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Climate change can affect the habitat resources available to species by changing habi-
tat quantity, suitability and spatial configuration, which largely determine population 
persistence in the landscape. In this context, dispersal is a central process for species 
to track their niche. Assessments of the amount of reachable habitat (ARH) using 
static snap-shots do not account, however, for the temporal overlap of habitat patches 
that may enhance stepping-stone effects. Here, we quantified the impacts of climate 
change on the ARH using a spatio–temporal connectivity model. We first explored the 
importance of spatio–temporal connectivity relative to purely spatial connectivity in a 
changing climate by generating virtual species distributions and analyzed the relative 
effects of changes in habitat quantity, suitability and configuration. Then, we studied 
the importance of spatio–temporal connectivity in three vertebrate species with diver-
gent responses to climate change in North America (grey wolf, Canadian lynx and 
white-tailed deer). We found that the spatio–temporal connectivity could enhance the 
stepping-stone effect for species predicted to experience range contractions, and the 
relative importance of the spatio–temporal connectivity increased with the reduction 
in habitat quantity and suitability. Conversely, for species that are likely to expand 
their ranges, spatio–temporal connectivity had no additional contribution to improve 
the ARH. We also found that changes in habitat amount (quantity and suitability) 
were more influential than changes in habitat configuration in determining the relative 
importance of spatio–temporal connectivity. We conclude that spatio–temporal con-
nectivity may provide less biased and more realistic estimates of habitat connectivity 
than purely spatial connectivity.

Keywords: climate change, dynamic network model, landscape connectivity, Ontario, 
species distribution
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Introduction

Climate change may cause contractions in species distribu-
tions if future conditions become unfavorable in some parts 
of their range, and dispersal to new habitat may be neces-
sary for species’ long-term persistence (Parmesan and Yohe 
2003, Garcia et al. 2014). Furthermore, climate and land-use 
changes may alter the spatial composition and configuration 
of habitat, as well as habitat suitability, leading to declines 
in the availability of habitat resources (Opdam and Wascher 
2004, Travis  et  al. 2013). Hence, species persistence will 
largely depend on future habitat spatial pattern (Årevall et al. 
2018) and species ability to track their niche in space and 
time through dispersal (Schloss et al. 2012). Understanding 
how much habitat is reachable for species in a changing envi-
ronment is, therefore, of paramount importance for conser-
vation (Littlefield et al. 2019).

Assessing the amount of reachable habitat (ARH) requires 
quantifying the degree of landscape connectivity (Saura et al. 
2014). To date, a large number of connectivity models and 
metrics have been proposed, such as those based on meta-
population theory (Hanski and Ovaskainen 2000, Moilanen 
and Nieminen 2002), network theory (Urban and Keitt 
2001, Bodin and Norberg 2006, Saura and Pascual-Hortal 
2007), and on circuit theory (McRae  et  al. 2008). These 
approaches have also been employed to evaluate the impacts 
of climate change on habitat connectivity and species per-
sistence (Dilts et al. 2016, Albert et al. 2017, Rehnus et al. 
2018, Kanagaraj  et  al. 2019). Most connectivity models 
rely on spatial snap-shots of landscape structure to gener-
ate static connectivity estimates; however, some species pre-
dicted to experience ARH decrease or increase do not actually 
have immediate population declines or growth as expected 
(Metzger et al. 2009, Semper-Pascual et al. 2018, Lira et al. 
2019). Such ‘extinction debt’ and ‘colonization credit’ phe-
nomena (Tilman et al. 1994, Lira et al. 2019) require ecolo-
gists to consider temporal ecological processes going beyond 
a purely spatial perspective.

Although some recent studies highlighted the importance 
of accounting for temporal aspects in connectivity modeling 
(Alagador et al. 2014, Mui et al. 2017), only a few of them 
accounted for dispersal processes over generations (Saura et al. 
2014, de la Fuente et al. 2018), the variation in importance of 
habitat patches in maintaining connectivity due to seasonal 
habitat change (Mui et al. 2017, Bishop-Taylor et al. 2018), 
or the implications of ephemeral patches and transient con-
nectivity change in metapopulation dynamics (Reigada et al. 
2015, Perry and Lee 2019). Yet, the importance of tempo-
ral dynamics of habitat patches has largely been ignored 
(Blonder  et  al. 2012). Indeed, some habitat patches may 
appear and/or disappear through time in a dynamic land-
scape. Because of these dynamics, habitat patches may coexist 
at certain time periods even though they do not exist together 
at the start or end of a given temporal period (Zeigler and 
Fagan 2014). Such temporal overlap of habitat patches may 
contribute to enhancing the stepping-stone effect. To account 

for this effect, Martensen et al. (2017) developed a spatio–
temporal network-based model that incorporates temporal 
links between habitat patches, and showed that purely spatial 
connectivity models underestimate the actual connectivity 
patterns for forest landscapes experiencing habitat loss and 
fragmentation. However, the importance of spatio–temporal 
connectivity still remains unexplored in the context of species 
tracking their climatic niche, especially for species displaying 
varying vulnerabilities to climate change.

