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Ecography Climate change can affect the habitat resources available to species by changing habi-
43: 591-603, 2020 tat quantity, suitability and spatial configuration, which largely determine population
doi: 10.1111/ecog.04716 persistence in the landscape. In this context, dispersal is a central process for species

to track their niche. Assessments of the amount of reachable habitat (ARH) using
Subject Editor: Timothy Keitt static snap-shots do not account, however, for the temporal overlap of habitat patches
Editor-in-Chief: Miguel Aratjo that may enhance stepping-stone effects. Here, we quantified the impacts of climate
Accepted 22 November 2019 change on the ARH using a spatio—temporal connectivity model. We first explored the

importance of spatio—temporal connectivity relative to purely spatial connectivity in a
changing climate by generating virtual species distributions and analyzed the relative
effects of changes in habitat quantity, suitability and configuration. Then, we studied
the importance of spatio—temporal connectivity in three vertebrate species with diver-
gent responses to climate change in North America (grey wolf, Canadian lynx and
white-tailed deer). We found that the spatio—temporal connectivity could enhance the
stepping-stone effect for species predicted to experience range contractions, and the
relative importance of the spatio—temporal connectivity increased with the reduction
in habitat quantity and suitability. Conversely, for species that are likely to expand
their ranges, spatio—temporal connectivity had no additional contribution to improve
the ARH. We also found that changes in habitat amount (quantity and suitability)
were more influential than changes in habitat configuration in determining the relative
importance of spatio—temporal connectivity. We conclude that spatio—temporal con-
nectivity may provide less biased and more realistic estimates of habitat connectivity
than purely spatial connectivity.

Keywords: climate change, dynamic network model, landscape connectivity, Ontario,
species distribution
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Introduction

Climate change may cause contractions in species distribu-
tions if future conditions become unfavorable in some parts
of their range, and dispersal to new habitat may be neces-
sary for species’ long-term persistence (Parmesan and Yohe
2003, Garcia et al. 2014). Furthermore, climate and land-use
changes may alter the spatial composition and configuration
of habitat, as well as habitat suitability, leading to declines
in the availability of habitat resources (Opdam and Wascher
2004, Travis et al. 2013). Hence, species persistence will
largely depend on future habitat spatial pattern (Arevall et al.
2018) and species ability to track their niche in space and
time through dispersal (Schloss et al. 2012). Understanding
how much habitat is reachable for species in a changing envi-
ronment is, therefore, of paramount importance for conser-
vation (Littlefield et al. 2019).

Assessing the amount of reachable habitat (ARH) requires
quantifying the degree of landscape connectivity (Saura et al.
2014). To date, a large number of connectivity models and
metrics have been proposed, such as those based on meta-
population theory (Hanski and Ovaskainen 2000, Moilanen
and Nieminen 2002), network theory (Urban and Keitt
2001, Bodin and Norberg 2006, Saura and Pascual-Hortal
2007), and on circuit theory (McRae et al. 2008). These
approaches have also been employed to evaluate the impacts
of climate change on habitat connectivity and species per-
sistence (Dilts et al. 2016, Albert et al. 2017, Rehnus et al.
2018, Kanagaraj et al. 2019). Most connectivity models
rely on spatial snap-shots of landscape structure to gener-
ate static connectivity estimates; however, some species pre-
dicted to experience ARH decrease or increase do not actually
have immediate population declines or growth as expected
(Metzger et al. 2009, Semper-Pascual et al. 2018, Lira et al.
2019). Such ‘extinction debt’ and ‘colonization credit’ phe-
nomena (Tilman et al. 1994, Lira et al. 2019) require ecolo-
gists to consider temporal ecological processes going beyond
a purely spatial perspective.

Although some recent studies highlighted the importance
of accounting for temporal aspects in connectivity modeling
(Alagador et al. 2014, Mui et al. 2017), only a few of them
accounted for dispersal processes over generations (Saura et al.
2014, de la Fuente et al. 2018), the variation in importance of
habitat patches in maintaining connectivity due to seasonal
habitat change (Mui et al. 2017, Bishop-Taylor et al. 2018),
or the implications of ephemeral patches and transient con-
nectivity change in metapopulation dynamics (Reigada et al.
2015, Perry and Lee 2019). Yet, the importance of tempo-
ral dynamics of habitat patches has largely been ignored
(Blonder et al. 2012). Indeed, some habitat patches may
appear and/or disappear through time in a dynamic land-
scape. Because of these dynamics, habitat patches may coexist
at certain time periods even though they do not exist together
at the start or end of a given temporal period (Zeigler and
Fagan 2014). Such temporal overlap of habitat patches may
contribute to enhancing the stepping-stone effect. To account
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for this effect, Martensen et al. (2017) developed a spatio—
temporal network-based model that incorporates temporal
links between habitat patches, and showed that purely spatial
connectivity models underestimate the actual connectivity
patterns for forest landscapes experiencing habitat loss and
fragmentation. However, the importance of spatio—temporal
connectivity still remains unexplored in the context of species
tracking their climatic niche, especially for species displaying
varying vulnerabilities to climate change.

Here, we highlight the need of spatio—temporal connec-
tivity models (Martensen et al. 2017) to predict changes
in the ARH across space and time under climate change.
First, we provide a general framework to guide how to
conduct spatio—temporal connectivity analyses for species
experiencing range shifts. Then, we apply this framework
to both theoretical simulations and case studies. The former
generates a wide range of hypothetical species distributions
on virtual landscapes, to illustrate under what conditions
spatio—temporal connectivity can be more important than
spatial-only connectivity. The latter applies ensemble spe-
cies distribution models to predict potential distributions
of three terrestrial mammals in North America with diver-
gent vulnerabilities to climate change: white-tailed deer,
Canada lynx and grey wolf. We expect that white-tailed
deer and grey wolf will expand their range due to warmer
temperatures and lower winter severity in future climates
(Weiskopf et al. 2019), leading to a lower importance of
spatio—temporal connectivity. We also expect that Canada
lynx will contract its range due to less snowfall in winters
(Hoving et al. 2005), which may produce a higher relative
importance of spatio—temporal connectivity.

