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Summary 8 

The use of echosounder buoys deployed in conjunction with Drifting Fish Aggregating Devices 9 

(DFADs) has progressively increased in the tropical tuna purse seine fishery since 2010 as a 10 

means of improving fishing efficiency. Given the broad distribution of DFADs, the acoustic 11 

data provided by echosounder buoys can provide an alternative to the conventional CPUE index 12 

for deriving trends on tropical tuna stocks. This study aims to derive reliable indices of presence 13 

of tunas (and abundance) using echosounder buoy data. A novel methodology is presented 14 

which utilizes random forest classification to translate the acoustic backscatter from the buoys 15 

into metrics of tuna presence and abundance. Training datasets were constructed by cross-16 

referencing acoustic data with logbook and observer data which reported activities on DFADs 17 

(tuna catches, new deployments and visits of DFADs) in the Atlantic and Indian Oceans from 18 

2013 to 2018. The analysis showed accuracies of 75 and 85 % for the recognition of the 19 

presence/absence of tuna aggregations under DFADs in the Atlantic and Indian Oceans, 20 

respectively. The acoustic data recorded at ocean-specific depths (6 – 45 m in the Atlantic and 21 

30 – 150 m in the Indian Ocean) and periods (4 am – 4 pm) were identified by the algorithm as 22 

the most important explanatory variables for detecting the presence of tuna. The classification 23 

of size categories of tuna aggregations showed a global accuracy of nearly 50% for both oceans. 24 
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This study constitutes a milestone towards the use of echosounder buoys data for scientific 25 

purposes, including the development of promising fisheries-independent indices of abundance 26 

for tropical tunas. 27 

Keywords: Tropical tunas; Direct abundance indicator; Echosounder buoys; Fish Aggregating 28 

Devices; Purse seiner 29 
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1. Introduction 31 

Many marine species are known to naturally aggregate under floating objects. Although still 32 

poorly understood, this behaviour is widely exploited by fishermen, who deploy man-made 33 

floating objects (hereafter referred to as Fish Aggregating Devices or FADs) worldwide to 34 

improve their catches (Kakuma, 2001; Fonteneau et al., 2013; Albert et al., 2014). The use of 35 

drifting FADs (DFADs) in tropical tuna fisheries was first introduced in the late 1980s in the 36 

Eastern Pacific Ocean by the US purse seine fleet (Lennert-Cody and Hall, 2001) and was later 37 

extended to all oceans and fleets from the 1990s. The instrumentation of DFADs with GPS 38 

beacons and echosounder buoys, in the mid and late 2000s respectively (Lopez et al., 2014), 39 

led to major changes in fishing strategies and behaviour of purse-seine fleets (Torres-Irineo et 40 

al., 2014). By providing skippers with almost real-time remote information on the precise 41 

location of DFADs, and on the potential presence and size of the tuna aggregation, echosounder 42 

buoys reduced the search time between two successful DFAD sets (Lopez et al., 2014). As a 43 

result, modern DFADs have significantly increase fishing efficiency (Fonteneau et al., 2013). 44 

Consequently, their use has increased considerably in the past few decades. Recent studies 45 

indicate that in less than a decade, the number of DFADs deployed in the Atlantic and Indian 46 

Oceans have increased at least fourfold (Fonteneau et al., 2015; Maufroy et al., 2017). It is 47 

estimated that over half of the annual tropical tuna purse seine catch originate from fishing sets 48 

on DFADs (Dagorn et al., 2013; Fonteneau et al., 2013). 49 

Aside from being highly efficient fishing tools, the large number and vast spatial distribution 50 

of DFADs, coupled with their constantly evolving technology (Lopez et al., 2014), mean that 51 

they can also potentially provide unprecedented scientific insights into pelagic communities 52 

(Moreno et al., 2016; Brehmer et al., 2018). The echosounder buoys attached to DFADs 53 

regularly produce and transmit biomass estimation data. This dataset potentially holds a major 54 

opportunity for improving the management of tropical tuna stocks through the development of 55 
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fishery-independent abundance indices (Capello et al., 2016; Santiago et al., 2016). Currently, 56 

the main abundance indicators used in stock assessment for tropical tunas are derived through 57 

the standardization of Catch per Unit of Effort (CPUE) from commercial data (Fonteneau et al., 58 

1998; Maunder et al., 2006). However, owing to the constant technological advances occurring 59 

in the purse seine fishery, it is extremely difficult to accurately standardize the CPUE time-60 

series (Fonteneau et al., 1999). Traditionally, search time was used to quantify normal fishing 61 

effort in this fishery, however, owing to its non-random nature, the DFAD-based fishery has 62 

made this metric inconsistent over time, thus introducing major biases and uncertainties in the 63 

relationship between tuna catches and abundance (Fonteneau et al., 1999; Gaertner et al., 2015). 64 