Here, we highlight the need of spatio–temporal connec-
tivity models (Martensen  et  al. 2017) to predict changes 
in the ARH across space and time under climate change. 
First, we provide a general framework to guide how to 
conduct spatio–temporal connectivity analyses for species 
experiencing range shifts. Then, we apply this framework 
to both theoretical simulations and case studies. The former 
generates a wide range of hypothetical species distributions 
on virtual landscapes, to illustrate under what conditions 
spatio–temporal connectivity can be more important than 
spatial-only connectivity. The latter applies ensemble spe-
cies distribution models to predict potential distributions 
of three terrestrial mammals in North America with diver-
gent vulnerabilities to climate change: white-tailed deer, 
Canada lynx and grey wolf. We expect that white-tailed 
deer and grey wolf will expand their range due to warmer 
temperatures and lower winter severity in future climates 
(Weiskopf  et  al. 2019), leading to a lower importance of 
spatio–temporal connectivity. We also expect that Canada 
lynx will contract its range due to less snowfall in winters 
(Hoving et al. 2005), which may produce a higher relative 
importance of spatio–temporal connectivity.

Methods

Spatio–temporal connectivity model

To assess the change in the amount of reachable habitat 
under varying climate conditions, we used a spatio–temporal 
connectivity model (Martensen et al. 2017). The spatio–tem-
poral connectivity model is actually a specific example of the 
multi-layer network (Pilosof  et  al. 2017), in which habitat 
patches are considered as nodes, and two static landscape 
snapshots as two layers. Nodes are connected by spatio–tem-
poral link that incorporates both intra-layer links (i.e. spatial 
links) and inter-layer links (i.e. temporal links) to represent 
their spatio–temporal interactions. Further, the spatio–tem-
poral path is a path made of one or multiple spatio–temporal 
links, representing the possibility of a dispersing organism 
moving from a given habitat patch at time t1 to another habi-
tat patch at time t2 (t1 < t2). To ensure the persistence from 
t1 to t2 in the dynamic landscape, species can either stay in a 
Stable patch, or disperse from a patch with habitat at t1 (i.e. 
Loss or Stable) to another patch with habitat at t2 (i.e. Gain 
or Stable). The schematic of spatio–temporal connectivity 
model is shown in Fig. 1.
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Given the time interval from t1 to t2, each habitat patch 
in a network can be classified into one of three types through 
polygon change analysis: Loss (i.e. habitat in t1 but not in 
t2), Stable (i.e. habitat in both t1 and t2) and Gain (i.e. habi-
tat in t2 but not in t1). Between any pair of habitat patches, 
the temporal link occurs only when two patches simultane-
ously exist during some intermediate time window from tx to 
ty (t1 < tx < ty < t2). If such information is unknown, the tem-
poral link may or may not occur, and is therefore assigned a 
probability w between 0 and 1.

Links in the spatio–temporal network can also be clas-
sified into two types: 1) the essential link, which alone, is 
able to transport an individual from a patch with habitat at 
t1 to another patch with habitat at t2; and 2) the auxiliary 
link, which by itself, is unable to successfully transport an 
individual as the essential link does. However, auxiliary links 
are complementary to essential links. For example, the path 
‘Stable→Loss→Stable’ is not possible if using essential links 
only, as no habitat will be readily available at t2 when spe-
cies arrives at Loss. Nevertheless, this path becomes possible 
after accounting for the auxiliary link: the species can first 
move to Loss that still has habitat in an intermediate time 
point through an auxiliary link, then it will need to disperse 
again from Loss to Stable using an essential link before Loss 
eventually loses habitat to ensure its persistence. Moreover, 
for the path ‘Stable→Loss→Gain→Stable’, the three links 
are auxiliary, essential and auxiliary links in sequence. The 

essential link from Loss to Gain may or may not be possible, 
as whether Loss and Gain coexist in the intermediate time 
window is unknown; the third link is an auxiliary link, since 
there is no habitat readily available at t1. To summarize, two 
nodes in the network can either be directly connected using 
a single essential link, or indirectly connected through a path 
consisting of several essential and auxiliary links, as long as 
there is at least one essential link. In the latter case, the step-
ping-stone effect is taken into account, which helps species 
reach more habitat than by using essential links only. The 
temporal dispersal probability ( pij

t ) of each link scenario is 
listed in Table 1 (see Martensen  et  al. 2017 for additional 
details).

