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Owing to difficulties in accessing the vast open ocean, the beta (β) diversity of pelagic fish assemblages remains poorly studied. 

We investigated the relationship between assemblage similarity and geographical distance between anchored fish aggregating 

devices (FADs), sampled by standardised underwater visual censuses in three anchored FAD arrays in the Indian Ocean—at the 

Maldives, the Seychelles and Mauritius. The use of two complementary indices of β-diversity, based on presence/absence data 

(Jaccard similarity coefficient) and abundance data (Bray–Curtis index), revealed that geographical distance between sampling 

sites (from 4 to 257 km) appeared to have no effect on the similarity of fish assemblages associated with FADs within each array. 

The results of this preliminary study question the generalisation of the paradigm of an increase in β-diversity with geographic 

distance to the open-ocean fish community. Large-scale studies using a variety of datasets should be conducted to further 

investigate patterns of β-diversity in the open ocean. 
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Characterising how diversity changes according to 

different spatial and temporal scales is a fundamental goal 

in community ecology (e.g. Legendre and Fortin 1989). 

However, the study of patterns in fish diversity in the open 

ocean, the largest ecosystem on the earth (Angel 1993), 

is still in its infancy. This situation is largely due to the 

logistical and financial constraints associated with collecting 

relevant data for the analysis of biodiversity in such a 

difficult-to-access environment (Gaertner et al. 2008). As a 

consequence, the first attempts to infer worldwide patterns 

of species richness were restricted to both large predatory 

fishes and fisheries-dependent datasets (Worm et al. 2003; 

Trebilco et al. 2011). Although fisheries data remain an 

important data source, they have several shortcomings, and 

fisheries-independent methods are needed to complement 

the general picture of the diversity in pelagic ecosystems 

(Murphy and Jenkins 2010). In the last decade, several 

non-destructive and reproducible fisheries-independent 

methods have been developed to study pelagic fish 

assemblages, such as midwater baited camera surveys 

(Letessier et al. 2013; Santana-Garcon et al. 2014) or 

underwater visual censuses (UVCs) at fish aggregating 

devices (FADs) (Gaertner et al. 2008). Anchored or drifting 

FADs are artificial floating devices built by fishers to 

facilitate the capture of targeted pelagic species, usually 

tunas (Hunter and Mitchell 1967; Fonteneau et al. 2000). 

Several studies have investigated pelagic fish assemblages 

at FADs (Castro et al. 1999; Dempster 2005; Addis et al. 

2006; Andaloro et al. 2007; Taquet et al. 2007). Gaertner 

et al. (2008) advocated that sampling at FADs allows 

the study of a well-delimited and reproducible part of the 

pelagic fish community, which then can help the monitoring 

of open-ocean fish diversity.

Beta (β) diversity involves investigations of species 

changes in space and/or time, as well as ecological 

connectivity (Anderson et al. 2011). As such it allows 

the identification of heterogeneous communities and is 

thus regarded as a valuable tool for conservation and 
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ecosystem-based fisheries management (Anderson et al. 

2013). Generally, β-diversity has been found to increase 
with respect to geographical distance in both terrestrial and 

marine environments (Soininen et al. 2007; Shackell et al. 

2012). We tested this hypothesis for open-ocean pelagic 

fish diversity. We assessed changes in β-diversity between 
pairs of FADs along a spatial gradient within anchored FAD 

arrays in three areas of the Indian Ocean, considered as 

three different case studies.

Materials and methods

In each of the anchored FAD arrays (at the Maldives, 

the Seychelles and Mauritius) (Appendix 1), UVCs were 

conducted by SCUBA divers on four specific anchored 

FADs which were sampled on the same day. These UVCs 

were repeated (conditions permitting) five times in the 

Maldives, four times in the Seychelles, and three times in 

Mauritius, between May 2008 and January 2011 (Table 1). 

All the surveyed FADs were anchored at depths greater 

than 300 m and were thus considered to be offshore 

deep-water FADs. The FAD design within each country 

was identical but could differ between countries. In the 

Maldives, the floating structure of the FAD consisted of a 

single large fibreglass buoy (1.5 m in diameter), whereas in 

Mauritius and the Seychelles a chain of rigid buoys (0.2 m 

in diameter) was used. The dives were conducted between 

08:00 and 15:00, at 15 m depth and for a 30-minute 

duration, following a standardised UVC protocol (Gaertner 

et al. 2008). The horizontal visibility during the UVCs varied 

between 15 and 20 m, and thus we considered that the 

volumes sampled during all the UVCs were comparable. 

Owing to safety concerns, the UVCs were performed 

only in calm to moderate sea conditions (i.e. wind speed 

<30 km h–1, wave height <1.5 m, and surface current 

speed ≤1.9 km h–1). Tuna species were not included in the 

censuses as they often occurred outside the visual range 

of the scientific divers, making estimations of these species 

particularly inaccurate (Gaertner et al. 2008).