Methods

Spatio-temporal connectivity model

To assess the change in the amount of reachable habitat
under varying climate conditions, we used a spatio—temporal
connectivity model (Martensen et al. 2017). The spatio—tem-
poral connectivity model is actually a specific example of the
multi-layer network (Pilosof et al. 2017), in which habitat
patches are considered as nodes, and two static landscape
snapshots as two layers. Nodes are connected by spatio—tem-
poral link that incorporates both intra-layer links (i.e. spatial
links) and inter-layer links (i.e. temporal links) to represent
their spatio—temporal interactions. Further, the spatio—tem-
poral path is a path made of one or multiple spatio—temporal
links, representing the possibility of a dispersing organism
moving from a given habitat patch at time #, to another habi-
tat patch at time #, (#,<4). To ensure the persistence from
t, to £, in the dynamic landscape, species can either stay in a
Stable patch, or disperse from a patch with habitat at 7, (i.e.
Loss or Stable) to another patch with habitat at 7, (i.e. Gain
or Stable). The schematic of spatio—temporal connectivity
model is shown in Fig. 1.
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Figure 1. Schematic representation of the conceptual difference between spatial-only and spatio—temporal connectivity models. The spatial-
only connectivity model provides assessments based on static landscape snapshots (panels (a) and (b)). At time #,, the landscape has two
connected habitat patches, 7 and 4, and the interaction intensity (indicated by dispersal probability) between them is the same in both
directions. At time #,, patch # is lost while another patch j appears in the landscape; yet, because the distance between patches 7 and j is
greater than species dispersal ability, there is no connection between them. Nevertheless, from the spatio—temporal perspective (panel (c)),
where blue, red and green colors denote Stable, Loss and Gain types of patches, respectively; 7 and j may be connected if a dispersing indi-
vidual first moves to 4, which may still have habitat at an intermediate time point, then disperses again from 4 to j before 4 is eventually
lost. Patch £ therefore acts as a stepping-stone from the spatio—temporal perspective. The solid and dashed lines denote the essential and
auxiliary links (explained in the text). In this case, the interaction between patches is directional and the intensity may not be identical in

both directions.

Given the time interval from 7 to #,, each habitat patch
in a network can be classified into one of three types through
polygon change analysis: Loss (i.e. habitat in # but not in
t,), Stable (i.e. habitat in both #, and #,) and Gain (i.e. habi-
tat in #, but not in #,). Between any pair of habitat patches,
the temporal link occurs only when two patches simultane-
ously exist during some intermediate time window from ¢, to
, (1, << £, < t,). If such information is unknown, the tem-
poral link may or may not occur, and is therefore assigned a
probability w between 0 and 1.

Links in the spatio-temporal network can also be clas-
sified into two types: 1) the essential link, which alone, is
able to transport an individual from a patch with habitat at
t, to another patch with habitat at #; and 2) the auxiliary
link, which by itself, is unable to successfully transport an
individual as the essential link does. However, auxiliary links
are complementary to essential links. For example, the path
‘Stable—Loss—Stable’ is not possible if using essential links
only, as no habitat will be readily available at #, when spe-
cies arrives at Loss. Nevertheless, this path becomes possible
after accounting for the auxiliary link: the species can first
move to Loss that still has habitat in an intermediate time
point through an auxiliary link, then it will need to disperse
again from Loss to Stable using an essential link before Loss
eventually loses habitat to ensure its persistence. Moreover,
for the path ‘Stable—Loss—Gain—Stable’, the three links
are auxiliary, essential and auxiliary links in sequence. The

essential link from Loss to Gain may or may not be possible,
as whether Loss and Gain coexist in the intermediate time
window is unknown; the third link is an auxiliary link, since
there is no habitat readily available at #,. To summarize, two
nodes in the network can either be directly connected using
a single essential link, or indirectly connected through a path
consisting of several essential and auxiliary links, as long as
there is at least one essential link. In the latter case, the step-
ping-stone effect is taken into account, which helps species
reach more habitat than by using essential links only. The
temporal dispersal probability ( P; ) of each link scenario is
listed in Table 1 (see Martensen et al. 2017 for additional
details).

Lastly, the spatio—temporal dispersal probability between
habitat patches (p;) is the product of spatial dlspersal prob-
ability ( p;’) and temporal dispersal probability ( p ). The
spatial dlspersal probability is commonly calculated us/le{}g
an exponential form (Urban and Keite 2001): p;” 4
; where £ is a species-specific coeflicient 1ndlcat1ng the spe-
cies dlspersal ability, and 4, is the spatial distance between
node 7 and ;. The distance can either be Euclidean distance
or any effective distance that reflects landscape resistance.
To parameterize k£ when effective distance is used, p;’ can
be fixed as 0.5, the species median dispersal distance can be
multiplied by the median cost value of the cost surface, and
their product can substitute &, in the equation to solve for 4
(Gurrutxaga et al. 2011).
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Table 1. Temporal dispersal probability (pfj ) for each type of link, adapted from Martensen et al. (2017).

Target patch: individual location after ¢,

Source patch: individual location at
t, for the essential links or at ¢,

Essential link (individual location at t,)

Auxiliary links (individual
locationint,, t <t <t,)

(t, <t,<t,) for the auxiliary links Stable Loss Gain Stable Loss Gain
Stable 1 0 1 N/A 1 N/A
Loss 1 0 w N/A 1 N/A
Gain 0 0 0 1 w 1