The need for the consideration of non-traditional data sources to provide alternate abundance 65 

indices for stock assessment of tunas is becoming increasingly apparent. In this regard, the large 66 

amount of acoustic data autonomously collected by commercial echosounder buoys on DFADs 67 

is of undeniable value. However, the direct exploitation of these data remains challenging. The 68 

biomass estimate that a buoy produces is limited by the reliability and variability of the 69 

information provided, which depends on the hardware and software characteristics of the buoy, 70 

and varies between manufacturers (Lopez et al., 2014; Santiago et al., 2016). As a result, the 71 

data provided by echosounder buoys are heterogeneous in types and formats, with limited 72 

studies having provided an assessment of their accuracy for use in scientific investigations. 73 

(Lopez et al., 2016; Baidai et al., 2017; Orue et al., 2019a). 74 

In recent years, fisheries scientists have shown a growing interest in machine learning methods 75 

for the processing of both passive acoustic data (Roch et al., 2008; Zaugg et al., 2010; Noda et 76 

al., 2016; Malfante et al., 2018) and acoustic data collected by scientific echosounders 77 

(Fernandes, 2009; Robotham et al., 2010; Bosch et al., 2013). Despite this trend, very few 78 

studies have been conducted on the implementation of automated classification methods for 79 

analysing the extensive datasets collected by commercial vessels (Uranga et al., 2017).  80 
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This paper presents a new methodology, based on machine learning, for processing the 81 

echosounder data collected from one of the main models of echosounder buoy used to equip 82 

DFADs worldwide (Moreno et al., 2019).  83 

2. Material and Methods 84 

2.1. Database description 85 

2.1.1. Echosounder buoy data 86 

We used data from the Marine Instruments M3I buoy (https://www.marineinstruments.es), 87 

collected on DFADs deployed by the French purse seine vessels operating in the Western Indian 88 

and Eastern Atlantic oceans from 2013 to 2018. The dataset consists of more than 60 million 89 

data points collected by approximately 35 000 M3I buoys. This model of buoy includes a solar 90 

powered echosounder operating at a frequency of 50 kHz, with a power output of 500 W, a 91 

beam angle of 36°, and a sampling frequency of 5 minutes (Fig. 1A). The acoustic data are 92 

processed by an internal module that automatically converts the acoustic energy into (i) a total 93 

biomass index and (ii) 50 integer acoustic scores (ranging from 0 to 7) indicating the acoustic 94 

energy recorded within 3 m depth layers, over a total detection range of 150 meters (Fig. 1B). 95 

In the default-operating mode, the internal module stores the 50 acoustic scores that correspond 96 

to the highest total biomass index recorded every 2 hours. From here on these 50 acoustic scores 97 

will be referred to as an “acoustic sample”. The assessment of the accuracy of the total biomass 98 

index calculated directly by the buoy’s internal module is presented in the Supplementary 99 

Appendix A1. The set of acoustic scores which constitute the acoustic sample is transmitted via 100 

satellite to the purse seine vessel every 12 hours under default settings. During the satellite 101 

communication, the GPS position of the buoy is also recorded and transmitted. 102 
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2.1.2 Activity data on DFADs  103 

To ground truth the echosounder buoy dataset, catch and fishing activities were obtained from 104 

fishing logbooks of purse seine vessels and on-board observer reports from 2013 to 2018 in the 105 

western Indian and eastern Atlantic oceans. Observer data were collected under the EU Data 106 

Collection Framework (DCF) and the French OCUP program (Observateur Commun Unique 107 

et Permanent), which reached a coverage rate of 100% in the Atlantic Ocean in 2015 (Goujon 108 

et al., 2018), and over 80% since 2016, in the Indian Ocean (Goujon et al., 2017). From this 109 

combined dataset, the date, time, GPS location and buoy identification code associated with (i) 110 

fishing sets, (ii) newly deployed DFADs and (iii) visits to DFADs equipped with buoys owned 111 

by the vessel and which did not result in a fishing operation, were selected to be cross-112 

referenced with echosounder buoy dataset. For successful fishing sets on DFADs, catch data 113 

for the three primary target species; yellowfin (Thunnus albacares), bigeye (Thunnus obesus) 114 

and skipjack tuna (Katsuwonus pelamis) were also considered. These catch data were used to 115 

