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Human activities impact all ecosystems on Earth, which urges scientists to better 
understand biodiversity changes across temporal and spatial scales. Environmental 
DNA (eDNA) metabarcoding is a promising non-invasive method to assess species 
composition in a wide range of ecosystems. Yet, this method requires the completeness 
of a reference database, i.e. a list of DNA sequences attached to each species of the 
regional pool, which is rarely met. As an alternative, molecular operational taxonomic 
units (MOTUs) can be extracted as clusters of sequences. However, the extent to 
which the diversity of MOTUs can predict the diversity of species across spatial scales 
is unknown. Here, we used 196 samples along the Rhone river (France) for which the 
reference database is complete to assess whether a blind eDNA approach can reliably 
predict the ground-truth number of species at different spatial scales. Using the 12S 
rDNA teleo primer, we curated and clustered 60 million sequences into MOTUs using 
a new assembled bioinformatic pipeline. We show that stringent quality filters were 
necessary to remove artefact noise, notably MOTUs present in a single PCR repli-
cate, which represented 55% of MOTUs (103). Post-clustering cleaning also removed 
19 additional erroneous MOTUs and only discarded one truly present species. We 
then show that the diversity of retained fish MOTUs accurately predicted the local  
(α, r = 0.98) and regional (γ) ground-truth species diversity (67 MOTUs versus 63 
species), but also the species dissimilarity between samples (β-diversity, r = 0.98). This 
work paves the way towards extending the use of eDNA metabarcoding in community 
ecology and biogeography despite major gaps in genetic reference databases.
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Introduction

In the new era of the Anthropocene, most ecosystems 
are experiencing severe human impacts and environmen-
tal changes with major consequences on species diversity 
(McCauley  et  al. 2015, Hughes  et  al. 2017, Isbell  et  al. 
2019). Nevertheless, the ongoing reorganization of bio-
diversity is still poorly quantified and understood (but see 
Blowes  et  al. 2019) for two major reasons. First, the losses 
or gains of species are scale dependent with complex results 
emerging at the local or regional spatial scale (Vellend et al. 
2013, Dornelas  et  al. 2014). For instance, several stud-
ies show that local species diversity is on average constant 
over time (Dornelas et al. 2014, Magurran et al. 2018), even 
under human impacts, while other studies report alarm-
ing species losses regionally or globally (Galetti et al. 2014, 
Doherty  et  al. 2016, Finderup Nielsen  et  al. 2019). Thus, 
any biodiversity monitoring should be spatially explicit 
(McGill et al. 2015) with three major components 1) local or 
α-diversity for the number of species within a given site, 2) 
spatial variation or β-diversity in species composition among 
sites and 3) regional or γ-diversity for the number of spe-
cies within a geographical area containing all sites (Whittaker 
1972). Second, biases and gaps in biodiversity inventories 
prevent accurate and comparable assessments across space 
and time (Hortal et al. 2015). This is particularly problem-
atic when species are rare, small, cryptic or elusive or when 
ecosystems are either species-rich like in the tropics or hardly 
accessible like the deep sea (Mora et al. 2008, Menegotto and 
Rangel 2018). Hence, there is an urgent need for standard-
ized and accurate biodiversity monitoring methods across 
spatial scales allowing reliable inter-study comparisons.

The metabarcoding of environmental DNA (eDNA) 
has the potential to fill this gap as it has been shown to 
surpass most traditional methods in species detection for 
both terrestrial and aquatic ecosystems (Bohmann  et  al. 
2014, Valentini et al. 2016, Ruppert et al. 2019, Sales et al. 
2020). Indeed, all organisms shed cells containing DNA in 
their environment, as intra or extra-cellular material, and 
can be retrieved for up to a few days (Dejean  et  al. 2011, 
Collins et al. 2018, Harrison et al. 2019). Amplification and 
high-throughput eDNA sequencing followed by bioinfor-
matic analyses produce a list of sequences with the ultimate 
goal to assess species composition in a given site. This bioin-
formatic step requires the completeness of a reference data-
base, i.e. a list of sequences attached to each species in the 
regional pool, to accurately assign each eDNA sequence to 
a given species. Yet, reference databases are often incomplete 
(Weigand et al. 2019). An estimated 91% of eukaryotic spe-
cies inhabiting the ocean are yet to be described (Mora et al. 
2011a) while only 13% of all described Teleostean fish species 
are referenced in public reference databases like the European 
Nucleotide Archive (ENA) (Leinonen  et  al. 2011) for the 
12S ribosomal DNA fragment amplified by the teleo primers 
(Valentini et al. 2016), limiting the extent of species diversity 
revealed by eDNA metabarcoding.