Connectivity metrics

The probability of connectivity (PC) is the probability that
two individuals randomly placed within a landscape fall into
habitat patches that are reachable for each other across the
habitat network (Saura and Pascual-Hortal 2007). To quan-
tify the amount of reachable habitat, we used the equivalent
connectivity (EC; Saura et al. 2011), which is calculated as
the square root of the numerator of PC. Further, to distin-
guish the area-based and habitat configuration aspects of con-
nectivity metrics, we partitioned the PC into three fractions
following Saura et al. (2014): PC, ., PC, . and PC__ (sce
Supplementary material Appendix 1 for their formulaes. All
metrics except PC, . are functions of dispersal probabilities.
Spatial-only (with an ‘so’ superscript) and spatio—temporal
(with an ‘st’ superscript) connectivity metrics were calculated
using p; and p;, respectively (Martensen etal. 2017). EC*
indicates the habitat resource (e.g. habitat area and suitabil-
ity) of a single patch that would provide the same probability
of connectivity as the actual habitat pattern in the landscape.
EC+ indicates the resources of a single ‘Stable’ habitat patches
that would provide the same probability of spatio—temporal
connectivity as the spatio—temporal network. PC} . indi-
cates the intra-node connectivity provided by all existing
patches in the landscape, while PCi . indicates the intra-
node connectivity provided by Stable patches only. PCY .,
is the inter-node connectivity provided by direct spatial
links, while PC§, .., the inter-node connectivity provided by

direct spatio—temporal links. PC®  denotes the inter-node
% p step

connectivity contributed by stepping-stone effects through
indirect spatial links, while PC,

step

denotes the inter-node

connectivity contributed by stepping-stone effects through
indirect spatio—temporal links.

General framework for the spatio—temporal network
construction

Here, we demonstrate how to construct spatio—temporal
network for species experiencing range shifts under climate
change. First, the habitat suitability for the focal species needs
to be obtained using some approach on the considered land-
scape (Fig. 2A). To analyze connectivity for species distrib-
uted in a continuous landscape, the landscape can be divided
into multiple equal-size blocks with a coarser resolution than
that of the landscape. For example, the spatial resolution of
the landscape is one grid cell while the resolution of the block
is five grid cells (Fig. 2B). Then, block centroids can be con-
sidered as nodes for the network analysis (Dilts et al. 2016).
The mean and the sum of habitat suitability are computed for
each individual block. A block is considered suitable habitat
when its mean habitat suitability is >0.5. Therefore, a node is
classified as Loss if the block’s mean habitat suitability is >0.5
at #, but not at #,, Gain if opposite, and Stable if higher than
0.5 at both #, and #,. To account for the habitat suitability
heterogeneity within the block, centroids can be located in
a spatially weighted mean fashion (Fig. 2C). Node weights
are given by the sum of habitat suitability within the block
at ¢, for the Loss, the sum at ¢, for the Gain, and the mean of
sums at #, and at ¢, for the Stable, and zero for blocks without
habitat at both #, or ¢,

Given that landscape heterogeneity influences species dis-
persal, landscape resistance can be calculated as the inverse of
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Figure 2. (A) An example of the generated virtual species distributions (50X 50 grid cells) with probability-of-occurrence represented on
each grid cell. (B) Dividing the landscape into equal-size study blocks of 5% 5 grid cells. (C) The location of block centroid was weighted
by the probability-of-occurrence, and the centroid was considered as the node in the subsequent network analysis. See Supplementary mate-

rial Appendix 1 Fig. A2 for the example of the actual species.
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habitat suitability. This approach is suggested to be sufficient
to estimate landscape resistance in the absence of empirical
species movement data (Zeller et al. 2018). Next, least-cost
modeling (Adriaensen etal. 2003) can be applied, using block
centroids as endpoints and resistance surface with the fine
resolution, to estimate effective distance among immediately
adjacent blocks (van Etten 2017). For the spatio—temporal
connectivity case, the effective distance can be calculated as
a weighted average form to reflect spatio—temporal variations
in landscape resistance:

d,

i =X dy, +(1-0)xd

7,12

a€(0,1), (1)

where 4, and d;;,, denote the effective distance from 7 to j at
¢, and at #,, respectively; and o is the weight given to d,] ,, that
ranges from zero to one, since the actual time of change in
landscape resistance is unknown. To keep the model simple
in the general framework, & and w (Table 1) are set to 0.5.
After obtaining node attributes and types, as well as links
between nodes, spatial-only and spatio—temporal connectiv-
ity analyses can be conducted for the focal species. The rela-
tive importance of spatio—temporal connectivity is indicated
by the difference proportion of spatio—temporal EC over its

spatial-only counterpart (i.e. (ECSt —ECiZ)/ECiZ). Thus,
positive values indicate that spatio—temporal connectivity
enhances connectivity.

Theoretical simulations using virtual species

We used the ‘virtualspecies’ package (Leroy et al. 2016) in
R ver. 3.6.0 (Kwww.r-project.org>) to generate virtual spe-
cies distributions on a two-dimensional landscape of 50X 50
grid cells, based on two hypothetic environmental variables
with the same spatial extent. As environmental conditions
often display spatial autocorrelation (Legendre 1993), we
used the ‘gstat’ package (Pebesma and Heuvelink 2016) to
generate the spatially correlated random field for each vari-
able (under current and future scenarios) using sequential
Gaussian simulations with an exponential variogram model
(sill number=0.025, range parameter=15). A total number
of 120 virtual species distributions (half current, half future)
were generated. Changes between current and future distri-
butions therefore represented a wide range of species vulner-
abilities to climate change. On the distribution map, each
grid cell has a value ranging from 0 to 1 indicating the prob-
ability-of-occurrence (i.e. relative habitat suitability) for the
virtual species. Following the framework in the last section
and defining the block size as 5X 5 grid cells, we conducted
both spatial-only and spatio—temporal connectivity analyses
for three hundred virtual species, as combinations of the sixty
divergent vulnerabilities to climate change and five differ-
ent dispersal abilities (5, 10, 15, 25 and 35 grid cells as the
median natal dispersal distance). Connectivity analyses were
performed using R scripts in conjunction with the command
version of Conefor (<www.conefor.org/>).