Lastly, the spatio–temporal dispersal probability between 
habitat patches ( pij

st ) is the product of spatial dispersal prob-
ability ( pij

so ) and temporal dispersal probability ( pij
t ). The 

spatial dispersal probability is commonly calculated using 
an exponential form (Urban and Keitt 2001): p eij

kdijso = −

; where k is a species-specific coefficient indicating the spe-
cies dispersal ability, and dij is the spatial distance between 
node i and j. The distance can either be Euclidean distance 
or any effective distance that reflects landscape resistance. 
To parameterize k when effective distance is used, pij

so  can 
be fixed as 0.5, the species median dispersal distance can be 
multiplied by the median cost value of the cost surface, and 
their product can substitute dij in the equation to solve for k 
(Gurrutxaga et al. 2011).

Figure 1. Schematic representation of the conceptual difference between spatial-only and spatio–temporal connectivity models. The spatial-
only connectivity model provides assessments based on static landscape snapshots (panels (a) and (b)). At time t1, the landscape has two 
connected habitat patches, i and k, and the interaction intensity (indicated by dispersal probability) between them is the same in both 
directions. At time t2, patch k is lost while another patch j appears in the landscape; yet, because the distance between patches i and j is 
greater than species dispersal ability, there is no connection between them. Nevertheless, from the spatio–temporal perspective (panel (c)), 
where blue, red and green colors denote Stable, Loss and Gain types of patches, respectively; i and j may be connected if a dispersing indi-
vidual first moves to k, which may still have habitat at an intermediate time point, then disperses again from k to j before k is eventually 
lost. Patch k therefore acts as a stepping-stone from the spatio–temporal perspective. The solid and dashed lines denote the essential and 
auxiliary links (explained in the text). In this case, the interaction between patches is directional and the intensity may not be identical in 
both directions.
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Connectivity metrics

The probability of connectivity (PC) is the probability that 
two individuals randomly placed within a landscape fall into 
habitat patches that are reachable for each other across the 
habitat network (Saura and Pascual-Hortal 2007). To quan-
tify the amount of reachable habitat, we used the equivalent 
connectivity (EC; Saura et al. 2011), which is calculated as 
the square root of the numerator of PC. Further, to distin-
guish the area-based and habitat configuration aspects of con-
nectivity metrics, we partitioned the PC into three fractions 
following Saura et al. (2014): PCintra, PCdirect and PCstep (see 
Supplementary material Appendix 1 for their formulae). All 
metrics except PCintra are functions of dispersal probabilities. 
Spatial-only (with an ‘so’ superscript) and spatio–temporal 
(with an ‘st’ superscript) connectivity metrics were calculated 
using pij

so  and pij
st , respectively (Martensen et al. 2017). ECso 

indicates the habitat resource (e.g. habitat area and suitabil-
ity) of a single patch that would provide the same probability 
of connectivity as the actual habitat pattern in the landscape. 
ECst indicates the resources of a single ‘Stable’ habitat patches 
that would provide the same probability of spatio–temporal 
connectivity as the spatio–temporal network. PCintra

so  indi-
cates the intra-node connectivity provided by all existing 
patches in the landscape, while PCintra

st  indicates the intra-
node connectivity provided by Stable patches only. PCdirect

so  
is the inter-node connectivity provided by direct spatial 
links, while PCdirect

st  the inter-node connectivity provided by 
direct spatio–temporal links. PCstep

so  denotes the inter-node 
connectivity contributed by stepping-stone effects through 
indirect spatial links, while PCstep

st  denotes the inter-node 

connectivity contributed by stepping-stone effects through 
indirect spatio–temporal links.

General framework for the spatio–temporal network 
construction

Here, we demonstrate how to construct spatio–temporal 
network for species experiencing range shifts under climate 
change. First, the habitat suitability for the focal species needs 
to be obtained using some approach on the considered land-
scape (Fig. 2A). To analyze connectivity for species distrib-
uted in a continuous landscape, the landscape can be divided 
into multiple equal-size blocks with a coarser resolution than 
that of the landscape. For example, the spatial resolution of 
the landscape is one grid cell while the resolution of the block 
is five grid cells (Fig. 2B). Then, block centroids can be con-
sidered as nodes for the network analysis (Dilts et al. 2016). 
The mean and the sum of habitat suitability are computed for 
each individual block. A block is considered suitable habitat 
when its mean habitat suitability is >0.5. Therefore, a node is 
classified as Loss if the block’s mean habitat suitability is >0.5 
at t1 but not at t2, Gain if opposite, and Stable if higher than 
0.5 at both t1 and t2. To account for the habitat suitability 
heterogeneity within the block, centroids can be located in 
a spatially weighted mean fashion (Fig. 2C). Node weights 
are given by the sum of habitat suitability within the block 
at t1 for the Loss, the sum at t2 for the Gain, and the mean of 
sums at t1 and at t2 for the Stable, and zero for blocks without 
habitat at both t1 or t2.

Given that landscape heterogeneity influences species dis-
persal, landscape resistance can be calculated as the inverse of 

Table 1. Temporal dispersal probability ( pij
t ) for each type of link, adapted from Martensen et al. (2017).