ground truth the buoy’s ability to detect the presence and size of tuna aggregations, assuming 116 

that the entire fish aggregation is encircled and captured by the fishing vessel. Conversely, 117 

newly deployed DFADs and visits to DFADs that did not result in any catch were used to 118 

ground truth the buoy’s ability of detecting the absence of a tuna aggregation. For this 119 

assessment, DFAD deployments and visits where fishing sets were reported within the 120 

following week were omitted, to ensure that the data truly represented the absence of tuna at 121 

the DFADs. Similarly, only the deployments of new DFADs were considered and all other 122 

deployment operations were discarded (e.g., reinforcement of an existing DFAD, deployment 123 

of a buoy on a natural log). 124 

Skunk fishing sets (sets where the tuna school totally or partially escaped) and activities, for 125 

which the reported set position was inconsistent with the position reported by the buoy, were 126 

removed. Only data for which the buoy identification code corresponded to a buoy code present 127 
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in the echosounder buoy database were retained in the analysis. The final database used for 128 

each activity and ocean is described in Table 1. 129 

2.2. Acoustic data pre-processing  130 

Daily acoustic data provided by an individual buoy consists of a 50 × N matrix S, where 50 131 

represents the number of depth layers and N corresponds to the number of acoustic samples 132 

provided for that day according to the operating mode of the buoy (in the default operating 133 

mode, the acoustic scores are stored every 2 hours, thus N=12). Elements of the matrix S 134 

correspond to the daily acoustic scores Sij (i.e., integers ranging between 0 and 7) recorded at 135 

different depth layers i (i=1, 50) and different times of the day j (j=1, N). In a pre-processing 136 

step, the temporal and spatial information was aggregated to standardize the data and achieve a 137 

reduction in dimensions as follows: 138 

(1) the acoustic scores of the two shallowest layers (0 – 6 m depth), representing the transducer 139 

near-field, were removed, leading to a 48 × N matrix; 140 

(2) for each layer i, the daily acoustic scores Sij were averaged over 4-hours periods, resulting 141 

in a reduced matrix S’ of 48 × 6 (Fig. 2);  142 

(3) a clustering method was applied on S’ along the dimension i, to identify homogeneous 143 

groups of depth layers. The clustering method was based on a dissimilarity matrix computed 144 

from Euclidean distance and Ward's method (Murtagh and Legendre, 2014). The acoustic 145 

scores in each identified group were compared through a Kruskal-Wallis test1;  146 

(4) for each homogeneous group G, the acoustic scores recorded previously for each of the i 147 

depth layers constituting the group were summed and rescaled to obtain a unique score (S''Gj) 148 

per group G and time period j, according to Eq. 1. 149 

                                                           
1 Clustering analyses were conducted  using the R function “hclust” (R Core Team, 2019), and 

the Kruskal-Wallis test with the R function “kruskal.test” 
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where j denotes the 4-hours time period, nG the number of depth layers belonging to group G 151 

and maxs is a constant denoting the maximum score (7 in the case of M3I buoys). The result of 152 

the pre-processing step leads to a NG × 6 matrix S’’ (i.e., NG groups of layers × 6 four-hour 153 

periods recorded during a day), summarizing the acoustic information collected on a daily scale, 154 

and referred to hereafter as a “daily acoustic matrix” (Fig. 2). 155 

2.3. Supervised learning classification  156 

2.3.1. Training dataset 157 

The training datasets were constructed by cross-matching activity data (catch, deployments, 158 

visits without fishing sets) with the daily acoustic matrices, using buoy identification codes, 159 

dates and times for each ocean. A first binary training dataset was constructed for describing 160 

the presence or absence of tuna, in which catch events corresponded to tuna presence and 161 

deployment and visits without catch, to the absence of tuna (see Table 2). A second multiclass 162 

training dataset was created for describing the size of the tuna aggregation. The catch data were 163 

divided into three classes: < 10 tons, 10 – 25 tons, >25 tons, based on the total catch of the set 164 

(i.e., the sum of the catch of the three target tuna species: yellowfin tuna, bigeye tuna and 165 

skipjack tuna). The number and limits of the size classes were selected in order to retain a 166 

sufficient and balanced number of data points in each class for the learning process, while also 167 

maintaining consistency with the catch data. Class limits were based on the first quantile (10 168 

tons) and the average (25 tons) of catches under DFADs in the dataset (see Table 3). 169 