Statistical analysis

For the simulated virtual species, we disentangled the effect
sizes of changes in 1) habitat quantity, 2) habitat suitability
and 3) habitat spatial configuration on the relative impor-
tance of spatio—temporal connectivity for species with differ-
ent dispersal abilities. The first explanatory variable was the
difference proportion of the number of blocks with suitable
habitat (z, over ). The second explanatory variable was the
difference proportion of the habitat suitability averaged over
the 100 blocks. The third explanatory variable was the differ-
ence proportion of the habitat aggregation index (He et al.
2000), which is independent of habitat composition and
indicates the degree of habitat aggregation/isolation. As
some explanatory variables did not display linear relation-
ship with the response variable even after log-transformations
(Supplementary material Appendix 1 Fig. A3), a random
forests algorithm was used to investigate the variable impor-
tance given its robustness to nonlinear relationships (Breiman
2001). The number of trees was 1000, and 999 permutations
for the ‘out-of-bag’ data were conducted to assess the variable
importance. We used the ‘randomforest’ (Liaw and Wiener
2002) and ‘landscapemetrics’ packages (Hesselbarth et al.
2019) in R to perform these analyses.

Case studies using real species

Study area and species

We applied spatio—temporal connectivity to actual species
in North America. The study area covers ten eco-regions
in central and southern Ontario, Canada (ca 603 thousand
km?; Fig. 3), with dominant climatic types of warm-summer
humid continental and subarctic. The northern eco-regions
were excluded as the primary land cover there is tundra,
which is unlikely to become suitable habitat in the short term
according to the climate change velocity map (Burrows et al.
2011). According to Species at Risk in Ontario List, there
are in total 232 endangered and/or threatened species, whilst
climate change is considered one of the main threats to biodi-
versity in the province (Ontario Biodiversity Council 2011).

Following Meurant et al. (2018), we selected three ter-
restrial species with different dispersal abilities, habitat needs
and vulnerabilities to potential climate changes in temper-
ate North America: white-tailed deer Odocoileus virginianus,
Canada lynx Lynx canadensis and grey wolf Canis lupus. The
latter two are carnivorous species that primarily prey on snow-
shoe hare and deer, respectively. We obtained the four species
presences data (year 1970-2018) from Global Biodiversity
Information Facility (GBIF) and their characteristics (e.g.
dispersal abilities and longevity) from the literature. See Table
2 for detailed information.

We downloaded current and projected bioclimatic vari-
ables, as well as current forest loss map from databases listed
in Table 2. We defined the year 2030 as a near future time
point, so that the temporal difference from current to future
approximately fits the longevity of our focal species. For
future climate scenarios, we adopted the four Representative
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Figure 3. Species occurrence data downloaded from GBIF (time captured: 1970-2018).

Concentration Pathway scenarios (RCP 2.6, 4.5, 6.0 and 8.5;
see IPCC AR5), in which the extent of emissions and global
warming increases from RCP 2.6 to RCP 8.5.

We then divided the study area into 428 equal-size
40X 40km blocks. This size was chosen to ensure that all
focal species could move across blocks during one genera-
tion to facilitate network analyses. The snowshoe hare was
excluded from the connectivity analysis, as its dispersal ability
is smaller than the block size.

Ensemble forecasting for species distributions
We used the ‘biomod2’ package (Thuiller et al. 2009) to
implement ensemble species distribution projections, which
are considered to increase the predictive accuracy and robust-
ness with regard to individual models in the face of model
uncertainties (Aratijo and New 2007). To account for preda-
tor—prey interactions, we first predicted potential spatial
distributions of snowshoe hare and white-tailed deer using
the approach below, and then integrated their distributions
with other environmental variables to predict potential dis-
tributions of their predators: Canada lynx and grey wolf,
respectively.

As a first step to the ensemble forecasting, we added an
equal number of pseudo-absences to presences data of each
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focal species across study area using a surface range envelope
model, which forces pseudo-absence candidates to be selected
in condition that differs from a defined proportion (0.025 in
this study) of presence data (Beaumont and Hughes 2002).

Then, we ran a principal component analysis (PCA) on
the nineteen bioclimatic variables using the ‘ade4’ pack-
age (Dray and Dufour 2007) to avoid potential collinearity
problems. We retained the ones potentially most relevant to
the species distribution among highly correlated bioclimatic
variables, based on the biological knowledge of the focal spe-
cies: as the white-tailed deer is sensitive to drought events
(Tosa et al. 2018), Biol2 (annual precipitation) and Biol7
(precipitation of the driest quarter) were retained; as snow-
shoe hare and Canada lynx are sensitive to snowfall and snow
cover (Hoving et al. 2005), Bioll (mean temperature of the
coldest quarter) and Biol9 (rain precipitation of the coldest
quarter) were retained; and given that the grey wolf is sensi-
tive to prey distributional changes, the same variables as the
ones retained for the white-tailed deer were selected as they
also displayed great importance and low correlation for grey
wolf (Supplementary material Appendix 1 Fig. Al).

Next, we modeled future forest cover change. The future
(2012-2030) forest loss amount across the study area was
predicted based on the assumption that the future period
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would have the same average annual forest loss rate as in the
past (2000-2012). The spatial allocation of future forest loss
was achieved by assuming that the block that lost more forest
in the past would also have higher probability of losing forest
in the future. To do so, we computed forest loss amount in
the past period for each block and created a probability-of-
loss surface. We then generated future forest loss points based
on the total loss amount and probability-of-loss surface using
the ‘Create Spatially Balanced Points’ tool in ArcGIS 10.2,
and converted spatial points to the raster map. By overlap-
ping raster layers of forest loss (actual 2000-2012 and pre-
dicted 2012-2030) with the forest cover in the year 2000, we
obtained the potential forest cover in 2030.

Further, we built the ensemble models for each species
by combining eight algorithms available in the ‘biomod2’
package: GAM, GBM, GLM, CT, ANN, FDA, MARS and
RE To evaluate the predictive accuracies of these models, we
conducted three-fold cross-validations by randomly splitting
the dataset into two parts: 80% for calibration and 20% for
evaluation. Then, we used the true skill statistics (T'SS) as the
model evaluation metrics following Allouche et al. (2000).
We selected models with TSS >0.7 for the final ensemble
forecasting.

Finally, the ensemble models were projected to the current
and future climate scenarios based on four ensemble algo-
rithms: mean possibility, median possibility, weighted mean
possibility and committee averaging, and only the one with
the highest TSS was retained for further analysis.

We generated potential 1) habitat suitability (range:
0-1000) maps and 2) binary range maps for our focal spe-
cies. We defined the habitat threshold as the minimum habi-
tat suitability within the species range, rather than a uniform
threshold in the general framework. The thresholds for white-
tailed deer, Canada lynx and grey wolf were: 781, 286 and
349, respectively.