Source patch: individual location at  
t1 for the essential links or at tx  
(t1 < tx < t2) for the auxiliary links

Target patch: individual location after t1

Essential link (individual location at t2)
Auxiliary links (individual  
location in ty, tx < ty < t2)

Stable Loss Gain Stable Loss Gain

Stable 1 0 1 N/A 1 N/A
Loss 1 0 w N/A 1 N/A
Gain 0 0 0 1 w 1

Figure 2. (A) An example of the generated virtual species distributions (50 × 50 grid cells) with probability-of-occurrence represented on 
each grid cell. (B) Dividing the landscape into equal-size study blocks of 5 × 5 grid cells. (C) The location of block centroid was weighted 
by the probability-of-occurrence, and the centroid was considered as the node in the subsequent network analysis. See Supplementary mate-
rial Appendix 1 Fig. A2 for the example of the actual species.
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habitat suitability. This approach is suggested to be sufficient 
to estimate landscape resistance in the absence of empirical 
species movement data (Zeller et al. 2018). Next, least-cost 
modeling (Adriaensen et al. 2003) can be applied, using block 
centroids as endpoints and resistance surface with the fine 
resolution, to estimate effective distance among immediately 
adjacent blocks (van Etten 2017). For the spatio–temporal 
connectivity case, the effective distance can be calculated as 
a weighted average form to reflect spatio–temporal variations 
in landscape resistance:

d d dij ij t ij t, , , , , ,st = × + −( ) × ∈( )α α α1 21 0 1  (1)

where dij,t1 and dij,t2 denote the effective distance from i to j at 
t1 and at t2, respectively; and α is the weight given to dij,t1 that 
ranges from zero to one, since the actual time of change in 
landscape resistance is unknown. To keep the model simple 
in the general framework, α and w (Table 1) are set to 0.5.

After obtaining node attributes and types, as well as links 
between nodes, spatial-only and spatio–temporal connectiv-
ity analyses can be conducted for the focal species. The rela-
tive importance of spatio–temporal connectivity is indicated 
by the difference proportion of spatio–temporal EC over its 
spatial-only counterpart (i.e. EC EC ECst

2
so so−( )t t/ 2 ). Thus, 

positive values indicate that spatio–temporal connectivity 
enhances connectivity.

Theoretical simulations using virtual species

We used the ‘virtualspecies’ package (Leroy  et  al. 2016) in 
R ver. 3.6.0 (<www.r-project.org>) to generate virtual spe-
cies distributions on a two-dimensional landscape of 50 × 50 
grid cells, based on two hypothetic environmental variables 
with the same spatial extent. As environmental conditions 
often display spatial autocorrelation (Legendre 1993), we 
used the ‘gstat’ package (Pebesma and Heuvelink 2016) to 
generate the spatially correlated random field for each vari-
able (under current and future scenarios) using sequential 
Gaussian simulations with an exponential variogram model 
(sill number = 0.025, range parameter = 15). A total number 
of 120 virtual species distributions (half current, half future) 
were generated. Changes between current and future distri-
butions therefore represented a wide range of species vulner-
abilities to climate change. On the distribution map, each 
grid cell has a value ranging from 0 to 1 indicating the prob-
ability-of-occurrence (i.e. relative habitat suitability) for the 
virtual species. Following the framework in the last section 
and defining the block size as 5 × 5 grid cells, we conducted 
both spatial-only and spatio–temporal connectivity analyses 
for three hundred virtual species, as combinations of the sixty 
divergent vulnerabilities to climate change and five differ-
ent dispersal abilities (5, 10, 15, 25 and 35 grid cells as the 
median natal dispersal distance). Connectivity analyses were 
performed using R scripts in conjunction with the command 
version of Conefor (<www.conefor.org/>).

Statistical analysis

For the simulated virtual species, we disentangled the effect 
sizes of changes in 1) habitat quantity, 2) habitat suitability 
and 3) habitat spatial configuration on the relative impor-
tance of spatio–temporal connectivity for species with differ-
ent dispersal abilities. The first explanatory variable was the 
difference proportion of the number of blocks with suitable 
habitat (t2 over t1). The second explanatory variable was the 
difference proportion of the habitat suitability averaged over 
the 100 blocks. The third explanatory variable was the differ-
ence proportion of the habitat aggregation index (He et al. 
2000), which is independent of habitat composition and 
indicates the degree of habitat aggregation/isolation. As 
some explanatory variables did not display linear relation-
ship with the response variable even after log-transformations 
(Supplementary material Appendix 1 Fig. A3), a random 
forests algorithm was used to investigate the variable impor-
tance given its robustness to nonlinear relationships (Breiman 
2001). The number of trees was 1000, and 999 permutations 
for the ‘out-of-bag’ data were conducted to assess the variable 
importance. We used the ‘randomforest’ (Liaw and Wiener 
2002) and ‘landscapemetrics’ packages (Hesselbarth  et  al. 
2019) in R to perform these analyses.