Currently, completing reference databases would require 
massive sampling and sequencing efforts since many species 

still remain undiscovered due to their intrinsic nature (rare, 
small or elusive) or their unexplored habitat (e.g. deep sea) 
(Menegotto and Rangel 2018). Moreover, polymerase chain 
reaction (PCR) and sequencing generate numerous errors, 
overestimating the true number of species by several orders 
of magnitude (Edgar and Flyvbjerg 2015, Flynn et al. 2015). 
Thus, accurate methods able to assess biodiversity without 
complete reference databases while considering PCR and 
sequencing errors are urgently needed.

The microbial field pioneered methodological advances 
to infer biological diversity without a complete reference 
by clustering similar sequences into molecular operational 
taxonomic units (MOTUs) (Huse  et  al. 2010). However, 
these approaches focus mainly on fungi or unicellular organ-
isms where the concept of species remains challenging 
(Pawlowski et al. 2018, Lladó Fernández et al. 2019). Even 
if clustering-based analyses are increasingly used in eDNA 
studies targeting vertebrates (Andruszkiewicz  et  al. 2017, 
Bakker et al. 2017, Closek et al. 2019, Sales et al. 2019), using 
the diversity of MOTUs as a reliable proxy for species diver-
sity has yet not been evaluated. For instance, Closek  et  al. 
(2019) reported a large overestimation with more than 1300 
MOTUs for 92 fish taxa only in the Californian Current 
upwelling ecosystem. The extent to which the metabarcoding 
of vertebrate eDNA can provide a reliable blind estimation of 
species diversity across spatial scales is unknown.

Here we evaluate how clusters of vertebrate eDNA 
sequences can predict species diversity across spatial scales. 
More precisely, we quantify how MOTUs can accurately pre-
dict local (α) and regional (γ) species diversity but also compo-
sition species dissimilarity between samples (β-diversity). For 
this, we focused on teleost fishes which are highly vulnerable 
to anthropogenic threats (Mora et al. 2011b) and represent 
the main group of vertebrates studied with eDNA (Tsuji et al. 
2019). First, we highlight the geographic and taxonomic gaps 
in the reference database for the 12S mtDNA fragment, which 
is known to perform well with the teleo primer (Collins et al. 
2019) designed by Valentini et al. (2016). Then, we assemble 
a metabarcoding bioinformatic pipeline based on sequence 
clustering using SWARM (Mahé et  al. 2015), post-cluster-
ing using LULU (Frøslev et al. 2017) and stringent quality 
filters to analyze eDNA sequences from 196 samples along 
500 km of the Rhône river (France). From the composition 
of MOTUs in each sample, we estimate α-, β- and γ-diversity 
and compare them to their analogs obtained with ground-
truth assignment of all sequences using the complete refer-
ence database without clustering. Finally, we discuss strengths 
and weaknesses of this approach based on eDNA sequence 
clustering to assess taxonomic diversity across spatial scales, 
even when lacking exhaustive reference databases.

Material and methods

Global taxonomic and spatial gap analysis for fish

Recent fish metabarcoding studies indicate that primers 
located on the 12S ribosomal rRNA locus (12S rDNA) 
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perform better (i.e. detect more species, with less bias and 
more specific amplification) than primers based on alterna-
tives loci (Ribosomal locus 16S, the cytochrome c oxidase 
I gene (COI)) (Collins  et  al. 2019, Weigand  et  al. 2019). 
Although the COI gene and associated primers might cover a 
larger proportion of fish species in the reference database and 
have a higher interspecific variability, their lack of suitable 
conserved region complicates the definition of taxa-specific 
primers. COI primers exhibit a clear lack of consistency across 
replicates, have a low specificity leading to a low amplifica-
tion of target organisms with often less than 5% of cleaned 
reads assigned to fish (Collins et al. 2019) resulting in a low 
detectability power (Deagle et al. 2014, Bylemans et al. 2018, 
Collins et al. 2019). Among the fish eDNA 12S markers, we 
selected the teleo marker (forward primer-ACACCGCCC-
GTCACTCT, reverse primer-CTTCCGGTACACTTAC-
CATG) (Valentini et al. 2016) given its high ability to detect 
fish species even in highly diverse ecosystems (Civade et al. 
2016, Valentini et al. 2016, Bylemans et al. 2018, Pont et al. 
2018, Cantera et al. 2019, Cilleros et al. 2019).