We then conducted connectivity analyses for the three
focal species following approaches elaborated in the section
2.3. We also conducted a sensitivity analysis to test whether
spatio—temporal connectivity assessments are robust to
parameterizations of w (Table 1) and o (Eq. 1). Nine assess-
ments (as combinations of w=0.25, 0.5, 0.75 and a=0.25,
0.5, 0.75) were generated and standard deviations of values
of spatio—temporal connectivity metrics were calculated for
each focal species.

Results

Virtual species

In the 60 climate change scenarios, 27 of them (45%) led
to net increments in habitat quantity from ¢ to #, and
36 of them (60%) had net increases in habitat suitability
(Supplementary material Appendix 1 Fig. A4). Out of the
300 virtual species, 44% of them displayed higher (posi-
tive) importance of spatio—temporal connectivity relative to
spatial-only connectivity in the amount of reachable habitat
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(EC; Fig. 4). Cases in which spatio—temporal connectivity
had higher relative importance occurred mostly when habi-
tat quantity, suitability and aggregation were predicted to
decrease in ,. Conversely, when habitat quantity, suitability
and aggregation were predicted to increase, spatio—temporal
connectivity had lower relative importance.

The relationships between the three components of con-
nectivity and changes in landscape were similar to the rela-
tionship observed for EC. In particular, PC,, and PC_
were more affected by changes in landscape than PC,_, since
only 8% of the virtual species showed higher importance
in the PC; ., fraction, while 32% of them showed higher
importance in PC,.. and 45% in PCy_ .

The relationships between the relative importance of spa-
tio—temporal connectivity and the three landscape variables
did not display much variation among species dispersal abili-
ties. However, species dispersal ability changed their relative
effect sizes in explaining the importance of spatio—temporal
connectivity. Specifically, habitat aggregation was impor-
tant only for short-distance dispersers, while its importance
decreased with increasing dispersal ability; yet, changes
in habitat quantity and suitability always had larger effect
sizes than habitat configuration across all dispersal abilities
(Supplementary material Appendix 1 Fig. AG).

Focal species in Ontario

The goodness-of-fit (T'SS values) of the ensemble forecasting
of the species distributions were 0.93, 0.94, 0.95 and 0.94
for snowshoe hare, white-tailed deer, Canada lynx and grey
wolf, respectively; indicating that our models had consider-
ably high predictive accuracy. In current conditions, white-
tailed deer, Canada lynx and grey wolf are likely to occur
across southern and central Ontario, respectively; and in all
future scenarios, white-tailed deer and grey wolf were pre-
dicted to expand northwards, whereas Canada lynx’s range
was predicted to shrink (Fig. 5).

The number of ‘Gain’ blocks ranged from 68 (under RCP
6.0) to 168 (under RCP 8.5) for white-tailed deer, and from
120 (under RCP 6.0) to 210 (under RCP 8.5) for grey wolf
(Supplementary material Appendix 1 Fig. ASA). In contrast,
habitat quantity of Canada lynx declined considerably under
all predicted future climate scenarios, and RCP 8.5 produced
the most severe range contraction. In terms of changes in
habitat suitability, RCP 8.5 produced the largest improve-
ment for white-tailed deer and grey wolf, while causing the
largest reduction for Canada lynx (Supplementary material
Appendix 1 Fig. A5B).

EC® of white-tailed deer and grey wolf was predicted
to increase in 2030, with RCP 8.5 resulting in the larg-
est increases, while the opposite was true for Canada lynx
(Fig. 6A). On the other hand, EC* of white-tailed deer and
grey wolf were smaller than EC* at 2030 (Fig. 6B), and the
relative reductions in EC* ranged from ca —40% to —20%.
Opverall, larger relative reductions in spatio—temporal con-
nectivity metrics were observed in scenarios predicting larger
range expansions. Conversely, Canada lynx had larger EC*
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than EC* and the relative increase ranged from 1% to 106%,
with RCP 8.5 producing the largest increment. The three
PC fractions of Canada lynx also exceeded their spatial-only
counterparts in most cases, and showed up to a 250% relative
increase for PC., and 550% for PC{,, under the RCP
8.5 scenario. Meanwhile, all connectivity metrics did not
vary significantly under a range of w and o values (Fig. 6B),
indicating the robustness of the spatio—temporal connectivity
model to the choice of these parameters.

Discussion

Previous research has shown that purely spatial connectivity
models may substantially underestimate the actual amount
of reachable habitat (ARH) and colonization—extinction
rates in landscapes with high levels of land-use change
(Martensen et al. 2017). Here, we showed that this is also
true in the context of climate change. However, the rela-
tive importance of spatio—temporal connectivity depends
on species responses to climate change, and on the mag-
nitude of climate change. Moreover, we found evidence
that changes in habitat quantity and suitability have greater
effects on the relative importance of spatio—temporal con-
nectivity, compared with changes in habitat configuration
and species dispersal ability.
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Importance of the spatio—temporal connectivity
given different vulnerabilities of species to
climate change

Our results showed that spatio—temporal connectivity was
important for those species predicted to experience range
contractions under climate change. For example, the shift
of winter precipitation to less snowfall but more rainfall
(Supplementary material Appendix 1 Fig. A7) in Canada
lynx’s current range is likely to have negative implications
for the species (Hoving et al. 2005). Consequentially, the
ARH of Canada lynx was predicted to decrease by 21-81%
in 2030 from the spatial-only perspective, in agreement with
other studies documenting the declining trend of available
habitat for Canada lynx in this region (Hornseth et al. 2014).
Yet, the spatio—temporal connectivity estimation indicated
that the decline in connectivity might not be so dramatic,
due to the stepping-stone effects enhanced by spatio—tem-
poral connectivity. The evidence is shown in Fig. 6B, where
the PCy,, fraction is nearly five times higher than PC,,
under the most severe scenario. As such, spatio—temporal
connectivity may partly explain the delayed extinctions given
habitat reductions and fragmentation (Tilman et al. 1994,
Martensen et al. 2017). Indeed, Hooftman et al. (2016)
found that connectivity was one factor strongly correlated
to the likelihood of delayed local extinction, and the level
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Figure 6. (A) Amount of reachable habitat from the spatial-only and the spatio—temporal (w=0.5, a=0.5) perspectives (indicated by EC*
and EC, respectively) of each focal species under different climate scenarios. Parameter w denotes the temporal dispersal probability that
may or may not be possible, and o the weight given to landscape resistance at 7. For the current condition, EC* is missing as no spatio—
temporal connectivity was calculated from past to current. (B) The relative importance of spatio—temporal connectivity compared with
spatial-only connectivity for each focal species under different climate scenarios, with the error bar indicating the standard deviation of nine