Within each FAD array, we investigated the effects 

of the geographical distance between each pair of FADs 

i and j on the composition of their fish assemblage. Here, 

low values of similarity indices indicated high β-diversity. 

We used two complementary similarity indices: Jaccard’s 

coefficient of similarity (Sij) and the Bray–Curtis similarity 

index (1–BCij); Sij is based on presence/absence data and 

takes into account the proportion of unshared species 

between two FADs, whereas 1–BCij is based on abundance 

data (Anderson et al. 2011). A log transformation, log(n+1), 

was applied to the abundance data n to minimise the 

effect of highly abundant species (e.g. schooling fish), 

prior to calculating the Bray–Curtis index. The pairwise 

comparisons were computed independently within each 

FAD array and on the same sampling dates only. This 

was done to exclude possible seasonal effects as reported 

in other studies (Dempster 2005). Furthermore, linear 

mixed-effects models were used to test the effect of the 

geographical distance on each index (Yij) for each FAD 

array. Each pair of UVCs was classified according to the 

date on which they were carried out. The sampling-date 

effect (µoi) was thus treated as random variations around 

a population mean, and the distance between anchored 

FADs (β1distij) was assessed as a fixed continuous 

covariate, as follows:

Yij = β0 + β1distij × µoi + εij

Results

A total of 19 species (12 families), 14 species (9 families) 

and 21 species (10 families) were observed in the 

Maldives, the Seychelles and Mauritius, respectively 

(Figure 1). Carangidae (such as Elagatis bipinnulata, 

Caranx sexfasciatus and Decapterus macarellus) were 

the most frequent recorded species in each FAD array 

(Figure 1a). Figure 1b displays the distribution of fish 

species richness for each FAD array. The Maldives had a 

higher mean species richness per UVC (mean 7.3 [SD 2.4]; 

Kruskal–Wallis test: χ2 = 20.8, df = 2, p < 0.05) than both 

Mauritius (mean 4.7 [SD 1.7]) and the Seychelles (mean 

3.8 [SD 1.2]). β-diversity expressed through both the Sij 

and 1–BCij similarity indices generally exhibited no trend 

with an increase in geographical distance between FADs 

in each FAD array (i.e. the geographical distance between 

Area
Sampling date 

(no. UVCs)

Total no. of 

UVCs

No. of FAD 

pairs compared

Distance between 

FADs (km)

Maldives Nov 2009 (4) 19 27 39–257

Feb 2010 (3)

Apr 2010 (4)

Oct 2010 (4)

Jan 2011 (4)

Seychelles Jan 2010 (4) 15 21 4–34

Apr 2010 (4)

Oct 2010 (4)

Dec 2010 (3)

Mauritius May 2008 (3) 11 15 11–31

Oct 2010 (4)

Dec 2010(4)

Table 1: Summary of the sampling by underwater visual census (UVC) conducted at anchored fish 

aggregating devices (FADs) in three countries in the western Indian Ocean, between May 2008 

and January 2011
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Figure 1: (a) Overall frequency of occurrence and (b) frequency of species richness observed per underwater visual census at 

anchored fish aggregating devices in the three study areas (Maldives, Seychelles and Mauritius) between May 2008 and January 2011. 

Smax = maximum species richness 
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FADs was generally not a significant fixed-effect in the 

mixed models) (Figure 2; Appendix 2). The only significant 

test result occurred with 1–BCij (p = 0.04) for the Maldives, 

and is clearly explained by index values computed for the 

two distances in this array (39 and 158 km). Finally, both Sij 

and 1–BCij similarity values indicate that there is an overall 

low similarity (mean Sij 0.33 [SD 0.12]; mean 1–BCij 0.33 

[SD 0.14]) of fish assemblages between two pairs of FADs 

(Figure 2).

Discussion 

Standardised UVC observations allowed us to investigate 

fish assemblage patterns among a delimited component 

of the epipelagic diversity, and species richness measured 

here is comparable to that of previous studies measuring 

pelagic fish diversity using baited remote underwater video 

systems (BRUVS) (Bouchet and Meeuwig 2015; Rees 

et al. 2015; Santana-Garcon 2015), UVCs (Addis et al. 

2006; Gaertner et al. 2008), and fisheries data at FADs 

(Lezama-Ochoa et al. 2015; Ruiz et al. 2018). Among the 

wide variety of available methods to assess β-diversity, 

Anderson et al. (2011) outlined two different conceptual 

types of β-diversity: (i) a non-directional variation in 

species’ identities or community structure among sample 

units within a given area or region at a given spatial 

(or temporal) scale; and (ii) a directional turnover in 

community structure or species’ identities along a spatial, 

temporal or environmental gradient. We used indices 

from the second category as we investigated the effect of 

geographical distance between each pair of FADs on the 

fish assemblage composition. Surprisingly, in each FAD 
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Figure 2: Jaccard (Sij) and Bray–Curtis (1–BCij) similarity indices compared at different distances between the anchored fish aggregating 
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array, the geographical distance between sampling sites 

(from 4 to 257 km) generally had no effect on the similarity 

of assemblages for both indices. Patterns in β-diversity are 

sensitive to variation in the number of species measured 

at alpha (α) diversity between two assemblages when 

sampling effort differs (Chase et al. 2011). Thus, comparing 

assemblages when this effort differs automatically induces 

changes in β-diversity. In such a case, the β-diversity 

Raup–Crick index, based on presence/absence data, 

accounts for the effect of differential α-diversity on 
measuring β-diversity (Chase et al. 2011). However, 

sampling effort was standardised in our study, and the 

Raup–Crick values (not shown) confirmed results from the 

Jaccard indices.