Case studies using real species

Study area and species
We applied spatio–temporal connectivity to actual species 
in North America. The study area covers ten eco-regions 
in central and southern Ontario, Canada (ca 603 thousand 
km2; Fig. 3), with dominant climatic types of warm-summer 
humid continental and subarctic. The northern eco-regions 
were excluded as the primary land cover there is tundra, 
which is unlikely to become suitable habitat in the short term 
according to the climate change velocity map (Burrows et al. 
2011). According to Species at Risk in Ontario List, there 
are in total 232 endangered and/or threatened species, whilst 
climate change is considered one of the main threats to biodi-
versity in the province (Ontario Biodiversity Council 2011).

Following Meurant  et  al. (2018), we selected three ter-
restrial species with different dispersal abilities, habitat needs 
and vulnerabilities to potential climate changes in temper-
ate North America: white-tailed deer Odocoileus virginianus, 
Canada lynx Lynx canadensis and grey wolf Canis lupus. The 
latter two are carnivorous species that primarily prey on snow-
shoe hare and deer, respectively. We obtained the four species 
presences data (year 1970–2018) from Global Biodiversity 
Information Facility (GBIF) and their characteristics (e.g. 
dispersal abilities and longevity) from the literature. See Table 
2 for detailed information.

We downloaded current and projected bioclimatic vari-
ables, as well as current forest loss map from databases listed 
in Table 2. We defined the year 2030 as a near future time 
point, so that the temporal difference from current to future 
approximately fits the longevity of our focal species. For 
future climate scenarios, we adopted the four Representative 
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Concentration Pathway scenarios (RCP 2.6, 4.5, 6.0 and 8.5; 
see IPCC AR5), in which the extent of emissions and global 
warming increases from RCP 2.6 to RCP 8.5.

We then divided the study area into 428 equal-size 
40 × 40 km blocks. This size was chosen to ensure that all 
focal species could move across blocks during one genera-
tion to facilitate network analyses. The snowshoe hare was 
excluded from the connectivity analysis, as its dispersal ability 
is smaller than the block size.

Ensemble forecasting for species distributions
We used the ‘biomod2’ package (Thuiller  et  al. 2009) to 
implement ensemble species distribution projections, which 
are considered to increase the predictive accuracy and robust-
ness with regard to individual models in the face of model 
uncertainties (Araújo and New 2007). To account for preda-
tor–prey interactions, we first predicted potential spatial 
distributions of snowshoe hare and white-tailed deer using 
the approach below, and then integrated their distributions 
with other environmental variables to predict potential dis-
tributions of their predators: Canada lynx and grey wolf, 
respectively.

As a first step to the ensemble forecasting, we added an 
equal number of pseudo-absences to presences data of each 

focal species across study area using a surface range envelope 
model, which forces pseudo-absence candidates to be selected 
in condition that differs from a defined proportion (0.025 in 
this study) of presence data (Beaumont and Hughes 2002).

Then, we ran a principal component analysis (PCA) on 
the nineteen bioclimatic variables using the ‘ade4’ pack-
age (Dray and Dufour 2007) to avoid potential collinearity 
problems. We retained the ones potentially most relevant to 
the species distribution among highly correlated bioclimatic 
variables, based on the biological knowledge of the focal spe-
cies: as the white-tailed deer is sensitive to drought events 
(Tosa et al. 2018), Bio12 (annual precipitation) and Bio17 
(precipitation of the driest quarter) were retained; as snow-
shoe hare and Canada lynx are sensitive to snowfall and snow 
cover (Hoving et al. 2005), Bio11 (mean temperature of the 
coldest quarter) and Bio19 (rain precipitation of the coldest 
quarter) were retained; and given that the grey wolf is sensi-
tive to prey distributional changes, the same variables as the 
ones retained for the white-tailed deer were selected as they 
also displayed great importance and low correlation for grey 
wolf (Supplementary material Appendix 1 Fig. A1).

Next, we modeled future forest cover change. The future 
(2012–2030) forest loss amount across the study area was 
predicted based on the assumption that the future period 

Figure 3. Species occurrence data downloaded from GBIF (time captured: 1970–2018).
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would have the same average annual forest loss rate as in the 
past (2000–2012). The spatial allocation of future forest loss 
was achieved by assuming that the block that lost more forest 
in the past would also have higher probability of losing forest 
in the future. To do so, we computed forest loss amount in 
the past period for each block and created a probability-of-
loss surface. We then generated future forest loss points based 
on the total loss amount and probability-of-loss surface using 
the ‘Create Spatially Balanced Points’ tool in ArcGIS 10.2, 
and converted spatial points to the raster map. By overlap-
ping raster layers of forest loss (actual 2000–2012 and pre-
dicted 2012–2030) with the forest cover in the year 2000, we 
obtained the potential forest cover in 2030.