relative differences under a range of w and a values.
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of connectivity could be enhanced by the existence of more
temporally dynamic populations acting stepping-stones,
which is in congruence with our findings.

Nevertheless, the relative importance of spatio—temporal
connectivity decreased for species expected to increase their
future habitat amount. For example, warmer temperatures and
less snowfall in the winter (Supplementary material Appendix
1 Fig. A7) favor the survival and population spreading of
white-tailed deer (Weiskopf et al. 2019), which may also lead
to population expansion of its predator, grey wolf (Fig. 5). As
a result, the spatio—temporal ARH of these two species was
smaller than the spatial-only one (Fig. 6A). This finding agrees
with Martensen et al. (2017), which showed that the positive
contribution of spatio—temporal connectivity decreased with
increasing habitat gained. From the model perspective, when
there are additional habitat patches gained in the landscape,
none of them can provide intra-node connectivity in the spa-
tio—temporal case, as only ‘Stable’ patches are considered as
places where the intra-patch connectivity occurs. Yet, these
patches can provide intra-node connectivity in the spatial-only
case as they indeed exist in the landscape at time #,. From the
ecological standpoint, such reductions in spatio—temporal con-
nectivity relative to its spatial-only counterpart may also partly
explain the ‘colonization credit’ (Lira et al. 2019), which is an
inverse concept to ‘extinction debt’ and refers to the number
of individuals or species yet to colonize a focal habitat due
to positive landscape changes. Hence, there should be many
instances where spatio—temporal connectivity may provide
less biased and more realistic estimates of habitat connectivity,
given the presence of extinction debts and colonization credits
(Kuussaari et al. 2009, Lira et al. 2019) and the stepping-stone
effect across space and time (Saura et al. 2014).

Likewise, the intensity of climate change also changed
the relative importance of spatio—temporal connectivity, as it
affected habitat suitability within the patch. Previous studies
have suggested that habitat suitability is an important fac-
tor affecting metapopulation dynamics (Franken and Hik
2004) and should be incorporated into connectivity models
(Visconti and Elkin 2009). Here, we quantified habitat suit-
ability based on species ecological niches, habitat requirements
and food resources (i.e. prey—predator interactions), and used
it as node attributes. Therefore, habitat quantity and quality
jointly determined the amount of habitat resources. Also, cases
where habitat quantity increased and/or decreased often corre-
sponded to the overall improvement and/or decline in habitat
suitability, so these two factors affected the importance of the
spatio—temporal connectivity in the same direction (Fig. 4).

Effects of habitat amount versus effects of habitat
isolation and species dispersal ability

In a climate change context, variations in the ARH mainly
come from changes in landscape structures, including habi-
tat quantity, suitability and spatial configuration (Villard and
Metzger 2014). Numerous studies have debated the relative
effect sizes of these factors on population persistence for dif-

ferent taxa (Heller and Zavaleta 2009, Hodgson et al. 2011,

Fahrig 2017, Fletcher et al. 2018). Their effects on the relative
importance of spatio—temporal connectivity, however, has yet
to be fully understood. This issue has significance for conser-
vation science, as it helps to identify conditions under which
extinction debts are likely to occur in the landscape (Semper-
Pascual et al. 2018), and guides conservation practices to
avoid eventual local extinctions. We found that the effect
sizes of these three factors varied depending on species dis-
persal ability (Supplementary material Appendix 1 Fig. AG).
However, the effect size of habitat configuration was always
smaller than that of the other two factors, and the effect size
continuously decreased with increasing dispersal ability. This
response of the effect size of habitat configuration to dispersal
ability is logical because, for long-distance dispersers, their
dispersal ability is already high enough to reach even the most
isolated habitat patches. The implication of this finding for
conservation science is that, given limited conservation bud-
gets, it may be more effective to focus on increasing habitat
amount (quantity and suitability) than improving habitat
connections (Hodgson et al. 2011). Conversely, for species
with smaller dispersal ability, enhancing habitat connections
(e.g. via movement corridors; Gilbert-Norton et al. 2010)
could increase species movement and the amount of reach-
able habitat to cope with climate change.

In conclusion, our study highlights the need of spatio—
temporal connectivity models to evaluate the impact of cli-
mate change on species’ amount of reachable habitat across
space and time. Specifically, our results suggest an increasing
importance of spatio—temporal connectivity for species with
contracting ranges by enhancing the stepping-stone effect.
Moreover, spatio—temporal connectivity can also provide less-
biased results for species with expanding ranges. Nevertheless,
it does not mean that spatio—temporal connectivity can guar-
antee the long-term persistence of species in the face of dras-
tic environmental change: it may only increase the ‘relaxation
time’ (i.e. the time lag to extinction; Kuussaari et al. 2009).
We still need to put a lot of effort in habitat restoration, pri-
marily increasing habitat quantity and suitability, to prevent
eventual species extinctions.

Data availability statement

Data are available from the Dryad Digital Repository: <http://
dx.doi.org/10.5061/dryad.gb5mkkwk8> (Huang et al.
2019).

Acknowledgements — We thank Louis Donelle for the help during
data analysis.

Funding — 'This study is funded by CSC scholarship to J-LH,
National Natural Science Foundation of China (grantno.: 41771429
and 41871301) to J-HH and D-FL, and NSERC Discovery Grant
to M-JE

Confflicts of interests — None.