We first assessed the global taxonomic coverage of the 
teleo primers by performing in silico PCR using ecoPCR 
(Boyer  et  al. 2016) on the entire public database ENA 
(Leinonen et al. 2011) (release 138, January 2019). To build 
our reference database, we allowed a maximum of three mis-
matches and compared the results with the complete fish 
taxonomy from FishBase (Froese and Pauly 2019). For the 
spatial analysis, we extracted freshwater fish checklists of all 
drainage basins from the most recent and comprehensive 
data at the global scale (Tedesco et al. 2017), covering about 
80% of inland waters. We obtained marine checklists from 
OBIS (OBIS Ocean Biogeographic Information System) at 
1° resolution (Albouy  et  al. 2019), and used them to esti-
mate fish composition within marine ecoregions globally 
(Spalding et al. 2007).

eDNA sampling and sequencing

We downloaded the sequence data from a previous study by 
Pont  et  al. (2018). The complete dataset encompasses 196 
eDNA samples collected along 500 km of the Rhone River 
(France, Supplementary material Appendix 1 Fig. A1), cor-
responding to 103 distinct sites with field replicates (between 
1 and 4 samples per site) in 2016. Among those, the origi-
nal study used only 118 samples corresponding to 59 sites, 
but all samples were collected and processed in parallel. For 
each sample, 30 l of freshwater water were filtered, extracted, 
amplified and sequenced (Pont et al. 2018).

Clustering methods

Accurately delineating ‘true’ biological sequences from PCR 
and sequencing noise has been an ongoing challenge since 
the emergence of next generation sequencing (NGS) tech-
nologies. Clustering sequences into molecular operational 
taxonomic units (MOTUs) or defining exact sequence 
variants (ESVs) as proxies for species is a common practice 

in the prokaryote microbial field but also to study unicel-
lular eukaryotes or fungi (Huse  et  al. 2010, Schmidt  et  al. 
2013, Zimmermann et al. 2015, Callahan et al. 2017) and  
more recently eDNA of vertebrates (Closek  et  al. 2019, 
Sales et al. 2019).

While clustering has been historically limited to the cre-
ation of MOTUs based on a fixed similarity threshold, usu-
ally 97% (Stackebrandt and Goebel 2008, Edgar 2018), it 
poorly generalizes across markers or biological models (Edgar 
and Flyvbjerg 2015, Mahé et al. 2015, Nguyen et al. 2015, 
Callahan et al. 2017). As an alternative, new methods gen-
erate either ESV like the divisive amplicon denoising algo-
rithm (DADA2) (Callahan et al. 2016) or MOTUs from de 
novo clustering algorithms based on sequence distribution 
and abundance to correct errors, like SWARM (Mahé et al. 
2015). SWARM is an agglomerative unsupervised de novo 
single-linkage-clustering algorithm, building networks to 
define MOTUs based on sequence proximity and relative 
abundance (Mahé et al. 2015). While a threshold-based algo-
rithm simply groups sequences together according to a fixed 
value, SWARM forms chains linking sequences based on 
their similarity and analyses the pattern to optimally break 
the network and delineate MOTUs (Mahé et al. 2014, 2015). 
So, the ‘true’ sequence is expected to be the most abundant 
while less abundant but close sequences are considered as 
erroneous as they are more likely to accumulate errors. This 
process avoids the dependence on a fixed value, which is not 
recommended in eDNA metabarcoding with short barcodes  
where only one mismatch can imply a different species 
(Miya et al. 2015).

Pipelines workflow

We based our analysis on two different pipelines: one where 
each unique sequence is independently assigned to a given 
species (called the Species pipeline) and the other one which 
clusters sequences into MOTUs using the SWARM algo-
rithm (called the MOTU pipeline). In the Species pipeline, 
a complete reference database is required to assign a taxa to 
each sequence. In the MOTU pipeline, each MOTU also 
requires a taxonomic assignment but the completeness of the 
reference database is not required, as a partially complete ref-
erence database is sufficient to exclude MOTUs representing 
non-specific amplification, in our case, all non-fish taxa.