The daily acoustic matrices of tuna presence were constructed using the acoustic data recorded 170 

the day before catch events. Similarly, the daily acoustic matrices corresponding to tuna 171 

absence were selected from the daily acoustic matrices obtained the day prior to DFAD visits 172 
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without fishing sets, and those obtained on the fifth day after new DFAD deployments. The 173 

rationale for considering these 5-day periods after deployment was to account for the acoustic 174 

signal produced by the non-tuna species. Prior studies (Deudero et al., 1999; Castro et al., 2002; 175 

Nelson, 2003; Moreno et al., 2007; Macusi et al., 2017) have indicated that the colonization of 176 

DFADs by non-tuna species occurs within a range of a few hours to one week after deployment. 177 

Furthermore, preliminary analyses conducted on 528 and 5868 newly deployed DFADs, in the 178 

eastern Atlantic and western Indian oceans respectively, indicated a rapid increase in the 179 

acoustic signal recorded by the buoys during the first five days following deployment 180 

(Supplementary Appendix A3: Fig. A3.1 and A3.2). After considering all of these reasons, we 181 

assumed that acoustic data recorded at this post deployment time-scale were more likely to 182 

represent the presence of non-tuna species under DFADs.  183 

2.3.2. Random forest algorithm  184 

The random forest classification algorithm2 (Breiman, 2001) was applied on an ocean-specific 185 

basis. Predictors were represented by daily acoustic matrix values. Three thousand trees were 186 

grown for each classification. This high value does not negatively impact the model’s 187 

performance (Breiman, 2001), and helps to stabilize the importance of the variables more 188 

effectively (Liaw and Wiener, 2002; Probst et al., 2019). For each classification model, the 189 

number of variables randomly sampled as candidates at each split was assessed through a grid-190 

search strategy implemented with the R package “caret” (Kuhn, 2008). In order to deal with the 191 

imbalanced number of observations in the different size categories a stratified down-sampling 192 

procedure, which consisted of resampling the dominant size categories to make their 193 

frequencies closer to the least common size category, was also applied (Kuhn and Johnson, 194 

2013). 195 

                                                           
2 The random forest classification was performed by using the R package “randomForest” (Liaw and 

Wiener, 2002) 
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2.3.3. Model evaluation 196 

The overall accuracy (i.e., the proportion of correct predictions) and the kappa coefficient 197 

(Cohen, 1968) were used to assess the overall performance of both binary and multi-size 198 

category classifications. Kappa coefficient is a reliability index estimated according to Eq. 2: 199 

����� =  
��(�) � �� (�)

�� �� (�)
 (2) 200 

where Pr(a) is the total proportion of agreement between the observed and predicted classes 201 

and Pr(e) is the theoretical proportion of agreement expected by chance. The closer this ratio 202 

is to 1, the better the classification performed.  203 

In each classification, the conventional statistical measures of the performance of a binary 204 

classification test: sensitivity, specificity, and precision were evaluated from confusion 205 

matrices, using Eq. 3 - 5: 206 

� !"#$#%#$& =  
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'�()*
 (3) 207 
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 (4) 208 

-. +#"#/! =  
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  (5) 209 

where for presence/absence classification, TP (true positive) and TN (true negative) are the 210 

proportions of presence (or absence) correctly classified; FN (false negative) and FP (false 211 

positive) are the proportions of absence (or presence) incorrectly predicted. For multiclass 212 

classification, positive cases correspond to the aggregation size category considered during the 213 

evaluation, while all other categories correspond to negative cases. Sensitivity (also known as 214 

recall or true positive rate) measures the efficiency of the algorithm in correctly classifying 215 

positive cases, and specificity (or true negative rate) measures the efficiency of the algorithm 216 
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in correctly classifying negative cases. Precision (or positive predictive value) is the fraction of 217 

correctly predicted presence among all tuna presence prediction. 218 

The importance of the predictors in the classification process for each ocean was assessed 219 

through the analysis of the mean decrease in accuracy of the random forest model (i.e., the 220 

increase of prediction error after permuting each variable while all others remained unchanged 221 

during the tree construction; Breiman, 2001). Model training and evaluation were performed 222 

through a hold-out validation method which was repeated ten times. In each of the ten replicates, 223 

the original dataset was divided into two subsets: the training set and the validation dataset 224 

(representing 75% and 25% of the initial data, respectively). 225 

3. Results 226 

3.1. Pre-processing of sampled depth layers 227 

The clustering analysis carried out on the 3 m depth layers led in both oceans to the formation 228 

of six groups with similar layer compositions between the two oceans (Fig. 3). In each ocean, 229 

the comparison of the acoustic scores between the identified groups showed highly significant 230 

differences (p-value at Kruskal-Wallis test < 0.001 for both Indian and Atlantic Oceans). Scores 231 

declined strongly with depth (Fig. 4). The deepest group of layers (which also aggregated the 232 

greatest number of layers), exhibited the lowest acoustic values, with averages close to zero 233 