Further, we built the ensemble models for each species 
by combining eight algorithms available in the ‘biomod2’ 
package: GAM, GBM, GLM, CT, ANN, FDA, MARS and 
RF. To evaluate the predictive accuracies of these models, we 
conducted three-fold cross-validations by randomly splitting 
the dataset into two parts: 80% for calibration and 20% for 
evaluation. Then, we used the true skill statistics (TSS) as the 
model evaluation metrics following Allouche  et  al. (2006). 
We selected models with TSS >0.7 for the final ensemble 
forecasting.

Finally, the ensemble models were projected to the current 
and future climate scenarios based on four ensemble algo-
rithms: mean possibility, median possibility, weighted mean 
possibility and committee averaging, and only the one with 
the highest TSS was retained for further analysis.

We generated potential 1) habitat suitability (range: 
0–1000) maps and 2) binary range maps for our focal spe-
cies. We defined the habitat threshold as the minimum habi-
tat suitability within the species range, rather than a uniform 
threshold in the general framework. The thresholds for white-
tailed deer, Canada lynx and grey wolf were: 781, 286 and 
349, respectively.

We then conducted connectivity analyses for the three 
focal species following approaches elaborated in the section 
2.3. We also conducted a sensitivity analysis to test whether 
spatio–temporal connectivity assessments are robust to 
parameterizations of w (Table 1) and α (Eq. 1). Nine assess-
ments (as combinations of w = 0.25, 0.5, 0.75 and α = 0.25, 
0.5, 0.75) were generated and standard deviations of values 
of spatio–temporal connectivity metrics were calculated for 
each focal species.

Results

Virtual species

In the 60 climate change scenarios, 27 of them (45%) led 
to net increments in habitat quantity from t1 to t2, and 
36 of them (60%) had net increases in habitat suitability 
(Supplementary material Appendix 1 Fig. A4). Out of the 
300 virtual species, 44% of them displayed higher (posi-
tive) importance of spatio–temporal connectivity relative to 
spatial-only connectivity in the amount of reachable habitat 

(EC; Fig. 4). Cases in which spatio–temporal connectivity 
had higher relative importance occurred mostly when habi-
tat quantity, suitability and aggregation were predicted to 
decrease in t2. Conversely, when habitat quantity, suitability 
and aggregation were predicted to increase, spatio–temporal 
connectivity had lower relative importance.

The relationships between the three components of con-
nectivity and changes in landscape were similar to the rela-
tionship observed for EC. In particular, PCdirect and PCstep 
were more affected by changes in landscape than PCintra, since 
only 8% of the virtual species showed higher importance 
in the PCintra

st  fraction, while 32% of them showed higher 
importance in PCdirect

st  and 45% in PCstep
st .

The relationships between the relative importance of spa-
tio–temporal connectivity and the three landscape variables 
did not display much variation among species dispersal abili-
ties. However, species dispersal ability changed their relative 
effect sizes in explaining the importance of spatio–temporal 
connectivity. Specifically, habitat aggregation was impor-
tant only for short-distance dispersers, while its importance 
decreased with increasing dispersal ability; yet, changes 
in habitat quantity and suitability always had larger effect 
sizes than habitat configuration across all dispersal abilities 
(Supplementary material Appendix 1 Fig. A6).

Focal species in Ontario

The goodness-of-fit (TSS values) of the ensemble forecasting 
of the species distributions were 0.93, 0.94, 0.95 and 0.94 
for snowshoe hare, white-tailed deer, Canada lynx and grey 
wolf, respectively; indicating that our models had consider-
ably high predictive accuracy. In current conditions, white-
tailed deer, Canada lynx and grey wolf are likely to occur 
across southern and central Ontario, respectively; and in all 
future scenarios, white-tailed deer and grey wolf were pre-
dicted to expand northwards, whereas Canada lynx’s range 
was predicted to shrink (Fig. 5).

The number of ‘Gain’ blocks ranged from 68 (under RCP 
6.0) to 168 (under RCP 8.5) for white-tailed deer, and from 
120 (under RCP 6.0) to 210 (under RCP 8.5) for grey wolf 
(Supplementary material Appendix 1 Fig. A5A). In contrast, 
habitat quantity of Canada lynx declined considerably under 
all predicted future climate scenarios, and RCP 8.5 produced 
the most severe range contraction. In terms of changes in 
habitat suitability, RCP 8.5 produced the largest improve-
ment for white-tailed deer and grey wolf, while causing the 
largest reduction for Canada lynx (Supplementary material 
Appendix 1 Fig. A5B).