First, pre-processing steps were common for both pipe-
lines (Fig. 1). Reads were assembled using VSEARCH 
(Rognes  et  al. 2016), demultiplexed at the PCR replicate 
level and primers trimmed using CUTADAPT (Martin 
2011) adapted from an existing metabarcoding pipeline 
(<https://github.com/frederic-mahe/swarm/wiki/Fred’s-
metabarcoding-pipeline>). No mismatches were allowed in 
tags for demultiplexing while sequences containing ambigu-
ous nucleotides were discarded. Two additional steps were 
applied in the pre-processing for the MOTU pipeline. First 
unsupervised clustering was performed with SWARM, using 
a minimum distance of one nucleotide between each MOTU 
(d = 1), as one mismatch can separate two distinct species with 
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Figure 1. Illustration of the entire pipeline with three main steps: pre-processing, clustering, application of thresholds and post-clustering. 
Programs used are in blue and thresholds or requirements in red. Blue lines represent the classical alternative paths for the ground-truth 
method (Species pipeline), i.e. with the complete reference database and no clustering, whereas yellow lines represent the MOTU-based 
pipeline (MOTU pipeline), while black lines represent shared steps.
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our primer. Taxonomic assignments of all unique sequences 
or MOTUs were then performed by ecotag, a lowest common 
ancestor (LCA) algorithm from the Obitools toolkit rely-
ing on the National Center for Biotechnology Information 
(NCBI) phylogeny tree (Boyer  et  al. 2016). Then, a set of 
custom and already published thresholds were applied on 
unique sequences for both the Species and MOTU pipelines 
(Fig. 1) (Valentini  et  al. 2016). All sequences or MOTUs 
with less than 10 reads, too short (< 20 bp), too long (> 
75 bp) (Valentini et al. 2016) or not assigned to a fish phylum  
were discarded.

Each site usually has 2 samples as field replicates (except 
for 13 sites where the number of samples ranges from 1 to 
4), and each sample has 12 PCR replicates, so most sites are 
represented by 24 individual PCRs (range: 12–48 PCRs rep-
licates). For each site, we discarded all MOTUs or sequences 
present in only one PCR replicate (Civade et al. 2016). To 
avoid tag-jump noise (Schnell et al. 2015), all sequences with 
an abundance frequency of less than 0.001 per taxon/MOTU 
and per library were discarded. For the MOTU pipeline only, 
we then used the LULU algorithm (Frøslev et al. 2017) to 
clean MOTUs identified as erroneous based on sequence 
identity between MOTUs, abundances and patterns of 
co-occurrence. We used the blastn command line with the 
megablast algorithm to create the file matching all pairwise 
MOTUs to infer their similarity percentage. Then, to apply 
LULU, we used the 84% identity threshold (Frøslev  et  al. 
2017) but also ran a sensitivity analysis with changes in the 
main parameters, i.e. the cross influence of identity threshold 
percentage and co-occurrence percentage (Supplementary 
material Appendix 1 Fig. A3).

Taxonomic assignments

For both pipelines, taxa assignments were performed on 
both our local database, exhaustive for resident species of 
the regional pool, and ENA (release 138, January 2019). 
For the Species pipeline, associating the local database with 
ENA (Leinonen et al. 2011) detected 24 extra species, among 
which 12 matches at 98% to our local database but at 100% 
in a public database to a foreign species (Supplementary 
material Appendix 1 Table A1). Those foreign species were 
unlikely to be present in the river, and most likely resulted 
from PCR or sequencing errors of local species randomly 
matching with foreign species. To avoid artificially inflating 
regional diversity from incorrect assignments, we only con-
sidered ENA assignments when our local database performed 
poorly (< 98% similarity). Among the 12 remaining species 
detected only by ENA and matching at < 98% to our local 
database, all were marine species from the Mediterranean Sea 
but 11 have records indicating a tolerance for brackish water 
while 6 were clearly known to enter estuaries (Supplementary 
material Appendix 1 Table A2). Most of those were also com-
monly consumed by humans, and DNA could have been 
transported into the river from sewage waters. Those extra 
species were hence kept for further analyses as they were 

unlikely to be errors generated at the PCR or sequencing step 
and they unlikely represent a methodological artefact.

Before analysis, assignments from ecotag were corrected 
to be more stringent as the algorithm can sometimes vali-
date genus or family-level assignments to sequences with low 
similarity, which we chose to not trust blindly. This is due to 
the functioning of the ecotag algorithm (Boyer et al. 2016) 
and can happen in clades with a low species coverage in the 
reference database. We decided to add a level of standard-
ization and only validate assignments at the species level for 
sequences matching at > 98% similarity, at 96–98% for the 
genus level, at 90–96% for the family level and at less than 
90% similarity for the order or higher level for all sequences 
matching following a pilot study on phylogenetic signal for 
this marker (Supplementary material Appendix 1 Fig. A2).

