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Abstract

Predictive models accounting for the effect of bibation on sediment resuspension must be
based on ecological theory as well as on empipaehmetrizations. The scaling trend of
individual metabolic and activity rates with bodyass may be a key to the mechanistic
understanding of the observed patterns. With thidyswe tested if general size scaling rules
in bio-mediated sediment resuspension may applyliad range of physical contexts for
the endobenthic bivalv@erastoderma edule. The effect on sediment resuspension of
populations ofC. edule differing by individual size was measured acrasgsiral gradients of
current velocity and sediment composition in teohfaction of fine particlesC. edule were
able to enhance the resuspension of sediment oorgasilt, while they had scarce effect on
the resuspension of coarse sediment. The effdabairbation was maximal at intermediate
current velocity, when the hydrodynamic forcingnat strong enough to overcome the abiotic
sediment resistance but it is able to suspendidtarbated sediment. Although differences in
sediment silt content and intensities of hydrodyitestress have a relevant influence in
determining the bioturbators individual contributtito sediment resuspension, the observed
mass scaling trend is consistent across all treasvand close to theoretical expectation for
size scaling of individual metabolic rates. Thisetvation supports the hypothesis that the
contribution of individual bioturbators to sedimeasuspension is directly related to their
energy use. Therefore, the proposed approach atfev®rmulation of expectations of biotic
contribution to sediment resuspension based ogeheral size scaling laws of individual

energy use.

Keywords: bioturbation; cohesiveness; body size; allometsgdiment resuspension;

Cerastoderma edule
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1 Introduction

Sediment resuspension is mainly driven by the aatérn between hydrodynamic forcing
and sediment particles (Le Hir, et al., 2000; Ww&rp & van Kesteren, 2004; Fagherazzi &
Wiberg, 2009; Zhou, et al., 2015), the outcome biiclw may be heavily modulated by biotic
agents (Le Hir, et al., 2007; Grabowski, et al1PCFriedrichs, 2011; Wilkes, et al., 2019).
In particular, the macrozoobenthic organisms disamgl remix the sediment with their
moving, feeding and respiration activities in aqass called bioturbation (Meysman, et al.,
2006; Kristensen, et al., 2012). Bioturbation altdre bottom sediment composition,
geochemistry and erodibility (Le Hir, et al., 20&gndford, 2008; Gogina, et al., 2018; Li, et
al., 2019). It happens at a local scale, but thectf may be important for broader landscape
processes (Widdows & Brinsley, 2002; Bentley Sglet2014; Walles, et al., 2015). The
bioturbators’ ecosystem engineerirsgrisu (Jones, et al., 1994; Jones, et al., 1997)] of wet
sediment dynamics impacts the short- and long-teewelopment of coastal geomorphology
(Winterwerp, et al., 2018; Gao, 2019), ecology (Ztal., 2016; Lukwambe, et al., 2018;
Mermillod-Blondin, et al., 2018; Savelli, et al., 2019) ardvices provided to the human
society (Barbier, 2013; Bouma, et al., 2014; Linalg 2018; Silva, et al., 2019). The role of
bioturbation should hence be taken into accountder to implement Ecosystem-Based

management of coastal areas (Braeckman, et a4, 2@h der Biest, et al., 2020).

The large majority of flume experimentsd. (Widdows, et al., 1998; Willows, et al., 1998;
Orvain, et al., 2003; Kristensen, et al., 2013; ®akalala, et al., 2015; Cozzoli, et al.,
2019)], field observationg]g. (Neumeier, et al., 2006; Montserrat, et al., 200&yis, et al.,
2015; Joensuu, et al., 2018; Hillman, et al., 2D&Ay simulation studiegf. (Sandford,
2008; Orvain, et al., 2012; Nasermoaddeli, et28118; Angeletti, et al., 2019)] agree that the
presence of bioturbators generally enhance sedimsuaspension. However, bio-mediated

sediment dynamics often have complex non-lineaawehr (Balke, et al., 2012; Salvador
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de Paiva, et al., 2018; Fang, et al., 2019; XiaJ.eR019). For instance, some field
transplantation studies report tidal flat accrefiopresence of high densities of the
bioturbatorCerastoderma edule (Andersen, et al., 2010; Donadli, et al., 2013), el flume
studies often show an increase in sediment resagpen

Predictive models of bio-mediated physical dynarsiosuld be based on generally valid
physicochemical and biological laws (van Prooigtal., 2011), able to encompass the broad
span of functional (Queirds, et al., 2013) andiapéBogina, et al., 2020) diversity observed
in nature. The individual size is a generally val@scriptor of the intensity of individual
bioturbation activity, with larger bioturbators iag a higher bioturbation potential (Solan, et
al., 2004b; Gilbert, et al., 2007) and generatimggeater increase in resuspension of bottom
sediment (Cozzoli, et al., 2018; Cozzoli, et aD12) and chlorophyll-a (Rakotomalala, et al.,
2015). This is because individual metabolic andvagtrates increase with the individual
body mass following a power law with a scaling exgat of 0.66 or 0.75 (West, et al., 1997;
Kooijman, 2000; Vladimirova, et al., 2003; van déser, 2006; Hou, et al., 2008; Brey,
2010). A scaling exponent positive but lower thartyuimplies that, although the overall
individual metabolic rate increase with body malss,metabolic rate per unit of mass
decrease with body mass with a scaling exponett.88 or -0.25. The mass scaling of
metabolic rates is considered one of the most ‘arsal” trends in ecology and it has
implications at any level of organization. Mode&sbd on the mass scaling of metabolic rates
can be used to predict general trends from indalglto ecosystems (Brown, et al., 2004;
Harris, et al., 2006; Matrtin, et al., 2013). In dase of bioturbation, the allometric scaling of
metabolic rates implies that larger individualsyihg stronger respiration, feeding, burrowing
and moving activity, generate larger mechanicdudm@nce and hence weaken a larger
volume of the surrounding sediment. However, smatiéividuals should have a larger effect

per unit of body mass because of their higher rapssific metabolic rate. Metabolic scaling



101 of bioturbation potential highlights the importarafehe size structure of bioturbator

102 communities in determining the bioturbator influermn sediment characteristics (Cozzoli, et
103 al., 2018; Wrede, et al., 2019). The relationsk@een bioturbators metabolic rates at

104 population level and bio-mediated effects on sedimesuspension are generally valid for a
105 range of hydrodynamics stress conditions and aerahtpxonomic and functional diversity

106 of the bioturbators (Cozzoli, et al., 2019).