Our findings contrast with the general pattern in β-diversity 

usually observed for many communities in marine 

ecosystems, in which the similarity in species assemblage 

decreases with distance between sites; this is known as the 

distance-decay relationship (Soininen et al. 2007; Shackell 

et al. 2012). Generally, environmental factors play a central 

role in this relationship that is observed in other ecosystems. 

However, few studies have investigated the influence 

of environmental factors at small-scale (~1–20 km) or 

meso-scale (~20–200 km) on pelagic fish. Sub-mesoscale 

frontal dynamics (1–10 km) in the Mozambique Channel 

were observed to shape the distribution of marine top 

predators (Tew Kai et al. 2009), and in the Humboldt Current 

System fine-scale ocean dynamics (1–4 km) were found to 

affect the seascape from zooplankton to predators (Bertrand 

et al. 2014). However, no studies have investigated the effect 

of oceanographic conditions on the composition of species 

assemblages at FADs. 

In conclusion, our results question the current 

perception of fish diversity in pelagic ecosystems, 

suggesting heterogeneity in assemblages among FADs 

even at close distances and in a seemingly featureless 

environment. Pelagic fishes are considered to be highly 

mobile organisms, with the standard order of magnitude 

of the horizontal scale in the distribution of communities 

considered to be large (~103 km: Angel 1993). These 

features are peculiar to the pelagic realm, and could explain 

why the distance-decay relationship, which is observed in 

most marine and terrestrial ecosystems, was not observed 

here in a pelagic ecosystem. Equipping FADs with 

oceanographic probes would allow the collection of in situ 

data and the investigation of whether or not environmental 

changes can occur at small spatial scales. 

Additionally, investigation of the behavioural dynamics 

driving multispecies aggregations could help to interpret our 

results. One hypothesis is that fish assemblages from FADs 

that are close to each other (e.g. a few kilometres apart) 

could have interactions that could shape their composition. 

For instance, complex behavioural processes within species 

(e.g. social behaviour) or between species (e.g. agonistic 

behaviour) could affect species occurrence and abundance 

at such FADs. Hence, there is a need to collect additional 

simultaneous in situ data (particularly behavioural data) on 

fish assemblages to develop a better understanding of the 

processes that forge pelagic diversity patterns in the open 

ocean at spatial scales over which such processes take 

effect. Finally, a meta-analysis using a variety of available 

datasets should be conducted to further investigate patterns 

of β-diversity in the open ocean. 
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Appendix 1: Maps of the Maldives, the Seychelles and Mauritius, with red dots denoting the positions of the experimental anchored fish 

aggregating devices
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Predictors
Maldives Mauritius Seychelles

Estimates CI p-value Estimates CI p-value Estimates CI p-value

(Intercept) 0.49 0.38–0.60 <0.001 0.35 0.13–0.57 0.002 0.28 0.16–0.39 <0.001

Distance −0.00 −0.00−0.00 0.043 −0.00 −0.01–0.01 0.871 −0.00 −0.01–0.00 0.565

Random effects

σ2 0.01 0.02 0.01

τ00 0.00Season 0.00Season 0.00Season

ICC 0.27 0.13

N 5Season 3Season 4Season

Observations 27 15 21

Marginal R2/ 

Conditional R2

0.118/0.356 0.002/NA 0.014/0.145

Appendix 2b: Summary results of the linear mixed-effects model for the Jaccard similarity index (Sij). Bold values are significant

Predictors
Maldives Mauritius Seychelles

Estimates CI p-value Estimates CI p-value Estimates CI p-value

(Intercept) 0.41 0.30–0.52 <0.001 0.25 0.15–0.36 <0.001 0.38 0.28–0.48 <0.001

Distance −0.00 −0.00–0.00 0.424 −0.00 −0.01–0.00 0.707 −0.00 −0.01–0.00 0.221

Random effects
σ2 0.02 0.00 0.01

τ00 0.00Season 0.00Season 0.00Season

ICC 0.02 0.45 0.09

N 5Season 3Season 4Season

Observations 27 15 21

Marginal R2/

Conditional R2

0.024/0.047 0.006/0.454 0.064/0.145

Appendix 2a: Summary results of the linear mixed-effects model for the Bray–Curtis similarity index (1–BCij). Bold values are significant
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