Pentagonal1 - 

Episemicolon A. affine  Direct1  Pentagonal1 Spherical26 

Episemicolon A. gaarderae Direct1  Pentagonal1 - 

Gessnerium A. balechii None1  Pentagonal1 Spherical27 

Gessnerium A. camurascutulum None7 Pentagonal7 - 

Gessnerium A. concavum None8 Pentagonal8 - 

Gessnerium A. foedum None1  Pentagonal1 - 

Gessnerium A. globosum None9 Pentagonal9 - 

Gessnerium A. hiranoi  None1  Pentagonal1 Discoid28 

Gessnerium A. monilatum  None1  Pentagonal1 Spherical to ovoid29 

Gessnerium A. pseudogonyaulax None1  Pentagonal1 Spherical, paratabulate30 

Gessnerium A. satoanum None10 Pentagonal10 - 

Gessnerium A. taylorii  None1  
Quadrangular-
Pentagonal13 Spherical to discoid16 

Not listed A. depressum Direct or indirect8 Pentagonal8 - 

Not listed A. fragae Direct or indirect31 Pentagonal31 - 

Centrodinium C. punctatum Direct11 Quadrangular11 - 

 