107 Not only the intrinsic characteristics of the bidtators, but also the extrinsic environmental
108 context can generate variations in bio-mediateths&a resuspension. In particular, the
109 sediment composition in terms of particle sizerdistion strongly affects resistance to

110 erosion. Silty (particles diameters < 63 um) anwtlgg particles diameters between 63 um
111 and 2 mm) sediments have different physical - chahgroperties: as opposed to sand, silt
112 particles develop an asymmetric electrical chaiggildution on their surfaces. This exerts a
113 net attractive force between particles, called sare Once the amount of fine particles

114 reaches a certain threshot@.(10%), cohesion forces confer plasticity and “stieks” to the
115 whole sediment mass, making it less erodible (vaahdien, et al., 2004; Winterwerp & van
116 Kesteren, 2004). Erosion and resuspension of nbesiee sediment occurs once the

117 hydrodynamic stress exceeds the threshold forgk@arnotion. The drivers of cohesive

118 sediment resuspension are more complex and redataniy to particle size and

119 hydrodynamic stress but also to the sediment cotigmaand mineral composition (Hayter &
120 Mehta, 1986; Winterwerp & van Kesteren, 2004; vaomoen & Winterwerp, 2010) and to
121 the presence of microphytobenthos, which gluesth@gesediment grains by producing

122  extracellular polymeric substance and hence ineseasdiment resistance to erosion

123 (Sutherland & Grant, 1998). The resuspension afhseats with different levels of

124  cohesiveness may be differently influenced by ffeceof bioturbation activity. For instance,

125 recent field observations (Harris, et al., 201®nkwu, et al., 2018; Bernard, et al., 2019;
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Hillman, et al., 2019), flume studies (Li, et &017; Soissons, et al., 2019) and sediment
transport models (Nasermoaddeli, et al., 2018) ghlavat bioturbatorenhance the

resuspension of fine sediment but have limitedugrice on coarse sediment.

Physical and biological drivers of sediment resaspg® may establish complex interactions,
the effect of which has not yet been fully undevgtdn particular, the relationship between
bioturbators individual mass and bio-mediated sedimesuspension has not yet been
investigated across a range of extrinsic environael@onditions such as the composition and
degree of cohesiveness of the bioturbated sedindémtreas field observations can be used to
investigate the effect of benthic organisms onrsedt resuspensioe.f. (Orvain, et al.,

2007; Andersen, et al., 2010; Ubertini, et al.,2@avelli, et al., 2019)], stochasticity and
covariance between explanatory variables in therabénvironment hamper the mechanistic
understanding of the processes involved. Studiedwied over fully factorial experimental
designsi(e. crossing all combinations of target sources ofati@n) under controlled
(mesocosm) conditions are needed to disentangi®khef the different intrinsic and
extrinsic drivers of bio-mediated sediment dynanf{@svain, et al., 2006; van Prooijen, et al.,
2011). Therefore, we used recirculating annulanéa in controlled mesocosm conditions to
test the hypotheses that the effect of the biotorsaon sediment resuspension should reflect
the intrinsic scaling trends of individual metaloaind activity rates over a range of extrinsic

conditions in terms of hydrodynamic stress andraedt silt fraction.
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2 Material and Methods

2.1 Experimental design

The principal idea of this experiment is to explboav sediment resuspension is influenced
by physical and biological drivers (Figure 1). Téfere, we used a mesocosm approach to
guantify the importance of these drivers under dietd conditions, excluding bioturbator
behavioural changes in response to other envirotahemes ¢.g. acidification (Yvon-
Durocher, et al., 2012; Ong, et al., 2017); temipeea(Verdelhos, et al., 2015a); salinity
(Verdelhos, et al., 2015b); food availability (Majet al., 2006)]. By mixing different types

of natural sediments, we were able to obtain 4dkfiit levels of sediment silt volume content
(0 %, 4 %, 10 % and 28 %, Table 1) ranging fromddarsandy mud (van Rijn, 2007).
Recirculating annular flumes were used to simula¢enatural dynamic changes in current
velocity during the tidal flooding of a mudflat ¢fm 5 to 30 cm sétby steps of 5 cm sé¢
each step lasting 20 minutes). Variations in sedimesuspension were approximated from
water turbidity. To better focus on the contribatiof the individual bioturbation activity, we
kept the overall bioturbators biomass constani(28h Free Dry Weight if) as we
simultaneously varied the body size and the densitige tested specimens. Four different
size classes of individuals were used (36, 93,8576 mg AFDW of individual body
mass, Table 2). We chose to use an intermediatalblseomass ofC. edule to avoid
overlapping between individuals’ areas of influe\éearts, et al., 1994; Willows, et al.,
1998; van Prooijen, et al., 2011; Cozzoli, et2018) while still having a clear and detectable
effect on sediment resuspension. Following a faatdesign, each experimental treatment (2
replicates) was representative of a unique comibimatf bioturbators’ individual size and
sediment composition in terms of silt content,ddptal of 32 experimental runs with
bioturbators, each of which always used homogengsired individuals. Each of the

experimental runs with bioturbators was associtdeicontrol run using the same sediment

8
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type and current velocity gradient but without bitsators. Considering that 6 repeated
measurements were taken at different current wglémiels for each run, we collected a total
of 384 data points (192 observations from biotwedatins + 192 observations from control
runs, Figure 1). A numbers of replicates per trestinhigher than the 2 we used would have
possibly given greater reliability ad reproduciyilio our analysis. However, the logistic
efforts necessary for empirical testing did not malpossible to collect other measures.
While the dataset we collected may be regarded@laing "optimal”, it is one of the most
complete experimental datasets (to our knowledgdjiata-mediated sediment resuspension
that has been measured according to gradientslvidoal size, individuals’ density,
hydrodynamic energy and sediment composition. Tiaioed dataset is available as
appendix of this study (Appendix A) and in the Q8pository at DOI