ECso of white-tailed deer and grey wolf was predicted 
to increase in 2030, with RCP 8.5 resulting in the larg-
est increases, while the opposite was true for Canada lynx 
(Fig. 6A). On the other hand, ECst of white-tailed deer and 
grey wolf were smaller than ECso at 2030 (Fig. 6B), and the 
relative reductions in ECst ranged from ca −40% to −20%. 
Overall, larger relative reductions in spatio–temporal con-
nectivity metrics were observed in scenarios predicting larger 
range expansions. Conversely, Canada lynx had larger ECst 
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Figure 5. Predicted distributions for the three focal species under different climate scenarios, with relative habitat suitability (0–1000) rep-
resented on each grid cell.

Figure 4. Relative importance of spatio–temporal connectivity for virtual species under a range of changes in (A) habitat quantity; (B) habi-
tat suitability; and (C) habitat configuration (indicated by aggregation index; AI). Negative values on the x-axis correspond to decreases in 
habitat quantity, habitat suitability and habitat aggregation/connectedness, respectively. Positive values on the y-axis correspond to cases 
where spatio–temporal connectivity is more important than spatial-only connectivity. The number above each panel indicates species dis-
persal ability, corresponding to the product of median natal dispersal distance (i.e. 5, 10, 15, 25 and 35 grid cells) and the median cost value 
(i.e. 2, as the reciprocal of the median habitat suitability of 0.5) on the resistance surface. Colors indicate the connectivity metric: EC, 
equivalent connectivity; PCdirect, probability of connectivity provided by direct connections; PCintra, probability of connectivity provided by 
habitat amount; PCstep, probability of connectivity provided by indirect connections that use stepping-stones.
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than ECso and the relative increase ranged from 1% to 106%, 
with RCP 8.5 producing the largest increment. The three 
PCst fractions of Canada lynx also exceeded their spatial-only 
counterparts in most cases, and showed up to a 250% relative 
increase for PCdirect

st  and 550% for PCstep
st  under the RCP 

8.5 scenario. Meanwhile, all connectivity metrics did not 
vary significantly under a range of w and α values (Fig. 6B), 
indicating the robustness of the spatio–temporal connectivity 
model to the choice of these parameters.

Discussion

Previous research has shown that purely spatial connectivity 
models may substantially underestimate the actual amount 
of reachable habitat (ARH) and colonization–extinction 
rates in landscapes with high levels of land-use change 
(Martensen et al. 2017). Here, we showed that this is also 
true in the context of climate change. However, the rela-
tive importance of spatio–temporal connectivity depends 
on species responses to climate change, and on the mag-
nitude of climate change. Moreover, we found evidence 
that changes in habitat quantity and suitability have greater 
effects on the relative importance of spatio–temporal con-
nectivity, compared with changes in habitat configuration 
and species dispersal ability.

Importance of the spatio–temporal connectivity 
given different vulnerabilities of species to  
climate change

Our results showed that spatio–temporal connectivity was 
important for those species predicted to experience range 
contractions under climate change. For example, the shift 
of winter precipitation to less snowfall but more rainfall 
(Supplementary material Appendix 1 Fig. A7) in Canada 
lynx’s current range is likely to have negative implications 
for the species (Hoving  et  al. 2005). Consequentially, the 
ARH of Canada lynx was predicted to decrease by 21–81% 
in 2030 from the spatial-only perspective, in agreement with 
other studies documenting the declining trend of available 
habitat for Canada lynx in this region (Hornseth et al. 2014). 
Yet, the spatio–temporal connectivity estimation indicated 
that the decline in connectivity might not be so dramatic, 
due to the stepping-stone effects enhanced by spatio–tem-
poral connectivity. The evidence is shown in Fig. 6B, where 
the PCstep

st  fraction is nearly five times higher than PCstep
so  

under the most severe scenario. As such, spatio–temporal 
connectivity may partly explain the delayed extinctions given 
habitat reductions and fragmentation (Tilman  et  al. 1994, 
Martensen  et  al. 2017). Indeed, Hooftman  et  al. (2016) 
found that connectivity was one factor strongly correlated 
to the likelihood of delayed local extinction, and the level 

Figure 6. (A) Amount of reachable habitat from the spatial-only and the spatio–temporal (w = 0.5, α = 0.5) perspectives (indicated by ECso 
and ECst, respectively) of each focal species under different climate scenarios. Parameter w denotes the temporal dispersal probability that 
may or may not be possible, and α the weight given to landscape resistance at t1. For the current condition, ECst is missing as no spatio–
temporal connectivity was calculated from past to current. (B) The relative importance of spatio–temporal connectivity compared with 
spatial-only connectivity for each focal species under different climate scenarios, with the error bar indicating the standard deviation of nine 
relative differences under a range of w and α values.
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of connectivity could be enhanced by the existence of more 
temporally dynamic populations acting stepping-stones, 
which is in congruence with our findings.