(Fig. 4). 234 

3.2. Presence/absence classification 235 

The random forest algorithm performed well in discriminating between the presence and 236 

absence of tuna, with an overall accuracy of 75 and 85% in the Atlantic and Indian oceans, 237 

respectively (Table 4). In the Atlantic Ocean, the classification model was effective in detecting 238 

DFAD aggregations with tuna (sensitivity of 0.83), but exhibited a notable level of false 239 
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positives (specificity of 0.67). In the Indian Ocean the opposite trend was observed with the 240 

classification of tuna presence performing well (sensitivity of 0.81) and the detection of their 241 

absence also producing reliable results (specificity of 0.90).  242 

3.3. Classification of aggregation sizes  243 

The classification of aggregations into size classes was considerably less efficient than the 244 

presence-absence classification, with low overall accuracies (48 and 47 %) observed for the 245 

Atlantic and the Indian Oceans, respectively (Table 5). In the Atlantic Ocean, the highest 246 

proportion of misclassification was observed in the 10 – 25 tons category (precision of 0.22), 247 

whereas tuna schools below 10 tons and above 25 tons both performed similarly (precision of 248 

0.32 and 0.28 respectively). In the Indian Ocean, tuna schools over 25 tons and below 10 tons 249 

were also the most reliably detected aggregation size classes (precision of 0.44 and 0.42 250 

respectively); while intermediate aggregation sizes (10 – 25 tons) were successfully classified 251 

less regularly (precision of 0.35). 252 

3.4. Predictor importance 253 

For both binary and multiclass classifications, the importance of the acoustic predictors in the 254 

classification process showed strong ocean-specific patterns. In the Atlantic Ocean, the 255 

detection of tunas was principally driven by acoustic data recorded from 6 m to 45 m (Fig. 5A 256 

and 6A). Conversely, in the Indian Ocean, the main predictors resulted from deeper layers (30 257 

m to 150 m, Figure 5B and 6B). In these depth ranges, acoustic data recorded during daytime 258 

(4 am - 4 pm) appeared to be the most significant for both oceans and across all types of 259 

classifications. It should, however, be noted that in the Atlantic Ocean, the binary classification 260 

produced a wider time window (0 to 4 pm) than in the Indian Ocean. 261 

 262 
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4. Discussion 263 

This study describes a new methodology for processing data collected by a commercial 264 

echosounder buoy commonly used in the DFAD purse seine fishery. The approach utilizes the 265 

acoustic scores (reflective of abundance) recorded at different depths and times of the day and 266 

combines data pre-processing procedures and machine learning algorithms to classify tropical 267 

tuna aggregations under DFADs. Although several models of echosounder buoys process data 268 

internally and generate abundance indices for tuna, previous studies have shown that such 269 

information can be unreliable (Lopez et al., 2014, 2016). This could explain why most purse 270 

seine skippers pay little attention to this information. Rather than relying solely on these 271 

processed outputs, skippers tend to combine the acoustic information recorded at specific 272 

depths and times with their empirical knowledge and the oceanographic characteristics of the 273 

region to assist their decision making.  274 

Working on a different brand of buoy, Lopez et al. (2016) developed the first approach to 275 

improve biomass estimations from data collected by echosounder buoys. These authors 276 

suggested that the acoustic signal collected during sunrise (i.e., when tuna are generally the 277 

most tightly concentrated under DFADs), should be considered for processing and assumed the 278 

structure of the aggregated biomass based on knowledge of the vertical behaviour of species 279 

under floating objects. Under this assumption, they suggested a vertical segregation between 280 

the species that make up the multispecific aggregation under DFADs (non-tuna species [3 – 25 281 

m], small tunas [25 – 80 m] and large tunas [80 – 115 m]), and applied an echo-integration 282 

procedure to convert the acoustic signal from each depth layer into biomass estimates using 283 

specific values of target strength and individual average weight for each group. The application 284 

of this approach to a larger dataset in the Indian Ocean (287 fishing sets) by Orue et al (2019) 285 

was found to be less effective than expected, and potentially affected by the large spatio-286 
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temporal variability between oceanic regions which skewed the main assumptions that underlie 287 

the approach. 288 

The methodology used by this study did not make any assumptions regarding the vertical and 289 

temporal distribution of tuna at DFADs. Using a supervised learning algorithm, this 290 

methodology mimics the learning process of the fishers on how they interpret the acoustic 291 

scores based on their experience. The training dataset used for this purpose utilizes buoy data, 292 

which is considered to be ground-truthed. These ground-truthed data have three underlying 293 

assumptions. The first assumption is that the tuna caught by a purse seine vessel around a DFAD 294 

represents all the tuna aggregated under that DFAD. This is typically the case, although it is 295 

possible that some tuna escape during the fishing procedure, such events are considered to be 296 

minor (Muir et al., 2012). In exceptional situations when very large fishing sets are made (> 297 