10.17605/0OSF.I0/BCWFH.
2.2 Modéd organisms

In this experiment, we used as model organism ithedue Cerastoderma edule (Linnaeus,
1758) C. edule (common cocklejs a species of saltwater clam in the family ofdiidae
which is widely distributed in waters off northdfarope as far north as Iceland and into
waters of western Africa as far south as SenegaydBn, 1971). The ribbed oval shells can
reach 6 cm across and are white, yellowish or briomaolour.C. edule is a key element of
estuarine food webs, consuming suspended orgarntemaad being a main source of food
for birds (Bijleveld, et al., 2016). It is harvedteommercially and eaten in much of its range
(Boyden, 1971). According to the Oosterschelde (bligervations presented in (Cozzoli, et
al., 2014), this species can reach a relativelydandividual body mass (up to 600 mg Ash
Free Dry Weight; on average 177 mg AFDW = 202 shigh density (up to 457 Ind.fion
average 94 Ind. i+ 55 s.d.and biomass (up to 84 g AFDW4yon average 16 g AFDW

m? + 20 s.d.)C. edule is commonly found in a large variety of sedimenisging from fine
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mud to sand, with a preference for cohesive sedsn@uozzoli, et al., 2013). The thermal
optimum forC. edule activity is 20 - 23 °C, above which the activitijtbe animal decreases
due to thermal stress, until a 100% of mortalityewkexposed for 120 hours to 32 °C
(Verdelhos, et al., 2015a). The salinity optimunansund 20-25, with a tolerance range from
fully marine (35) to brackish (10-15) (Verdelhosak, 2015b). Ocean acidification,
especially if associated to warming, may have ardental effect on physiological

performances and fithess ©f edule (Ong, et al., 2017)

C. eduleis a filter feeder and shallow endobenthic burnows short siphons usually emerge
from the sediment surface (Flach, 1996). Fieldlabdratory observations showed that its
reworking of the sediment is mostly related to deposition, vertical and horizontal
movements and valve adduction that destabilizethesive sediment, making it more
erodible p.g. (Flach, 1996; Ciutat, et al., 2007; Montserratlet2009; Li, et al., 2017)]. By
doing so, bioturbation b§. edule also enhances the resuspension of organic maaedal
microphytobenthos (Ubertini, et al., 2012; Rakottala et al., 2015). The feeding rate(f
edule is not significantly affected by changes in cutrgoeed, at least between 5 and 35 cm
sec’ (Widdows & Navarro, 2007). The material filtered énom the water column is
deposited in the form of faeces (digested orgaratenal) and pseudofaeces (discarded
sediment). Loose mucus bound pseudofaeces haveeadoosion threshold (current velocity
of 15 cm sec) compared to faecal pellets (25 cm Skt flows below these thresholds,
biodeposits generated froth edule tend to sediment and accumulate on the bed (Widdow

& Navarro, 2007).

C. eduleis an excellent model organism to study biotudragffects with high potential for
generalization becaus@:it adapts well to laboratory conditions), it constitutes a

predominant portion of the bioturbators intertidedmass (Kater, et al., 2006) on a broad
geographical scale (Boyden, 197ili) recent evidence showed that the effect of thexigs

10
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on sediment resuspension is common to a broad @&rgeturbators functional types
(Cozzoli, et al., 2018; Cozzoli, et al., 2018); the physiology and energetic ©f edule has
been carefully investigated due to the relevandeisfspecies as ecological indicator and bio-
accumulator of pollutants (Fernandez-Tajes, eR@all1)v) its commercial importance for

shell fisheries and clam digging (Boyden, 1971).
2.3 Experimental devices

The recirculating annular flumes we used are aatian of the design described by
(Widdows, et al., 1998). The annular channel hasréace of 157 cfnand an overall height

of 40 cm, of which the bottom 5 cm are filled wélpebbled bed to allow water drainage,
followed by 10 cm of consolidated sediment and 200 filtered marine seawater (31.4 L).
The water motion is generated by a smooth diskingt&8 cm below the water surface, which
is driven by a microprocessor-controlled enginechiécal drawings and pictures of the
annular flume can be found in Appendix B. An acmuBbppler velocimetry probe was used
to calibrate water velocity as a function of engiogtion speed. Water turbidity is measured
using an optical backscatter sensor (OBS 3+, Calinpbientific) facing the water
perpendicularly to the current direction at a hefilO cm from the sediment surface. The
effect of suspended sediment on light absorptios mvaasured by the OBS sensors in
nephelometric turbidity units every 30 seconds @emaverted into suspended sediment

concentration (g ') based on calibration by gravitometric analysipgéndix B).
2.4 Experimental procedures

Sediment preparation: The sediment was collected in late winter 2018edtion Oesterdam

(51° 30’ N 4°10’ E, sandy sediment) and Zandkreakn51°32’N 3°52’E, silty sediment)
in the Oosterschelde and carefully sieved overarisieve to avoid the presence of large

particles (stones, shells, wooden pieces) and rerfavger animals. Successively, the

11
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sediment was covered with a thick black plastim fibr at least two weeks and sieved again
to remove remaining residual fauna. For each tymediment composition, a homogeneous
matrix was obtained by adding silty sediment tardy matrix until reaching the desired
level of silt. The sediment was mixed manually. iDgmixing and sequential silt addition,
the percentage of silt in the sediment mass wasuned by using a Malvern Mastersizer
2000® particle size analyser. Following this praoed we obtained 4 different types of
sediment compositions, with no (0%), low (4%), imediate (10%) and high (28%) silt
volume fraction (Table 1). The so prepared wetrsedt was put in the flumes, mixed to a
smooth masand allowed to consolidate until creating a layet@cm height with a smooth
surface. Excess water in the sediment was dralmmedgh the pebbled bed placed at the
bottom. After 96 h, the flumes were filled with 81L of filtered seawater (height of the
water column 20 cm). To prevent damage to the lyesbnsolidated sediment surface, a
sheet of bubble plastic was placed on top of ibleefently spraying water into the flume.
Although the sediment bottoms we obtained by thie@dure may slightly differ from the
natural ones in term of grain size distributiomnpaction and porewater gradient (Porter, et
al., 2006), they offer a representation of the medit cohesiveness gradient that may be

observed along a mudflat tidal transect (Cozzolale 2013).

Callection and measurement of specimens. C. edule specimens were collected at the

Oesterdam during spring 2015. The authorizatiorsp@cimen collection was issued by the
competent authority Rijkswaterstaat. After collentithe specimens were allowed to
acclimate for two weeks in a mesocosm at 18 °Ciriguhe acclimation period, the
specimens were kept in the same sediment usedd@xperiment. Four different shell
length classes (15, 20, 27 and 35 mm of shell dianfie 0.5 mm measurement error]) were
selected to cover the. edule size gradient commonly observed in nature (Tahle 2

Individual sizes were expressed as individual boadgsesNl, mg Ash Free Dry Weight) and

12



269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

were estimated from the length of the cockles’Istetcording to the length-mass
relationships provided from the Monitor Taskforddle Royal Netherlands Institute for Sea
Research (NIOZ), Yerseke. The mortality duringeikperiment was low and the specimens

were released at the collection site at the erideoéxperiments.