Nevertheless, the relative importance of spatio–temporal 
connectivity decreased for species expected to increase their 
future habitat amount. For example, warmer temperatures and 
less snowfall in the winter (Supplementary material Appendix 
1 Fig. A7) favor the survival and population spreading of 
white-tailed deer (Weiskopf et al. 2019), which may also lead 
to population expansion of its predator, grey wolf (Fig. 5). As 
a result, the spatio–temporal ARH of these two species was 
smaller than the spatial-only one (Fig. 6A). This finding agrees 
with Martensen et al. (2017), which showed that the positive 
contribution of spatio–temporal connectivity decreased with 
increasing habitat gained. From the model perspective, when 
there are additional habitat patches gained in the landscape, 
none of them can provide intra-node connectivity in the spa-
tio–temporal case, as only ‘Stable’ patches are considered as 
places where the intra-patch connectivity occurs. Yet, these 
patches can provide intra-node connectivity in the spatial-only 
case as they indeed exist in the landscape at time t2. From the 
ecological standpoint, such reductions in spatio–temporal con-
nectivity relative to its spatial-only counterpart may also partly 
explain the ‘colonization credit’ (Lira et al. 2019), which is an 
inverse concept to ‘extinction debt’ and refers to the number 
of individuals or species yet to colonize a focal habitat due 
to positive landscape changes. Hence, there should be many 
instances where spatio–temporal connectivity may provide 
less biased and more realistic estimates of habitat connectivity, 
given the presence of extinction debts and colonization credits 
(Kuussaari et al. 2009, Lira et al. 2019) and the stepping-stone 
effect across space and time (Saura et al. 2014).

Likewise, the intensity of climate change also changed 
the relative importance of spatio–temporal connectivity, as it 
affected habitat suitability within the patch. Previous studies 
have suggested that habitat suitability is an important fac-
tor affecting metapopulation dynamics (Franken and Hik 
2004) and should be incorporated into connectivity models 
(Visconti and Elkin 2009). Here, we quantified habitat suit-
ability based on species ecological niches, habitat requirements 
and food resources (i.e. prey–predator interactions), and used 
it as node attributes. Therefore, habitat quantity and quality 
jointly determined the amount of habitat resources. Also, cases 
where habitat quantity increased and/or decreased often corre-
sponded to the overall improvement and/or decline in habitat 
suitability, so these two factors affected the importance of the 
spatio–temporal connectivity in the same direction (Fig. 4).

Effects of habitat amount versus effects of habitat 
isolation and species dispersal ability

In a climate change context, variations in the ARH mainly 
come from changes in landscape structures, including habi-
tat quantity, suitability and spatial configuration (Villard and 
Metzger 2014). Numerous studies have debated the relative 
effect sizes of these factors on population persistence for dif-
ferent taxa (Heller and Zavaleta 2009, Hodgson et al. 2011, 

Fahrig 2017, Fletcher et al. 2018). Their effects on the relative 
importance of spatio–temporal connectivity, however, has yet 
to be fully understood. This issue has significance for conser-
vation science, as it helps to identify conditions under which 
extinction debts are likely to occur in the landscape (Semper-
Pascual  et  al. 2018), and guides conservation practices to 
avoid eventual local extinctions. We found that the effect 
sizes of these three factors varied depending on species dis-
persal ability (Supplementary material Appendix 1 Fig. A6). 
However, the effect size of habitat configuration was always 
smaller than that of the other two factors, and the effect size 
continuously decreased with increasing dispersal ability. This 
response of the effect size of habitat configuration to dispersal 
ability is logical because, for long-distance dispersers, their 
dispersal ability is already high enough to reach even the most 
isolated habitat patches. The implication of this finding for 
conservation science is that, given limited conservation bud-
gets, it may be more effective to focus on increasing habitat 
amount (quantity and suitability) than improving habitat 
connections (Hodgson et  al. 2011). Conversely, for species 
with smaller dispersal ability, enhancing habitat connections 
(e.g. via movement corridors; Gilbert-Norton  et  al. 2010) 
could increase species movement and the amount of reach-
able habitat to cope with climate change.

In conclusion, our study highlights the need of spatio–
temporal connectivity models to evaluate the impact of cli-
mate change on species’ amount of reachable habitat across 
space and time. Specifically, our results suggest an increasing 
importance of spatio–temporal connectivity for species with 
contracting ranges by enhancing the stepping-stone effect. 
Moreover, spatio–temporal connectivity can also provide less-
biased results for species with expanding ranges. Nevertheless, 
it does not mean that spatio–temporal connectivity can guar-
antee the long-term persistence of species in the face of dras-
tic environmental change: it may only increase the ‘relaxation 
time’ (i.e. the time lag to extinction; Kuussaari et al. 2009). 
We still need to put a lot of effort in habitat restoration, pri-
marily increasing habitat quantity and suitability, to prevent 
eventual species extinctions.
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