200 t), the skipper may decide to retain only part of the aggregation to avoid damaging the net. 298 

The second assumption is that tunas do not immediately associate with newly deployed DFADs. 299 

Although Orue et al. (2019b) indicated that tuna may arrive first under DFADs, previous studies 300 

(Deudero et al., 1999; Castro et al., 2002; Nelson, 2003; Macusi et al., 2017), including 301 

interviews with fishers (Moreno et al., 2007) suggested otherwise. In this study, the daily 302 

acoustic matrix recorded five days after the deployment of a new DFAD was used to represent 303 

the absence of tuna. It would be useful to develop dedicated studies that would aid in the 304 

understanding of the aggregation process of tuna and non-tuna species around DFADs. Finally, 305 

the third assumption considered that a purse seine vessel visiting its own DFAD (DFAD 306 

equipped with the vessel’s buoy) without fishing also represents the absence of a tuna 307 

aggregation at the DFAD. It may be countered that a skipper could decide not to set on a DFAD 308 

when the vessel is already full, but this is an extremely rare event. External factors (e.g. strong 309 

currents) may also impede the fishing operations. However, if a vessel heads towards a DFAD 310 

that it owns, it is fair to assume that this would result in a fishing set (if tunas are present). 311 
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Furthermore, in an effort to avoid any bias associated with the external factors that could 312 

influence the skipper’s decision, only DFAD visits that were not followed by a fishing set within 313 

seven days were taken into consideration. Our decision to include visits without fishing 314 

operations in the training database as “absence of tuna” was taken based on numerous 315 

discussions with skippers. According to many of them, it is not uncommon that the echosounder 316 

buoys report high levels of acoustic energy even if tuna are absent from the aggregation. The 317 

objective of including these DFAD visits in the database was to improve the ability of the 318 

classification model to detect such false positives. 319 

The results from this study highlight the effectiveness of the proposed methodology for 320 

discriminating between the presence and absence of tuna aggregations under DFADs equipped 321 

with M3I buoys in both the Indian and Atlantic oceans. To date the reliability of this model of 322 

buoy in estimating the presence and size of tuna aggregations had only been assessed 323 

anecdotally based on opinion and feedback from skippers. The development of reliable methods 324 

for processing data provided by commercial echosounder buoys represents a key step in the use 325 

of these fishing tools for scientific purposes, particularly the study of the different aspects of 326 

the ecology and behaviour of tuna associated with floating objects. The algorithm’s lower 327 

performance in the Atlantic Ocean, where a higher proportion of false positive predictions of 328 

tuna presence were generated, could well be related to the size of the training dataset. In the 329 

Atlantic Ocean, this dataset was 5.5 times smaller than that used for the India Ocean. However, 330 

this difference may also reflect an ocean-specific vertical distribution of fish aggregations under 331 

DFADs. In the Indian Ocean, previous studies have described a vertical segregation between 332 

tuna and non-tuna species (Forget et al., 2015; Macusi et al., 2017). Such segregation would 333 

result in the determination of an absence of tuna to be straightforward for the classification 334 

algorithm. To date no studies have investigated the vertical distribution of tuna and non-tuna 335 

species under DFADs in the Atlantic Ocean. The depth of the thermocline in the eastern Atlantic 336 
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Ocean is known to be shallower than in the western Indian Ocean (Schott et al., 2009; Xie and 337 

Carton, 2013). This difference may result in tunas occupying shallower depths and thus mixing 338 

more regularly with non-tuna species. Such a phenomenon could provide an explanation for the 339 

higher rates of false positives generated in the Atlantic Ocean (i.e., false detection of the 340 

presence of tuna). The analysis of the relevance of the predictive factors in the random forest 341 

classifications showed that, for both oceans, daytime periods were the most relevant factor for 342 

distinguishing the presence of tuna schools from other acoustic targets. This result is likely 343 

linked to the behaviour of tuna schools and their spatial and temporal distribution around 344 