Specimens addition: A total biomass of 3 g AFDW (corresponding to 18FDW m?) of C.

edule specimens of four different size classes (Tableete evenly distributed over the
sediment surface and allowed to settle for 48 le dhoice of a longer time interval (48 h)
compared with the typical interval between erostyass peaks (typically 12 or 24 hin a
tidal system) was necessary to give the animalsinieto properly settle in the new
environment and recover from manipulation stressst\vdf them were buried within a few
minutes after being placed in the flume and nomdwing individuals were replaced. During
their presence in the flume, some specimens crawieahd below the sediment surface,

leaving evident tracks.

Erosion runs: To simulate the natural dynamic changes in cuweldcity during flood tide,
we increased the current velocity, cm se€) from 5 to 30 cm sétin steps of 5 cm séc
each step lasting 20 minutes. According to (Robettal., 2000) and using a constant
friction factor for the sediment surface of 0.00f range of current velocity used should
correspond to a range of bottom shear stressegbrt05 and 0.25 Pa for a flat bottom.
Biogenic bottom roughness may increase the fridator in presence of bioturbators,

implying a damping of bottom shear stress (Frida;j@2011; Anta, et al., 2013).

Bioturbator and control treatments have been pegpand run simultaneously. Each
treatment (2 bioturbated runs + 2 control runs) easied out on the same day. According to
the availability of experimental flumes and consialg the long preparation time to obtain a

consolidated bottom, we toa. 2 months to complete the experiment.

2.5 Data Analysis
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In this study, we did not consider extremely higtiues of suspended sediment deriving by
general failures of the flume bed and consequessraeosion (Mehta & Partheniades, 1982,
van Prooijen & Winterwerp, 2010), although such snra®sion happened in some
treatments. Therefore, the collected dataset welsypnary inspected and records of mass
erosion events were removed from the analysis. Méeramoved some records clearly

biased by optical disturbance to the OBS sensor.

To express sediment resuspension in spatial wnggsonverted the measured suspended
sediment concentratio$%C, g L) to total mass of suspended sediment per uniédifreent

surface Rror, g m?) as:

SSC+Volume
Area

RTOT = Eq 1

whereArea is the surface area of the experimental flumess{0rif) andVolume is the

amount of contained water (31.4 L). The developneésediment erosioatthe increase of
current velocity in the experimental flumes waslgsed by visual inspection of the erosion
curves. Following (Kristensen, et al., 2013), thaseon thresholds, expressed as critical flow
velocity for starting sediment resuspensigndm se¢) were estimated for each treatment as
the zerdRror intercept from a regression Bfor measured at the end of each velocity step
(i.e. averageRror recorded during of the last two minutes of eaateru velocity step)

againstv. Only measurements above the erosion threshold wsed for this calculation.

The amount of suspended sediment due to bioturbBgie (g m%) was calculated for each

replicate as:

Rpio = RTOT(Bioturbated) - RTOT(Control) Eq. 2
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where RT0T gioturpatea (g m?) is the amount of sediment suspended at the eneaoi
current velocity step in the bioturbated treatmemd RT0T comtron (g m?) is the amount of

sediment suspended in the corresponding contratinkent.

The variation inRg o across experimental treatments and increasing rdauvedocity {/, cm
sec’) steps was analysed by linear mixed ANCOVA. Th#etdnt types of sediment
composition in terms of silt fractiorg(t) were used as categorical explanatory variable. Th
current velocity ¥, cm se@) and the individual mass of the bioturbatdk, fng AFDW)
were used as continuous explanatory variables. f@sponse variableRgo and the
explanatory variabl& were normalizedia log transformation. A third degree polynomial
function of the explanatory variab\éwas used to account for asymmetric concavity & th

shape of relationship between current velocity Bg#-
log(Rg0) ~log(M) = (V + V2 4+ V3) x Silt Eqg. 3

where the operator” indicates use of the individual variables andirtheteraction terms.
We included the experimental runs as random terrthénANCOVA to account for non-
independence of the observations. This allows dattproperly the effect o¥, which is
affected by repeated measurements during eacloarasgi. Selection of predictive variables
and interaction terms was assessed by bi-diredtisiggpwise elimination procedure. All
analyses were performed within the free softwargrenment R (R Core Team, 2019) using

the package Ime4 (Bates, et al., 2015) and ImelReginetsova, et al., 2017).
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3 Results
3.1 Erosion curves

General bottom failure and mass erosion occurredme current velocitie®/( cm set) (all
the bioturbated treatments abdwef 20 cm se¢ for the sediment with 4 % silt content), for
some replicates (one replicate each for the treasneith 10 % and 28% silt content and
individual body mas# of 36 mg AFDW) and for one entire treatment (sdhtent 10 % and
M = 247 mg AFDW). These observations were probadibted to lack of consolidation of
the sediment in the experimental flumes and ougdrige turbidity sensor detection range.

Therefore, they were not considered in the follapamalyses (Figure 2).

In the absence of bioturbation, the critical floalacity for erosion varied from 13.6 cm 3ec
for sediment with 28% of silt to 17.2 cm &dor sediment with 8% of silt (Figure 2, Table

3). Sediments with 0 % and 4 % of silt content wilaeemost erodible at the higher current
velocity (> 20 cm set), reaching &ror value of 121 + 27.18 (s. d.) gfand 187 + 115 g

m at maximal (30 cm sed), respectively (Figure 2). As we realized durihg t
experimentRror values for the sediment with 0% silt content mayslghtly overestimated
due to the presence of some unidentified kind gaonic matter generating a small amount of
foam and light hampering at high current velociithough we washed the sediment several
times, we were not able to remove this effect. Massion was observed in some not
bioturbated controls for the sediment with 4 %itifcontent atV of 30 cm se¢. Sediments
with 10 % and 28 % of silt content had relativelwlvalues oRror (61 + 59 g rifand 36 +

74 g m?, respectively) even at water velocity of 30 cmi’s@digure 2).