Author contributions — JLH designed the study, performed data
processing and analysis, and led the writing. MA, ACM and MJF
contributed to study design and writing. SS, DFL and JHH helped
edit the manuscript. All authors conceived ideas to this study.

601



References

Adriaensen, E et al. 2003. The application of ‘least-cost’ modelling
as a functional landscape model. — Landscape Urban Plan. 64:
233-247.

Alagador, D. et al. 2014. Shifting protected areas: scheduling
spatial priorities under climate change. — J. Appl. Ecol. 51:
703-713.

Albert, C. H. et al. 2017. Applying network theory to prioritize
multispecies habitat networks that are robust to climate and
land-use change. — Conserv. Biol. 31: 1383-1396.

Allouche, O. et al. 2006. Assessing the accuracy of species distribu-
tion models: prevalence, kappa and the true skill statistic (TSS).
—J. Appl. Ecol. 43: 1223-1232.

Aratjo, M. B. and New, M. 2007. Ensemble forecasting of species
distributions. — Trends Ecol. Evol. 22: 42.

Arevall, J. et al. 2018. Conditions for successful range shifts under
climate change: the role of species dispersal and landscape con-
figuration. — Divers. Distrib. 24: 1598-1611.

Beaumont, L. J. and Hughes, L. 2002. Potential changes in the
distributions of latitudinally restricted Australian butterfly spe-
cies in response to climate change. — Global Change Biol. 8:
954-971.

Bishop-Taylor, R. et al. 2018. Evaluating static and dynamic land-
scape connectivity modelling using a 25-year remote sensing
time series. — Landscape Ecol. 33: 625-640.

Blonder, B. et al. 2012. Temporal dynamics and network analysis.
— Methods Ecol. Evol. 3: 958-972.

Bodin, O. and Norberg, J. 2006. A network approach for analyzing
spatially structured populations in fragmented landscape.
— Landscape Ecol. 22: 31-44.

Breiman, L. 2001. Random forests. — Mach. Learn. 45: 5-32.

Burrows, M. T. et al. 2011. The pace of shifting climate in marine
and terrestrial ecosystems. — Science 334: 652.

Collins, W. J. et al. 2011. Development and evaluation of an earth-
system model — HadGEM2. - Geosci. Model Dev. 4:
1051-1075.

de la Fuente, B. et al. 2018. Predicting the spread of an invasive
tree pest: the pine wood nematode in southern Europe.
—J. Appl. Ecol. 55: 2374-2385.

Dilts, T. E. et al. 2016. Multiscale connectivity and graph theory
highlight critical areas for conservation under climate change.
— Ecol. Appl. 26: 1223-1237.

Dray, S. and Dufour, A. B. 2007. The ade4 package: implementing
the duality diagram for ecologists. — J. Stat. Softw. 22: 1-20.

Fahrig, L. 2017. Ecological responses to habitat fragmentation per
se. — Annu. Rev. Ecol. Evol. Syst. 48: 1-23.

Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km
spatial resolution climate surfaces for global land areas. — Int.
J. Climatol. 37: 4302-4315.

Fletcher, R. J. et al. 2018. Is habitat fragmentation good for biodi-
versity? — Biol. Conserv. 226: 9-15.

Franken, R. J. and Hik, D. S. 2004. Influence of habitat quality,
patch size and connectivity on colonization and extinction
dynamics of collared pikas Ochotona collaris. — J. Anim. Ecol.
73: 889-896.

Garcia, R. A. et al. 2014. Multiple dimensions of climate change
and their implications for biodiversity. — Science 344: 486—+.

Gilbert-Norton, L. et al. 2010. A meta-analytic review of corridor
effectiveness. — Conserv. Biol. 24: 660-668.

Gurrutxaga, M. et al. 2011. Key connectors in protected forest area
networks and the impact of highways: a transnational case study

602

from the Cantabrian Range to the western Alps (SW Europe).
— Landscape Urban Plan. 101: 310-320.

Hansen, M. C. et al. 2013. High-resolution global maps of 21st-
century forest cover change. — Science 342: 850-3.

Hanski, I. and Ovaskainen, O. 2000. The metapopulation capacity
of a fragmented landscape. — Nature 404: 755-758.

He, H. S. et al. 2000. An aggregation index (Al) to quantify spatial
patterns of landscapes. — Landscape Ecol. 15: 591-601.

Heller, N. E. and Zavaleta, E. S. 2009. Biodiversity management
in the face of climate change: a review of 22 years of recom-
mendations. — Biol. Conserv. 142: 14-32.

Hesselbarth, M. H. K. et al. 2019. landscapemetrics: an open-
source R tool to calculate landscape metrics. — Ecography 42:
1648-1657.

Hodgson, J. A. et al. 2011. Habitat area, quality and connectivity:
striking the balance for efficient conservation. — J. Appl. Ecol.
48: 148-152.

Hooftman, D. A. P. et al. 2016. Reductions in connectivity and
habitat quality drive local extinctions in a plant diversity hot-
spot. — Ecography 39: 583-592.

Hornseth, M. L. et al. 2014. Habitat loss, not fragmentation, drives
occurrence patterns of Canada lynx at the southern range
periphery. — PLoS One 9: €113511.

Huang, J.-L. et al. 2019. Data from: Importance of spatio—tempo-
ral connectivity to maintain species experiencing range shifts.
— Dryad Digital Repository, <http://dx.doi.org/10.5061/dryad.
gb5mkkwk8>.

Hoving, C. L. et al. 2005. Broad-scale predictors of Canada lynx
occurrence in eastern North America. — J. Wildl. Manage. 69:
739-751.

Kanagaraj, R. et al. 2019. Predicting range shifts of Asian elephants
under global change. — Divers. Distrib. 25: 822-838.

Kuussaari, M. et al. 2009. Extinction debt: a challenge for biodi-
versity conservation. — Trends Ecol. Evol. 24: 564-71.

Legendre, P. 1993. Spatial autocorrelation — trouble or new para-
digm. — Ecology 74: 1659-1673.

Leroy, B. etal. 2016. virtualspecies, an R package to generate virtual
species distributions. — Ecography 39: 599-607.