Controlling taxonomic redundancy

When a sequence has a low percentage of similarity (< 98%), 
it can correspond to 1) a species absent from databases, 2) 
noise from PCR/sequencing errors from actual sequenced 
species or 3) rare but strong intra-specific variation at this 
non-coding locus which is prone to rapid mutations or 
insertions (Leinonen  et  al. 2011, Valentini  et  al. 2016). A 
common NGS metabarcoding issue is that for one species 
sequence matching at 100%, it can generate several noise 
variants matching at less than 100% (Frøslev  et  al. 2017). 
Hence, when counting the total number of taxa to infer the 
level of diversity, there is always a clear overestimation. For 
example, one Salmo trutta sequence with 100% similarity to a 
reference database would likely be accompanied by sequences 
matching at 97%, assigned at the Salmo genus and 95% 
assigned at the Salmonidae family. Where one species is pres-
ent, the total taxa count can be three. To correct the number 
of taxa while being conservative, we created an estimated spe-
cies count based on taxonomic correction for redundancy. A 
genus, family or order assignment can only be kept if there is 
no species already belonging to that rank, otherwise it would 
be more likely to be an error since the genetic databases are 
exhaustive for local resident species, the rest representing only 
a minority of rare sequences.

To evaluate the performance of LULU in the MOTU 
pipeline, we grouped taxa following this logic up to the 
family level. If a MOTU is assigned to a family for which a 
species representative is also detected, we assumed an error 
for this species and taxonomic redundancy. If a MOTU is 
assigned to an order only, it was not considered to represent 
an additional species.

Diversity comparison across scales

To assess the performance of our MOTU-based approach we 
calculated regional (γ) diversity, local (α) or sample diversity 
and dissimilarity between samples (β) with each pipeline. For 
the Species pipeline we retained all sequences matching at  
> 98% similarity cleaned for taxonomic redundancy to 
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count the number of distinct species. For the MOTU pipe-
line, we retained all MOTUs assigned to a fish taxa regardless 
of their similarity percentage. We used the software R ver. 
3.6, where sample or α-diversity was computed as richness, 
i.e. plain species count. β diversity was computed using the 
Sorensen index, with the beta.temp and beta.multi functions 
from betapart package (Baselga and Orme 2012). A low value 
of dissimilarity between samples indicates similar communi-
ties, on a scale from 0 (identical) to 1 (totally dissimilar so no 
species or MOTU is common). We used the Mantel correla-
tion test for pairwise sample comparisons.

Results

Global gaps in fish reference databases

Our analysis reveals that only 4243 out of 33 124 teleos-
tean fish species (13%) are sequenced in the region ampli-
fied using the teleo primers, for both marine and freshwater 
environments (Fig. 2a). At higher taxonomic rank, we show 
that 38% of genera have at least one representative species 
sequenced for the 12S on the teleo fragment, this percent-
age reaching up to 80% for families. Next, we highlight a 
strong spatial heterogeneity between marine and freshwater 
environments but also among freshwater basins and marine 
ecoregions (Fig. 2b–c). For freshwater ecosystems, the pro-
portion of fish species being referenced for the 12S fragment 
ranges from 0 to 100%, with tropical basins having an overall 
lower coverage than their temperate counterparts, except for 
Oceania where the proportion of sequenced species is among 
the highest. South America and Africa have by far the lowest 
coverage among all continents. For marine ecosystems, dis-
parities are less pronounced but coverage varies between 10 
and 53%. Ecoregions in Europe and Northern America have 
the highest coverage whereas tropical and southern ecore-
gions are the least covered.

γ-diversity assessment after filtering and clustering 
processes

In the 196 samples along the Rhone river, we obtain  
60 689 053 reads of 299 225 distinct sequences with a mean 
of 309 617 reads per sample prior to any filtering (Table 1). 
First, we analyzed the eDNA metabarcoding data with the 
complete reference database (local database and ENA com-
bined) with the Species pipeline (Fig. 1). We detect a total of 
63 fish species (Table 1). Our new assembled MOTU pipe-
line applied on the same raw dataset identifies 67 MOTUs 
out of which 61 (91%) could be subsequently identified at 
the species level, i.e. matching at least at 98% of similarity 
with a species in the reference database.

We find that 98% of unique sequences and 96% of unique 
MOTUs correspond to either low abundant (< 10 reads) or 
non-fish species, so represent artefacts, noise or unspecific 
amplifications (Table 1), while only accounting for 12.5% 
and 4.4% of total reads, respectively. Sequence length 

filtering has a low influence, removing only 1 MOTU and no 
species. While removing only 0.004% of the total read count, 
our PCR filter removing all reads found in only one PCR 
replicate per site eliminates 45 MOTUs assigned to species 
(from 108 to 63) among which only 4 are possibly resident 
to the area (Supplementary material Appendix 1 Table A3). 
All other eliminated taxa are absent in the river and likely 
result from errors, contaminations from sewage waters or 
methodological artefacts. This PCR replicate filter also dis-
cards more than half of the detected MOTUs (86 out of 189, 
Table 1) representing mainly taxonomic redundancy and  
low-quality reads.