For bioturbated treatments with 0% of silt conteve,observed a moderate increasByisy

at intermediat&/ values only (15 - 25 cm sécfor M = 36 mg AFDW andVl = 247 mg
AFDW. In these two treatments we also observedceedse in critical flow velocity for
erosion from 15.5 to 8.5 cm sk moderate decreaseRjor at maximal was observed in
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359 the two other bioturbated treatment4 £ 93 mg AFDW and M = 576 mg AFDW) (Figure
360 2). The presence @. edule had the strongest effect 8ot in the treatments with 4 % of silt
361 content. In this case, the bioturbators generatéeteease in the critical flow velocity for
362 erosion from 15.2 tea. 5 cm se¢ (9 cm se¢ in the treatment with M =576 mg AFDW,
363 Table 3). This led to a moderate increasBef; already av = 10 cm se¢ (especially the
364 two smaller size classes) and a very strong ineraébetween 10 and 20 cm Sedhe
365 presence of bioturbators triggered mass erosivh=a25 cm set (Figure 2).C. edule had
366 also a strong effect on sediment resuspension & &46d 28 % of silt content, although
367  without trigging mass erosion. In the case of timunbated sediment with 10% of silt

368  content, the critical flow velocity for erosion deased from 17.2 to 10-12 cm S¢Table 3).
369 A consistent increase Rror due to bioturbation activity was observed starfnogn V = 15
370 cm se? and continuously increasing withuntil a value of + 150 + 16 g frfor the

371 treatment withM = 93 mg AFDW. Bioturbators did not affect the ical flow velocity for
372  erosion of the sediment with 28 % of silt conterat. (12 cm set; Table 3). Above this

373 threshold the bioturbators enhanced the erosion dading to a maximal incrementiRior

374  of + 153 + 19 g rif for the treatment wit = 36 mg AFDW (Figure 2).
375 3.2 Biotic contribution to sediment resuspension

376  Following the logarithmic transformation, the negatvalues of mass of suspended sediment
377  due to bioturbation activityRgi0, g m?, Equation 2) were excluded from the analysis.

378 Negative values dRg o implies a decrease in sediment resuspension sepce of

379  Dbioturbators and were observed mostly in the sealinvéh 0% silt content. As a

380 consequence of this selection and of that one mpeslaously to avoid observations biased
381 by optical disturbance to the sensor, the total lmemofRgo values included in the analysis
382 has dropped to 135 (Table 4). The full mixed ANCOMAdel of the variatioRg o using the

383 silt content of the sedimerfi(t), the current velocity\{, cm set) and the individual mass of
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the bioturbatorsNl, mg AFDW) as explanatory variables (Equation 3% wianplified by bi-
directional elimination stepwise procedure. Follogvthis procedure, the square term of the
polynomial ofV, the third order interaction terms and some ofsén@nd order interaction
terms were eliminated. The full model (i.e. prionvariables selection) is available as an
appendix (Appendix C). The fixed terms in the siifigd ANCOVA model explains 76% of
the observed variance Rg o while random variation among experimental runs alae to

explain the 8% only (Table 5).

The model has good performances in predidigg for sediment with silt content higher
than 0 %. Given the low influence of the bioturlvaton the resuspension of the pure sandy
sediment (Figure 2), the model fails in predictitgp for these treatments (Figure 3, Figure
4). R0 significantly ¢ < 0.001) increases with the increas& ahdependently from the
sediment silt content and the body mass of biotarbgTable 5, Figure 3, Figure 4). The
significant p < 0.001) and negative coefficient fgf impliesa concave shape in the
relationship betweeRg o andV (Table 5, Figure 3). The concavity of the relatiupsraries
significantly p < 0.001) across sedimesitt contents, being maximal for the sandy sediment
intermediate for sediments with 10% and 28% sitttent and minimal for the sediment with
4 % of silt content (Table 5, Figure 3). Howevég nearly linear relationship betweémnd
Rsio estimated for the sediment with 4 % silt contsriikiely to be an experimental artefact
related to the lack of observations for bioturbatedtments av higher than 20 cm séc
(Figure 2). Independently of the intensityAo&nd with only marginal variation across types
of sediment compositiorp & 0.05),Rg 0 scales significantlyg < 0.001) and negatively

(scaling exponent = -0.42 + 0.22) with(Table 5, Figure 4)
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4 Discussion

In our experiments we used a full factorial comhboraof physical (sediment composition,
hydrodynamic stress) and biological (bioturbatae&iensity ratio) drivers of bio-mediated
sediment resuspension to disentangle the spegipoitance of each component and reveal
the effect of their interactions (Figure 1). Altlgbusediment resuspension patterns change
across sediment types, the intrinsic scaling tanteridual mass of the bioturbators was

independent of the extrinsic physical context.

4.1 Effect of hydrodynamic stress and sediment composition on bio-mediated sediment

resuspension

In accordance with previous flumes (Li, et al., 20%o0issons, et al., 2019) and field (Harris,
et al., 2015; Joensuu, et al., 2018; Bernard,.e2@l9) observations, bioturbation had a
limited influence on the resuspension of pure sa®tiiment, whereas it had a strong
influence on resuspension of silt-containing seditsieeven if only a low amount of silt was
present (4 % volume fraction). In the case of saselliment, increments in sediment
resuspension can be related to the exposure afnofieeburied fine particles to the buoyant
action of the water (Volkenborn, et al., 2009; Yanoijen, et al., 2011). In the case of
cohesive sediment, the bioturbation disrupts theesiveness and compaction in the upper
sediment layers, generating a fluff layer (Shimetagl., 2002; Orvain, et al., 2003; Orvain,
2005). The fluff layer is less resistant to erodioan the not-bioturbated sediment, so that
bioturbation decreases the critical flow velociby érosion and enhances the erosion fluxes
of cohesive sediment. Therefof&,edule changed the sediment response to hydrodynamic
stress by making the otherwise erosion-resistamtsige sediments as erodible as the non-
cohesive ones. Above the threshold for cohesive{i€s%o silt fraction), the effects of
bioturbation on sediment resuspension no longeeases with sediment silt content. These

observations support what was recently predicted laypdscape-scale model of biota-
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mediated sediment resuspension on the basis dfdieervations of suspended sediment
concentration: the resuspension of fine silt ingbathern North Sea is very sensitive to the
occurrence of bioturbators, whereas coarser sedipagticles are less affected

(Nasermoaddeli, et al., 2018).