DFADs. Sonar surveys conducted on DFADs in the Indian Ocean revealed that tuna form a 345 

large number of small and dispersed schools during the night, and few and larger schools during 346 

daytime (Trygonis et al., 2016). Another possible reason could be related to the influence of the 347 

diel vertical migration of the deep scattering layer to the near surface at night (Robinson and 348 

Goómez-Gutieérrez, 1998), which may affect the acoustic signal. 349 

In both oceans, the performance of the classification algorithm for discriminating between 350 

different aggregation sizes was considerably less satisfactory than the presence/absence of 351 

tunas. There are several possible explanations for these limitations. One potential source of bias 352 

may stem from the differing species composition considered in each size class. Due to skipjack 353 

tuna lacking a swim bladder, their acoustic response is very different from that of yellowfin or 354 

bigeye tuna (Josse and Bertrand 2000; Boyra et al. 2018), as such an aggregation of a given size 355 

would result in different acoustic signatures depending on the percentage of each species that 356 

make it up. Another source of bias could be linked to the position of the tuna aggregation in 357 

relation to the area that is sampled by the buoy (detection cone). Depending on the size of the 358 

aggregation and the behaviour of tuna around the DFAD, it is likely that the buoy’s acoustic 359 

cone only detects part of the tuna aggregation, especially at shallow depths. Some 360 

environmental factors could also affect both the acoustic signal detection and fish behaviour, 361 
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and could thus have an effect on the classification of the aggregation size. Water temperature, 362 

for example, is known to have an effect on both the acoustic signal (Bamber and Hill, 1979; 363 

Straube and Arthur, 1994) and the abundance of tuna (Boyce et al., 2008). As such, the 364 

interpretation of buoy data, particularly concerning the accurate estimation of the aggregated 365 

biomass, may be strongly influenced by area and season-specific factors. In addition, close 366 

examination of the scores in the layer groups identified by the cluster analysis also revealed that 367 

layers deeper than 50 m were characterized by very low scores (Fig. 4). Previous studies on the 368 

vertical distribution of fish species under DFADs found that tuna regularly occurred below this 369 

depth (Dagorn et al. 2007a; Dagorn et al. 2007b; Forget et al. 2015; Matsumoto et al. 2016; 370 

Lopez et al., 2017). Consequently, it appears fair to assume that the low values obtained for 371 

these depths are likely related to the limited detection capability of the device at such depths, 372 

which may also explain the poor estimates of the size of the tuna schools. 373 

The principle findings of this work showed that machine learning offers promising pathways 374 

for processing acoustic data provided by commercial echosounder buoys. Although this work 375 

has focused on a single model of buoy, it can easily be expanded to encompass other models 376 

and brands. The only essential requirement is access to a large training database. 377 

5. Conclusion 378 

The methodology developed in this study provides an indicator of presence/absence of tuna 379 

schools at DFADs in both the Atlantic and Indian Oceans, from simplified acoustic data 380 

collected by one of the echosounder buoy models used in the tuna purse seine fishery. This 381 

approach has the potential to summarize and analyse a large amount of acoustic data, with an 382 

efficiency that obviously depends on the nature and quality of the data provided. Nevertheless, 383 

the rapid and continuous evolution in echosounder buoys technology observed since their 384 

introduction is likely to provide, over time, better and more detailed data, leading to a 385 
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substantial improvement in the performance of the proposed methodology, specifically 386 

regarding assessment of aggregation sizes under DFADs. Applying this approach to other 387 

echosounder buoy models, like new multi-frequency buoy models, widely adopted in recent 388 

years, could also allow to assess and compare buoy reliabilities. Finally, although the 389 

availability of more extensive databases (with matched acoustic and catch data) and more 390 

detailed acoustic data (beyond the discrete 0 – 7 acoustic indices) could improve this 391 

methodology, the accurate discrimination between the presence and absence of tuna schools 392 

around DFADs obtained in this study constitutes a critical step towards the exploitation of 393 

echosounder buoy data for providing novel and robust indicators of abundance for the 394 

management of FAD fisheries in years to come. 395 
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Tables 617 

Table 1: Number of fishing sets (with catch ≥ 1 ton), visit and deployment data collected from 618 

2013-2018 and used in the presence-absence classification for the Atlantic and Indian Oceans. 619 

 Atlantic Ocean Indian Ocean 

 Catch Visit Deployment Catch Visit Deployment 

Logbook 817 255 405 2918 1031 6722 

Observers 151 0 228 513 0 2487 

Total 968 255 633 3431 1031 9209 

 620 

Table 2: Structure of the training dataset used in the presence-absence and multiclass 621 

classification for the Atlantic and Indian Oceans (over the period 2013-2018). 622 