Following the PCR replicate filtering step, only 50 out 
of 86 MOTUs are represented by one taxon (Fig. 3), reveal-
ing either redundancy, with several MOTUs corresponding 
to the same taxa, or a lack of identification at the species 
level for the 36 remaining MOTUs. The application of 
LULU decreases the total number of MOTUs from 86 to 
67 (Fig. 3). In particular, the number of taxa represented by 
more than 1 MOTU decreases from 15 (up to 6 MOTUs per 
taxa) to 8 after cleaning with LULU. Following this step, the 
lost MOTU representing a real taxa corresponds to a com-
plex of two cyprinid fish species (Ctenopharyngodon idella and 
Hypophthalmichthys molitrix) for which teleo marker is not 
resolutive at the species level.

Finally, the regional pool (γ-diversity) of our fish Rhone 
dataset is comprised of 67 MOTUs among which 61 can 
be assigned to a species with 98% similarity while the  
ground-truth value is 63 fish species using the Species pipe-
line (Table 1).

Estimates of α and β species diversity using MOTUs

For each sample, we calculated the local (α-) diver-
sity obtained by each pipeline so in terms of species and 
MOTUs. Overall the correlation between the number of 
MOTUs and the number of species is high and significant 
(r = 0.98; p < 0.001; Fig. 4a). The mean difference in local 
diversity across samples between the two pipelines is of 1.02 
(SD = 1.5) with the MOTU-based approach underestimating 
true α-diversity. The maximum difference in local diversity is 
5 (Fig. 4a), meaning that for one sample five less MOTUs are 
detected compared to the number of species identified with 
the reference database.

Since a similar value of α-diversity detected by the two 
pipelines does not necessary imply the same community com-
position, we performed a dissimilarity analysis (β-diversity) 
between samples pairs for both methods using the Sorensen 
index. We detect a high and significant correlation (r = 0.98, 
p < 0.001, Fig. 4b) between pairwise sample dissimilarity esti-
mated with the Species and MOTU pipelines. We highlight 
no over or underestimation of dissimilarity by one pipeline 
compared to the other. Overall, the MOTU pipeline gener-
ates lower dissimilarity for 71% of pairs of samples compared 
to the Species pipeline but in 95% of all cases, the inferred 
level of dissimilarity has less than 0.1 difference between the 
two pipelines.
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Discussion

While eDNA metabarcoding represents a promising 
tool for scaling-up biodiversity inventories (Berry  et  al. 
2019, Ruppert  et  al. 2019), its strong dependence on 
genetic reference databases limits its application in many 

regions of the world, as well as for some taxonomic groups 
or some habitats (Weigand  et  al. 2019). Indeed, even 
diverse yet well-studied ecosystems such as coral reefs do 
not have exhaustive genetic references for most lineages 
and the majority of commonly used primers in eDNA 
metabarcoding (DiBattista et al. 2017, West et al. 2020).  

Figure 2. Percentage of sequenced freshwater and marine fish species using the teleo primer per taxonomic level (a), per freshwater basin (b) 
and per marine ecoregion (c).
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Some reference-free tools exist, but their application 
remains mostly limited to unicellular or fungi organisms, 
with different aims and constraints compared to eDNA 
studies targeting vertebrates. Moreover, such tools do not 
provide plausible diversity levels for most applications on 
vertebrate eDNA (Andruszkiewicz et al. 2017, Closek et al. 
2019, Siegenthaler et al. 2019). Further, a proper testing 
of whether those approaches provide reliable diversity 
estimates is lacking (Pedrós-Alió 2006, Huse et al. 2010, 
Lladó Fernández  et  al. 2019) beyond controlled mock 
communities (Frøslev  et  al. 2017, Alberdi  et  al. 2018). 
In our study, we assembled a set of bioinformatic tools 
to generate fish MOTUs and assess the level of diversity 
across spatial scales based on the use of eDNA metabar-
coding, using a well-known river system as a case study.