Our results suggest that if the hydrodynamic fayesmlimited, the contribution of
bioturbation on sediment resuspension is relatilely As well, if the hydrodynamics are
strong enough (or the sediment resistance weakgbnas it is in the case of non-cohesive
sediment) to erode the non-bioturbated sedimeatelative contribution of bioturbators to
sediment resuspension decreases because the raldiiiaturbation is less relevant for
particle motion. Bioturbation effects are maximiairdermediate current velocity, when the
hydrodynamic forcing is not strong enough to overedhe abiotic sediment resistance (that
is enhanced by cohesiveness) but are able to slispemioturbated sediment. This
interpretation is in line with the observationglfoore, 2006), who noted that ecosystem
engineering in river morphodynamics can be moreonmamt with moderate hydrodynamic
energy and high bioturbators activity. Tending éozlero at very high and very low current
velocities for each type of sediment, the amoursusippended sediment due to bioturbation
activity hasper se only marginally significant changes across sedinyges. Neither is
changing its linear relationship with the currealocity. What actually changes across the
types of sediment is the current velocity at whabturbators peak their effect on
resuspension. In sandy sediments, the bioturbhtors a maximal effect at current velocity
of 20 cm se¢, above which the hydrodynamic stress starts @b to suspend the non-
bioturbated sediment. Assuming a concave shaphdarelationship between current velocity
and bioturbators contribution to sediment resuspen&quation 3, Table 5), the maximal
effect on cohesive sediment resuspension shouldat @@ current velocity afa. 40 cm set¢.

It also follows that the current velocity at whittte bioturbators no longer have an
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appreciable effect on the resuspensian< 1 g m?) of the sediment is greater for the
cohesive sedimentd. 60 cm set) than for the non-cohesivea, 40 cm sed). It must be
however considered that our observations conceyplglimited erosion only (Mehta &
Partheniades, 1982; van Prooijen & Winterwerp, 20A0current velocity higher than the
maximal we tested or in presence of waves, massoer¢that may be triggered or anticipated
by the presence of bioturbators, as we observétkeitreatments with 4 % of silt content)

may deviate from our expectations.
4.2 Allometric scaling of individual contribution to sediment resuspension

Given a fixed biomass, the contribution of a popafaof bioturbators to sediment
resuspension decrease with the bioturbators ingi@lisize. The estimated mass scaling
exponent (-0.42 + 0.22) is different from eithe(i.@. bio-mediated sediment resuspension
directly proportional to the population biomassgl ah (.e. bio-mediated sediment
resuspension directly proportional to the individudensity in the case of biomass
equivalence across size classes). It is instea@ ¢tothe theoretical expectations of -0.33 or -
0.25 for size scaling of individual metabolic rages unit of biomass. In this respect, our
observations support the hypothesis that the darton of bioturbators to sediment
resuspension is related to their metabolic andictiate, rather than to their mere presence,
biovolume or spatial density (Cozzoli, et al., 20C8&zzoli, et al., 2019). Therefore, a certain
biomass of smaller organism would generate a stmodigturbance of the sediment than the
same biomass of larger organisms because smali@nisms have higher metabolic rates per
unit of body mass. It follows that information dretsize structure of the bioturbating
communities .g. (Gjoni, et al., 2017; Gjoni & Basset, 2018)] andtbe individual

metabolic responses to internal and external clomgdife.g. (Rosenfeld, et al., 2015; Shokri,
et al., 2019)] is needed to predict the bioturbagffects on sediment resuspension.

Extrapolations based on bioturbators’ overall biesnar density should instead be treated
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with caution, because they may estimate wronglyctrgribution of individuals differing by

body mass and activity level.

Although differences in sediment silt content amemsities of hydrodynamgtress have a
relevant influence in determining the bioturbatenslividual contribution to sediment
resuspension, the observed mass scaling trenchstasu across all treatments. Therefore,
size allometries in bio-mediated sediment resuspertan be generally applied to different
sediment compositions as well as to different fiomatl types of bioturbators (Cozzoli, et al.,
2018; Cozzoli, et al., 2019). This finding expatiaks possibility to simplify and generalize
the process-based modelling of bioturbators-sedimégractions $ensu (van Prooijen, et

al., 2011)] by establishing a link between the gagc of the organisms and their effect on
the surrounding environment (Humphries & McCanr0As an example referred to field
conditions, the bioturbators size, overall biomasd community bioturbation activity
generally peak in the intermediate-high part ofrthelflat, where the hydrodynamic energy
is moderate and the sediment has an intermedidighcsilt fraction (Pearson & Rosenberg,
1978; Nilsson & Rosenberg, 2002g. where bioturbators are also more effective in
enhancing sediment resuspension. Thus, our resuifgsm and strengthen the hypothesis
that bioturbators mostly enhance the erosion otifyger shore, potentially inducing a
downward shift of the tidal flat (Wood & WiddowsQ@2; Orvain, et al., 2012). More
generally, distribution models of benthic populasan relation to hydrodynamic and
sediment characteristics can be used to produdkpaxplicit estimates of the individual
mass, abundance and therefore the potential effesediment resuspension of bioturbators

in natural conditions.

4.3 Mechanisms to be further investigated

In this study we attribute the changes in turbitlitghanges in sediment erodibility.
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However, some other mechanisms involved in bio-atedi sediment resuspension must be
consideredC. edule filter particles that are suspended in the wabéuran while feeding.

The clearance activity may affect the amount dbitlity measured in the water in
recirculating flumes, possibly leading to an undaneation of the effect of. edule
bioturbation on erosion rate, compared to fieldirsg$. This underestimation can reach a
factor of 2 in the case of chlorophyll-a suspengi®akotomalala, et al., 2015). Despite
deserving to be examined more carefully, three mmegnments suggests that suspended
sediment filtration can generate only a minor lmaour observations. Firstly, the filtered
sediment is not retained in the body of the bicdtwbs, but it is rather quickly expelled in the
form of pseudofaeces, that are easily erodibleli&able to be re-suspended immediately at
current velocity > 15 cm séqWiddows & Navarro, 2007),e. with a similar critical flow
velocity for erosion to cohesive not-bioturbatediseent. Still, part of the decrease in
suspended sediment at high current velocity thabgerved in some treatments with non-
cohesive sediment could be related to increasddsetistrength by pelletization (Briggs, et
al., 2015). Second|yeing both fuelled by the individual metabolic ratee magnitude of the
physiological activities involved in sediment ddsliaation and of the individual clearance
rate increase with body mass (decrease per uniast) with a similar scaling exponent
(Smaal, et al., 1997), leading to a substantiatgse balance across size classes. Thirdly,
previous studies comparing multiple types of bib&tors in a similar experimental setup
(Cozzoli, et al., 2018; Cozzoli, et al., 2019) dwt show relevant differences in the
resuspension of sediment in the presence of feéteders €.9. C. edule) or bottom-feeders

(e.g. Arenicola marina).