Ocean No tuna 
Tuna 

< 10 tons [10, 25 tons] > 25 tons 

Atlantic 888 397 303 268 

Indian 10240 904 1288 1239 

 623 

Table 3: Summary statistics of major tuna catches (in tons) from DFAD fishing operations 624 

collected from observer and logbook databases from 2013 to 2018, in the Atlantic and Indian 625 

Oceans. (Min. and Max. denote for minimum and maximum catch values, respectively. SD 626 

represents standard deviation and Qu. stands for quantile) 627 

Ocean Min. 1st Qu. Median Mean 3rd Qu. Max. SD 

Atlantic 1 6 15 22.61 30 177.70 25.59 

Indian 1 10 20 26.73 34 300 26.77 

 628 
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Table 4: Summary of tuna presence/absence classification performances for the Atlantic and 629 

Indian Oceans: mean and standard deviation values (in brackets) of evaluation metrics. 630 

Evaluation Metrics Atlantic Indian 

Accuracy 0.75 (0.02) 0.85 (0.01) 

Kappa 0.51 (0.04) 0.70 (0.02) 

Sensitivity 0.83 (0.02) 0.81 (0.01) 

Specificity 0.67 (0.03) 0.90 (0.01) 

Precision 0.73 (0.03) 0.88 (0.01) 

631 
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Table 5: Summary of multiclass classification performances for the Atlantic and Indian Ocean. Mean and standard deviation (in brackets) of 632 

evaluation metrics 633 

 Atlantic Ocean 

 

Indian Ocean 

 No tuna <10 tons [10 , 25 tons] > 25 tons No tuna <10 tons [10 , 25 tons] > 25 tons 

Sensitivity 0.67 (0.03) 0.36 (0.05) 0.24 (0.08) 0.34 (0.06) 0.87 (0.03) 0.19 (0.01) 0.29 (0.02) 0.54 (0.04) 

Specificity 0.82 (0.02) 0.80 (0.03) 0.84 (0.04) 0.85 (0.04) 0.80 (0.01) 0.91 (0.01) 0.82 (0.02) 0.77 (0.01) 

Precision 0.77 (0.03) 0.32 (0.04) 0.22 (0.04) 0.28 (0.05) 0.59 (0.02) 0.42 (0.04) 0.35 (0.03) 0.44 (0.02) 

Accuracy 0.48 (0.02) 0.47 (0.02) 

Kappa 0.26 (0.03) 0.30 (0.02) 

 634 
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Figures 635 

 636 

Fig. 1: Technical specifications of the Marine Instruments M3I echosounder buoy. (A): beam 637 

width or cover angle (a), depth range (h), and diameter (D) at 150 m, (B): example of an acoustic 638 

sample 639 

 640 

Fig. 2 : Schematic view of the acoustic data pre-processing. (1) Temporal resolution reduction, 641 

averaging acoustic samples over a 4-hour period. (2) Layer aggregation combining the 48 642 

vertical layers into 6 layers based on cluster analysis. The final output is a 6×6 matrix 643 

summarizing the acoustic signal recorded over 24 hours between 6 and 150 m. Acoustic scores 644 



 

30 

 

are integer values (ranging from 0 to 7), representing the intensity of the acoustic backscattered 645 

signal per 3 m depth layer. Time-aggregated acoustic scores represent the average value of the 646 

acoustic scores over the 4-hour interval. Group scores represent the sum of layer scores (scaled 647 

between 0 and 1) per homogeneous group of layers identified from the clustering analysis. 648 

 649 

 650 

Fig. 3: Dendrogram from the cluster analysis of raw acoustic data for the Atlantic (A) and Indian 651 

(B) Oceans. The red horizontal line indicates the height at which the dendrogram was sliced to 652 

create the 6 groups of layers. Colors identify the different groups of depth layers used to pre-653 

process the acoustic data. 654 
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 655 

Fig. 4: Boxplot of acoustic score values in the aggregated-layer groups identified by the cluster 656 

analysis, for the Atlantic (A), and Indian (B) Oceans. Red diamonds represent mean value of 657 

scores in each layer group. 658 

  659 

Fig. 5: Importance of depth layers and day period in presence/absence classification for the 660 

Atlantic (A) and Indian (B) Oceans. Each cell represents a combination of depth and time 661 

period. Colours indicates the importance of the predictor in the classification. 662 
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  663 

Fig. 6: Importance of depth layers and day period in multiclass classification for the Atlantic 664 

(A) and Indian (B) Oceans. Each cell represents a combination of depth and time period. 665 

Colours indicates the importance of the predictor in the classification. 666 