We show that, at the regional level, our MOTU-based 
pipeline provides a comparable estimate of species diversity 
with 67 MOTUs when 63 species are detected. However, 
some MOTUs represent either errors or unreferenced spe-
cies, and 8 species remain undetected due to clustering and 
stringent filtering. Such weakness arises as many species have 
close sequences to each other and co-occur. So, it remains 
impossible for any algorithm to distinguish close species 
from errors. This dilemma – distinguishing rare MOTUs 
from errors – is inherent to clustering techniques (Huse et al. 
2010, Frøslev  et  al. 2017, Pawlowski  et  al. 2018). Despite 
numerous attempts to solve this issue, there is still a trade-off 
between allowing false positives and creating false negatives 
(Reeder and Knight 2009). Among the MOTUs representing 
taxonomic redundancy, at least 3 taxa (Gobio gobio, Alosa sp., 

Table 1. Numbers (#) of reads, sequences, species and MOTUs identified and retained at each step of our Species or MOTUs pipelines (Fig. 
1) with # Species representing the number of taxa corrected for taxonomic redundancy (see Methods). Details for each step are presented 
in Methods and Fig. 1.

Steps
Species pipeline MOTU pipeline

# Reads # Sequences # Species # Reads # MOTUs

No filter 60 689 053 299 225 399 60 684 944 5375
> 10 reads 55 655 419 7819 227 60 593 926 568
Fish taxa 53 253 228 6424 108 57 988 700 190
Length filter 53 253 170 6422 108 57 988 623 189
> 1 PCR/site 53 021 739 6121 63 57 759 482 86
LULU – – – 57 736 566 67

Figure 3. Distribution of the number of MOTUs per fish taxa (a) before LULU cleaning and (b) after LULU cleaning for taxonomic redun-
dancy (Frøslev et al. 2017).
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Phoxinus phoxinus) are known to hybridize (Alexandrino et al. 
2006) or are under taxonomic revision with the potential 
existence of multiple species displaying genetic variations 
(Kottelat and Persat 2005, Collin and Fumagalli 2011) while 
for one species (Dicentrarchus labrax), genetic public data-
bases (Sayers  et  al. 2019) highlight a marked intra-specific 
variability.

Sequencing and PCR errors are common in metabarcod-
ing datasets (Siegwald  et  al. 2017), but as eDNA barcodes 
are usually short to enhance detectability (Bohmann  et  al. 
2014, Deiner  et  al. 2017), one mismatch generated ran-
domly can easily correspond to a distinct but closely related 
species. This poses the risk of false-positive detection, like in 
the present study, where several foreign species were detected 
(Supplementary material Appendix 1 Table A2). Yet, none 
of the false positive species detected with the Species pipe-
line were retained as a MOTU after the clustering process, 
highlighting the strength of our clustering approach to 
clean false positive errors when they likely arise from PCR 
and sequencing errors. When using a classical metabarcod-
ing pipeline without a stringent cleaning or clustering step 
to infer diversity from short sequences, those false positive 
species might remain in the global pool of detected species 
which would require special care to flag and exclude such 
errors (i.e. manual alignment of sequences and verification of 

species geographical distribution). We also show the extent to 
which SWARM is able to assign the correct sequence as the 
representative of each MOTU, since 61 (out of 67) MOTUs 
perfectly match to a species from the reference database. Our 
results stress the importance to combine post-clustering fil-
ters based on PCR replicates and a cleaning algorithm to 
remove spurious MOTUs.

Since our MOTU-based pipeline slightly overestimates 
regional diversity with 67 MOTUs obtained compared to 63 
species identified, a key question is how it can impact local 
diversity assessment. We found a slight tendency for MOTUs 
to underestimate species richness, with less than 2 MOTUs 
of difference compared to the number of species for most 
samples. The underestimation of diversity stemming from 
missed species (8 species so 13% of the regional pool) is not 
totally compensated by the overestimation caused by taxo-
nomic redundancy in the regional pool. Further, no outliers 
were identified over all 196 samples. We also show that most 
of mentioned pitfalls do not impact patterns of dissimilarity 
at the community scale, as results are similar whether they 
are based on blind MOTUs or species identification. In sum-
mary, the assessment of local diversity is nearly not impacted 
by the absence of a complete reference database, both esti-
mates are highly correlated (98%) with a mean difference of 
one species between pipelines.

Figure 4. The Pearson linear correlation shows the strength of the relationship between the number of species and the number of MOTUs 
identified with our two pipelines for each sample (a). The black line represents the identity slope and the red line represents the linear regres-
sion between the number of species and that of MOTUs. (b) The Mantel correlation shows the relationship between the Species and the 
MOTU pipeline for pairwise sample dissimilarity. Each dot represents the β-diversity value for a pair of samples estimated by either one of 
our pipelines (Species versus MOTUs), red line represents the identity slope and green lines represent respectively the +0.1  
and −0.1 limits.
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While these results are valid using the teleo marker (12S 
rDNA, ~60 bp long), we could not validate our pipeline using 
other primer sets due to time and financial constraints. This 
pipeline can still be applied to other markers, but it would 
require a marker with a similar level of taxonomic specificity 
and limited intra-specific variation, to avoid an over-estima-
tion of taxonomic diversity due to haplotype diversity. An 
application with another primer would require more inves-
tigation to test if threshold adjustments are necessary to 
match its specificities (i.e. PCR replicates number, minimum 
number of reads, LULU parameters, minimum distance in 
SWARM clustering). We suggest the design of a small pilot 
study in a well-known system to validate its blind predictive 
power before larger-scale applications.