Another mechanism to be further investigated isefffect of the structural modification of
the bottom surface roughness by bioturbators, wtéaechbe generated both in autologous

(emerging shells) and allogenic (disruption of skeeiment surface) way. Bio-mediated
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increases in bottom roughness could shelter thenead surface from shear flow (Friedrichs,
et al., 2009; Friedrichs, 2011; Anta, et al., 2018the case of cohesive sediment, increased
bottom roughness may generate a reduction in sedirasuspension when the
hydrodynamic forcing is low (shear stress < 10 eq)sand/or the bioturbators abundance
(Ciutat, et al., 2007) or activity (Cozzoli, et,&019) is higher than what used in this
experiment. The reduction in cohesive sedimentsgsusion is suppressed at higher
hydrodynamic stress by the opposite destabilizffece(Cozzoli, et al., 2019). With the
current experiment we show that, in case on purdysaediment, the sheltering and
pelletization effects could be the predominantuefice of bioturbators, leading to a minor
reduction in sand resuspension at high currenss{(&0 cm séb), even at the relatively low

number of organisms we used.

It must also be considered that in our experimeatndividual body mass was calculated
based on shell length. Given the approximately spéleshape o€. edule, the individual
mass scales with the shell length with an expoadlese to 3 (actually, 2.8). Therefore, our
observation could be eventually interpreted asyaarse proportionality between shell length
and effect on sediment resuspension (2.8*-0.42 X2)1which further leads to other
influencing factors such as burial depth, destadiion sediments beyond the surface layer
and autogenous modification of the bottom roughnBss interpretation should be rejected
considering thati) given the experimental design we used, an invyarggortionality to the
individual length should exclude any effect of thdividuals numerical density or total
biomass, and this is contrasting with all previknewledgeii) previous experiments
comparing bioturbators with different physical sésjand therefore different scaling
coefficient for the mass ~ length relationship andfenerating different morphological
alterations of the bottom surface and/or with défe burying depth related to their body

length showed no significant change in bioturbagffect on sediment resuspension
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(Cozzoli, et al., 2018; Cozzoli, et al., 2019).

Finally, factorial experiments accounting for ttiteet of temperature change on bio-
mediated sediment resuspension could offer a dientonfirmation of the dependence on
metabolism of bioturbator populations. Water terapge is indeed a key regulator of
metabolic rates in ectotherms such as macrozooledntturbators (Brown, et al., 2007).
Beyond the effect of variation in physical fact@kguyen, et al., 2019) it is expected that the
biotic contribution to sediment resuspension shautdease positively with temperature
similarly to the individual metabolic ratese. according to a positive Boltzmann — Arrhenius
relationship (Brown, et al., 2007). Therefore, rhetec-based approaches may help
explaining global and seasonal variations in biwtfliences on sediment dynamics (Cozzoli,

et al., 2018; Wrede, et al., 2018).
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5 Conclusion

With this study, we quantified the role of majouszes of abiotic and biotic variability in
enhancing sediment resuspension by highlightingtimebined role of physical and
biological factors in determining sediment resusjpam We observed that differences in
sediment silt content and intensities of hydrodyigastress have a major influence in
determining the final amount of suspended sedintémivever, the observed mass scaling
trend of bioturbators’ individual contribution tediment resuspensioniisclose to the size
scaling trend of individual metabolic rates anjcconstant at the variation of the
environmental conditions. In the light of thesealfimgs, the bioturbators can be seen as
energy transfer units that convert the chemicatggneontained in the food web into kinetic
energy that is discharged onto the sediment. Therghtion of a mass scaling exponent
similar to that of mass specific individual metabohtes suggests that a somehow constant
fraction of metabolic energy is discharged ontogbdiment at individual level. While the
intensity of the energy flow is determined by tloely size and energy requirement of the
bioturbators, its effect on sediment resuspensonadiated by the hydrodynamic stress and

the mechanical characteristics of the sedimenf.itse

The metabolic dependency of bio-mediated sedimgmamics that we describe places our
observations within the broader context of metabetiological theorieslg. (Kooijman,

2000; Brown, et al., 2004; Glazier, 2005; Hou,let2008)]. It establishes a connection
between ecosystem engineering and general modelgafisms metaboliefg. (Yvon-
Durocher, et al., 2012)] and demograpleg.[(Dossena, et al., 2012; Lindmark, et al., 2018;
BryndumBuchholz, et al., 2019; Jgrgensen, et al., 20E3ponses to global environmental
changes. Hence, our observations supports the paraation of general, predictive models
of bio-mediated sediment dynamics at loegd [ (Aquino, et al., 2017; Winterwerp, et al.,

2018)], tidal transecg]g. (Wood & Widdows, 2002; Orvain, et al., 2012)] daddscaped.g.
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592 (Nasermoaddeli, et al., 2018; Angeletti, et al12 scale. By doing so, they open a venue to
593 the formulation of general expectations about Riggenarios of bio-mediated sediment

594  resuspension.
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921 TABLES

922 Table 1: Types of sediment composition. Percentages inmvelaf the different sediment
923 size classes (silt < 63 um; very fine sand 63-125 fine sand 125-250 pm; medium sand
924 250-500 pm; coarse sand > 500 um) and median (&) (D10) and ninetieth percentile

925 (D90) of the sediment grain size distribution (um).

926
Silt  Veryfine Fine Medium Coarse D10 D50 D90
(%) (%) (%) (%) (%) (um) (um) (um)
0 0 30 61 9 189 305 488
4 1 31 55 9 159 291 489
10 5 33 45 7 94 257 468
28 14 30 24 3 8 153 383
927

42



928 Table 2: Bioturbators size classeéSediment resuspension was measured in the abiotic
929 controls and in 4 treatments with biomass equivaléwverall biomass 19 g Ash Free Dry

930 Weight ni?) of differently sized bioturbator$q, mg AFDW).

931
Shell length Body mass Density of individuals
(mm) (M, mg AFDW) (D, Ind. m?)
15 36 530
20 93 247
27 247 77
35 576 33
932
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933

934 Table 3: For each treatment with different sediment siltnoé content (%) and bioturbators
935 individual body massM, mg AFDW), the critical flow velocity for erosigem seé') were
936 estimated as the zeRyor intercept from a regression of measuregr againstv

937  (Kristensen, et al., 2013)

938
V- Critical flow velocity
Silt (%) M Intercept  V-Slope for erosion

0 0 -121.3 7.8 155

0 36 -48.6 5.7 8.5

0 93 -75.2 5.1 14.8

0 247 -53.6 6.2 8.58

0 576 -88.8 6.2 14.4

4 0 -167.8 11.1 15.2

4 36 -92.2 16.2 5.7

4 93 -70.1 14 5

4 247 -77.6 14.5 5.4

4 576 -106 11 9.6

10 0 -100.1 5.8 17.2

10 36 -108.5 9.6 11.3

10 93 -102.6 9.5 10.8

10 576 -102.2 8.1 12.6

28 0 -94.3 6.9 13.6

28 36 -103.1 9.3 111

28 93 -91.7 7.9 11.6

28 247 -76.3 6.4 12

28 576 -98.1 7.6 13
939
940

44



941

942

943

944

945

946

947

948

949

950

951

952

953

954
955

Table 4: Number of observations included in the ANCOVA moadé¢ the amount of
suspended sediment due to bioturbati®sg g m? Table 5). The initial number of 1920
measures (4 silt levels X 4 size levels X 6 curkatbcity step X 2 replicates) was reduced to
135 in way to avoid observations biased by optdiaturbance to the sensor, observations
related to mass erosion events and observationdeofeased sediment resuspension in

presence of bioturbators.