Liaw, A. and Wiener, M. 2002. Classification and regression by
randomForest. — R News 2: 18-22.

Lira, P K. et al. 2019. Temporal lags in ecological responses to
landscape change: where are we now? — Curr. Landscape Ecol.
Rep. 4: 70-82.

Littlefield, C. E. et al. 2019. Connectivity for species on the move:
supporting climate-driven range shifts. — Front. Ecol. Environ.
17: 270-278.

Martensen, A. C. et al. 2017. Spatio—temporal connectivity: assess-
ing the amount of reachable habitat in dynamic landscapes.
— Methods Ecol. Evol. 8: 1253-1264.

McRae, B. H. et al. 2008. Using circuit theory to model connectiv-
ity in ecology, evolution and conservation. — Ecology 89:
2712-2724.

Mestre, E. et al. 2015. Combining distribution modelling and non-
invasive genetics to improve range shift forecasting. — Ecol.
Model. 297: 171-179.

Metzger, J. P et al. 2009. Time-lag in biological responses to land-
scape changes in a highly dynamic Adlantic forest region. — Biol.
Conserv. 142: 1166-1177.

Meurant, M. et al. 2018. Selecting surrogate species for connectiv-
ity conservation. — Biol. Conserv. 227: 326-334.

Moilanen, A. and Nieminen, M. 2002. Simple connectivity meas-
ures in spatial ecology. — Ecology 83: 1131-1145.



Mui, A. B. et al. 2017. Using multiple metrics to estimate seasonal
landscape connectivity for Blanding’s turtles (Emydoidea bland-
ingii) in a fragmented landscape. — Landscape Ecol. 32:
531-546.

Nixon, C. M. 1994. Behavior, dispersal and survival of male white-
tailed deer in Illinois. — Biological Notes no. 139.

Ontario Biodiversity Council. 2011. Ontario’s biodiversity strategy,
2011: renewing our commitment to protecting what sustains
us.

Opdam, P and Wascher, D. 2004. Climate change meets habitat
fragmentation: linking landscape and biogeographical scale lev-
els in research and conservation. — Biol. Conserv. 117: 285-297.

Parmesan, C. and Yohe, G. 2003. A globally coherent fingerprint
of climate change impacts across natural systems. — Nature 421:
37-42.

Pebesma, E. and Heuvelink, G. 2016. Spatio—temporal interpola-
tion using gstat. — R J. 8: 204-218.

Perry, G. L. W. and Lee, E. 2019. How does temporal variation in
habitat connectivity influence metapopulation dynamics?
— Oikos 128: 1277-1286.

Pilosof, S. et al. 2017. The multilayer nature of ecological networks.
— Nat. Ecol. Evol. 1: 101.

Poole, K. G. 1997. Dispersal patterns of lynx in the Northwest
Territories. — J. Wildl. Manage. 61: 497-505.

Rehnus, M. et al. 2018. Alpine glacial relict species losing out to
climate change: the case of the fragmented mountain hare
population (Lepus timidus) in the Alps. — Global Change Biol.
24: 3236-3253.

Reigada, C. et al. 2015. Metapopulation dynamics on ephemeral
patches. — Am. Nat. 185: 183-195.

Saura, S. and Pascual-Hortal, L. 2007. A new habitat availability
index to integrate connectivity in landscape conservation plan-
ning: comparison with existing indices and application to a case
study. — Landscape Urban Plan. 83: 91-103.

Saura, S. et al. 2011. Network analysis to assess landscape connec-
tivity trends: application to European forests (1990-2000).
— Ecol. Indic. 11: 407-416.

Supplementary material (available online as Appendix ecog-
04716 at <www.ccography.org/appendix/ecog-04716>).
Appendix 1.

Saura, S. et al. 2014. Stepping stones are crucial for species’ long-
distance dispersal and range expansion through habitat net-
works. — J. Appl. Ecol. 51: 171-182.

Schloss, C. A. et al. 2012. Dispersal will limit ability of mammals
to track climate change in the Western Hemisphere. — Proc.
Natl Acad. Sci. USA 109: 8606-8611.

Semper-Pascual, A. et al. 2018. Mapping extinction debt highlights
conservation opportunities for birds and mammals in the South
American Chaco. — J. Appl. Ecol. 55: 1218-1229.

Sutherland, G. D. et al. 2000. Scaling of natal dispersal distances
in terrestrial birds and mammals. — Conserv. Ecol. 4: 16.

Thuiller, W. et al. 2009. BIOMOD - a platform for ensemble fore-
casting of species distributions. — Ecography 32: 369-373.

Tilman, D. et al. 1994. Habitat destruction and the extinction
debt. — Nature 371: 65-66.

Tosa, M. I. et al. 2018. Increased overwinter mortalities of white-
tailed deer (Odocoileus virginianus) fawns during a drought year.
— Can. J. Zool. 96: 55-61.

Travis, J. M. J. et al. 2013. Dispersal and species’ responses to cli-
mate change. — Oikos 122: 1532-1540.

Urban, D. and Keitt, T. 2001. Landscape connectivity: a graph—
theoretic perspective. — Ecology 82: 1205-1218.

van Etten, J. 2017. R Package gdistance: distances and routes on
geographical grids. — J. Stat. Softw. 76: 1-21.

Villard, M.-A. and Metzger, J. . 2014. REVIEW: Beyond the frag-
mentation debate: a conceptual model to predict when habitat
configuration really matters. — J. Appl. Ecol. 51: 309-318.

Visconti, P. and Elkin, C. 2009. Using connectivity metrics in con-
servation planning — when does habitat quality matter? — Divers.
Distrib. 15: 602-612.

Weiskopf, S. R. et al. 2019. Climate change effects on deer and
moose in the midwest. — J. Wildl. Manage. 83: 769-781.
Zeigler, S. L. and Fagan, W. E 2014. Transient windows for con-

nectivity in a changing world. — Mov. Ecol. 2: 1.

Zeller, K. A. et al. 2018. Are all data types and connectivity models
created equal? Validating common connectivity approaches
with dispersal data. — Divers. Distrib. 24: 868-879.

603