We show that our approach using MOTUs delivers robust 
estimates of species diversity at the three geographic scales, 
unlocking new potential for biodiversity monitoring through 
eDNA. With more than 75% of fish families potentially 
detectable, our approach can go beyond the simple delinea-
tion of sequences within clusters when further assigning tax-
onomy to our MOTUs. In particular, the use of assignment 
algorithms such as the Lowest Common Ancestor (LCA) 
algorithm (Boyer et al. 2016, Gao et al. 2017) is well suited 
for taxonomic assignment in eDNA studies with incom-
plete reference database. We can then estimate the potential 
number of species per family when the sequence coverage 
within families is sufficient for such assessment. While a fam-
ily assignment has limitations, ecological characteristics are 
generally well conserved for species within a given family 
(Brandl  et  al. 2018) and allow relevant metrics of ecologi-
cal analyses to be computed at this scale. As the minimum 
coverage within family necessary for robust detection using 
LCA is likely to vary across taxa and goes beyond the scope 
of this study, a complete coverage is not requested and our 
approach can provide an accurate estimate of species diver-
sity within family for ecological studies. Yet, we highlight 
some limitations when it comes to conservation policies for 
which unnamed MOTUs will not be satisfying. As conserva-
tion programs usually focus on few taxa which are mostly 
rare, threatened, invasive or emblematic (Pimm et al. 2018, 
Enquist et al. 2019, Hannah et al. 2020), achieving the com-
plete sequencing of those target species is urgent but realis-
tic in the near future, as opposed to the sequencing of most 
vertebrates. The current filling of global DNA databases is 
sufficient for our approach to work globally and across scales. 
Diversity indices derived from this method are shown to be 
reliable at α, β and γ scales to infer similar ecological conclu-
sions as those based on classical species identification.

Conclusion

While it has widely been reported that molecular biodiver-
sity inventories outperform classical inventories (videos, 
acoustic) in the open environment (Thomsen  et  al. 2016, 
Boussarie et al. 2018), we demonstrate that, in the absence 
of a complete genetic reference database, a bioinformatic 

pipeline using Molecular Operational Taxonomic Units is 
able to provide robust estimates of species diversity across 
spatial scales. Even if some species cannot being distinguished 
after the clustering step, a common issue due to genetic prox-
imity between close taxa (Fahner et al. 2016), the geographic 
biodiversity patterns are highly similar to those obtained with 
a species-based method. As false negatives are inherent to any 
inventory method in ecology (Field  et  al. 2007) and while 
false positives are rarer but to avoid at all cost (Chambert et al. 
2015), we suggest a precautionary approach where some ‘true’ 
observations could be lost in order to reduce the risk of false 
observations. Given the current state of genetic database cov-
erage, a species-based eDNA approach is only achievable in 
freshwater ecosystems located in the Northern hemisphere, 
where the coverage exceeds 50% of fish species (Fig. 2). 
For all other ecosystems, our study is the proof of concept 
demonstrating that, given an appropriate primer set as well 
as filtering and cleaning processes, MOTUs can be used to 
accurately assess the level of biodiversity at all scales: local, 
turnover and regional. We thus advocate the need to focus 
sequencing efforts in priority towards 1) families with no 
genetic coverage so presently virtually undetectable with our 
approach and 2) conservation-important like invasive species 
 or IUCN Red List species for which unassigned MOTUs 
cannot substitute. This work paves the way towards extend-
ing the use of eDNA in community ecology and biogeogra-
phy even for poorly known ecosystems or lineages, and install 
eDNA as a standard monitoring tool (Jarman et al. 2018). It 
also reinforces its initial goal of versatility and high compara-
bility to monitor any kind of ecosystem and compare com-
munities across wide environmental gradients.

Data and code availability

The Species (<https://gitlab.mbb.univ-montp2.fr/edna/
bash_105vsearch_ecotag>) and MOTU pipelines (<https://
gitlab.mbb.univ-montp2.fr/edna/bash_swarm>) are freely 
accessible in Gitlab. All sequencing data is already avail-
able on Dryad: <https://doi.org/10.5061/dryad.t4n42rr> 
(Pont et al. 2019).
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