Body mass (mg AFDW)
Silt (%) 36 93 247 576
0 ot 9 10° 7°
4 g* 6% g g
10 6 12 0° 12
28 6 12 12 11°

a: complete set of 12 measures for treatment (6 current velocity steps X 2 replicates)

b: observations missing due reduction in sediment resuspension with bioturbators

c: observations missing due to optical disturbance to the OBS sensor

d: observations missing due to mass erosion events (current velocity higher than 20 cm sec™)
d: observations missing due to mass erosion events (one replicate)

e: observations missing due to mass erosion events (whole treatment)
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956

957

958

959

960

961

962

963

964

965

966

967

968

Table 5: Summary of the mixed ANCOVA model of the amounsospended sediment due
to bioturbation Rsio, g m?) using the silt content of the sediment as caiegbexplanatory
variable and the current velocity,(cm set) and the individual mass of the bioturbatdv (
mg AFDW) as continuous explanatory variables. Tlkeponse variabldRgo and the
explanatory variablé were normalizediia log transformation. A third degree polynomial
function of the variablé/ was used to account for non-linearity in the retathip between
current velocity anRgo. Since we took repeated measurements of the sapezimental
units through aV gradient, we included the experimental runs agioan term in the
ANCOVA to account for non-independence of the obsgons. Selection of predictive
variables and interaction terms was assessed by-direbtional elimination stepwise
procedure. Only significant variables and inte@ttierms are reported in the summary table.

The full model (i.e. prior to variables selectiosmjpvailable as an appendix (Appendix C).

log(Rsi0)

Predictors Estimates 95% ClI p
(Intercept) 1.47 0.23-2.72 0.028
log(M) -0.42 -0.64 --0.20 0.001
\% 0.24 0.20-0.28 <0.001
Ve -0.0002 -0.0002 —-0.0001 <0.001
Slt4% 1.01 0.34-1.69 0.006
Sit10 % 0.46 -0.27-1.19 0.228
Slt28% 0.13 -0.54-0.80 0.702
VESIt4% 0.0003  0.0002 - 0.0003 <0.001
V2SIt 10 % 0.0001  0.0001 -0.0002 <0.001
V2SIt 28 % 0.0001  0.0001 - 0.0002 <0.001

Random Effects

o’ 0.37
Toc Rur 0.29
ICC 0.44
N rur 28

Observations 135

Marginal R / Conditional B

0.77/0.87
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969 FIGURES
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971 Figure 1: Experimental design. Keeping fixed an ove€aledule biomass of 19 g AFDW m
972 2 we crossed in a full factorial design 4 differsize classes of individuals (36, 93, 247 and
973 576 mg AFDW of individual body mass), 4 levels eflsnent silt volume content (0 %, 4 %,
974 10 % and 28 %) and 6 levels of current velocitprffr5 to 30 cm sétby steps of 5 cm sé¢
975 each step lasting 20 minutes). Each of the expat@mheuns with bioturbators was associated
976 to a control run using the same sediment type aneiat velocity gradient but without

977  bioturbators. Each experimental treatment wascaf@d twice.

978
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Figure 2: Overall mass of suspended sedim&b{, g ni?) for different sediment silt
volume content (%) across a gradient of curreraaigt (V, cm set) and bioturbators
individual body mass\, mg AFDW, coloured lines), average of two repksator each
treatment (when available). The coloured areasessmt the 95 % confidence intervals

around the average trends.
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bioturbators individual body massl( mg AFDW), as predicted from the ANCOVA model

in Table 5.

49



Silt content 0 %

Density of individuals (D, Ind. m'z)

Silt content 4 %

Density of individuals (D, Ind. m'z)

531 205 77 33 531 205 77 33
| |
° o
. . .8 © N 8
T 9 g 9
'-% 8 é ‘-% 8 @ © s @)
8 ~ o 0 ® S ~ © O
3 ¢ 3 e [5)
2 oo |O ® 2 oo | (@) Q @) (@)
L 5 2 3o 8
3 € g 3 € © o
- * -
2 27 V (cm sec™) 2 37 ©
= =
5 15—— 25
< 10 20—— 30 -
o (@} =}
T ) T
36 93 247 576 36 93 247 576
Individual body mass (M, mg AFDW) Individual body mass (M, mg AFDW)
Silt content 10 % Silt content 28 %
Density of individuals (D, Ind. m'z) Density of individuals (D, Ind. m'z)
531 205 77 33 531 205 77 33
| |
- ° - ] o
c . = 5 o (@
gl © £ 3 ® o
° (@) ° [©) . e i
2o o e i¢ 8 8 8
8 e 6} v g E 5 2 o) o
c o9 | c oo | [5) >
2 sw |© 2 % g sw b v
2 g 22 |° o ©
n = < n = @)
kS G 8
& o | 3 o |
@© o © o
= =
5 5
I T
36 93 247 576 36 93 247 576
991 Individual body mass (M, mg AFDW) Individual body mass (M, mg AFDW)
992  Figure 4: Individual body massNI, mg AFDW) scaling of the mass of suspended sedimen
993  due to bioturbationRg o g m?) for different sediment silt volume content (%)Xasurrent
994  velocities ¥/, cm set), as predicted from the ANCOVA model in Table 5.
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Highlights:
» Bioturbators affect sediment resuspension.
» Theeffect of bioturbators was compared across different sediment types.
» Bioturbation effect was maximal at intermediate current and on cohesive sediment.
» Theindividual effect of bioturbators scales with size similarly to metabolic rate.

* Thesizescaling trend isindependent of the sediment composition.
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