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Current approaches that compare spatial genetic structure of a given species and the 
dispersal of its mobile phase can detect a mismatch between both patterns mainly 
due to processes acting at different temporal scales. Genetic structure result from 
gene flow and other evolutionary and demographic processes over many generations, 
while dispersal predicted from the mobile phase often represents solely one genera-
tion on a single time-step. In this study, we present a spatial graph approach to land-
scape genetics that extends connectivity networks with a stepping-stone model to 
represent dispersal between suitable habitat patches over multiple generations. We 
illustrate the approach with the case of the striped red mullet Mullus surmuletus in 
the Mediterranean Sea. The genetic connectivity of M. surmuletus was not correlate 
with the estimated dispersal probability over one generation, but with the stepping-
stone estimate of larval dispersal, revealing the temporal scale of connectivity across 
the Mediterranean Sea. Our results highlight the importance of considering multiple 
generations and different time scales when relating demographic and genetic con-
nectivity. The spatial graph of genetic distances further untangles intra-population 
genetic structure revealing the Siculo-Tunisian Strait as an important corridor rather 
than a barrier for gene flow between the Western- and Eastern Mediterranean basins, 
and identifying Mediterranean islands as important stepping-stones for gene flow 
between continental populations. Our approach can be easily extended to other sys-
tems and environments.

Keywords: genetic connectivity, Mediterranean Sea, Mullus surmuletus, seascape 
genetics, spatial graphs, stepping-stone dispersal

Introduction

Connectivity and gene flow influence the evolutionary dynamics of spatially 
structured populations, maintain genetic diversity and promote population adap-
tive potential and resilience after disturbance (Hughes and Stachowicz 2004, 
Vandergast et al. 2008, Baguette et al. 2013, Donati et al. 2019). Connectivity refers 
to the movement of individuals in a heterogenous landscape (Taylor et al. 1993).  
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When individual dispersal is followed by successful repro-
duction, demographic connectivity results in genetic con-
nectivity, a measure of gene flow and other evolutionary 
processes (Lowe and Allendorf 2010). Understanding how 
populations are connected across space and time is essential 
to assess the impact that habitat change and fragmentation 
can have on population persistence, and to develop sustain-
able resource management and appropriate conservation 
strategies (Fischer and Lindenmayer 2007, Andrello et al. 
2015, Magris et al. 2018). It can also help to quantify the 
potential spreading of adaptive alleles in areas threatened 
by climate change (Razgour et al. 2019). Landscape genetic 
studies aim to characterize how habitat and environmental 
features promote or impede the movement of individu-
als through landscapes, riverscapes and seascapes and thus 
influence microevolutionary processes, including gene 
flow and genetic drift (Manel et al. 2003, Anderson et al. 
2010). For species whose connectivity is mainly realised 
by a dispersing propagule stage (e.g. eggs, larvae, seeds, 
spores), much interest has been given to understanding the 
drivers of population connectivity by estimating the dis-
persal of these propagules through water, wind or animal 
vectors and by assessing the extent to which propagule dis-
persal explains the observed genetic structure across space 
(Nathan and Muller-Landau 2000, Castorani et al. 2017, 
Escalante et al. 2018).

Comparing genetic connectivity and propagule dispersal 
requires matching propagule dispersal to the temporal scales 
of the processes shaping genetic connectivity. While propagule 
dispersal occurs within one generation, genetic structure results 
from gene flow and demographic processes over many genera-
tions which can, in the absence of strong barriers to dispersal, 
lead to connectivity over large spatial scales (Hedgecock et al. 
2007). Considering only single-generation dispersal events 
ignores the effect of stepping-stone dispersal through habitat 
patches leading to genetic connectivity over multiple genera-
tions (Saura et al. 2014). We thus need to integrate propagule 
dispersal across time to better understand genetic connectivity 
patterns and understand how multi-generational stepping-
stone dispersal shapes genetic population structure.

In the terrestrial environment, most landscape genetic 
studies analyse genetic connectivity using least-cost path esti-
mates of habitat connectivity (Epps et al. 2007, Castillo et al. 
2014, Row et al. 2018, Schoville et al. 2018). Some recent 
advances have been made to combine spatial and tempo-
ral scales in landscape connectivity models. Saura  et  al. 
(2014) developed a generalized habitat network connec-
tivity model which accounts for the potential role of step-
ping-stones enhancing species dispersal across generations. 
Martensen et al. (2017) modelled spatio-temporal networks 
of connectivity in dynamic landscapes where patch availabil-
ity changes through time. However, neither of these studies 
tested how such improved estimates of landscape connectiv-
ity correlate with genetic connectivity.

In the marine environment, important advances combined 
biophysical models and genetic analyses to describe popula-
tion connectivity. Examples include mobile species such as 

reef fishes (e.g. Plectropomus maculatus in the southern Great 
Barrier Reef, Bode  et  al. 2019) and lobsters (e.g. Panulirus 
argus in the Caribbean sea, Truelove et al. 2016), and seden-
tary species such as sea cucumbers (e.g. Parastichopus californi-
cus in the North-Eastern Pacific, Xuereb et al. 2018), molluscs 
(e.g. Kelletia kelletii in the Santa Barbara Channel, White et al. 
2010) and seagrasses (e.g. Zostera marina in the North Sea, 
Jahnke et al. 2018). The two latter studies, White et al. (2010) 
and Jahnke et  al. (2018), integrated dispersal over multiple 
generations by applying Markov Chain matrix multiplication 
but missed herein a spatially explicit consideration.

Spatial graphs (Box 1) can help to better understand the 
dynamics of complex systems composed of many interact-
ing units (Rozenfeld  et  al. 2008, Dale and Fortin 2010, 
Peterson et al. 2019). They offer a promising tool to study 
multi-generational dispersal by integrating stepping-stone 
dispersal through multiple sites and multiple pathways, and 
to study the spatial structure of gene flow between popula-
tions (Murphy et al. 2015). Applications of spatial graphs to 
model multi-generational dispersal are scarce and restricted 
to the marine environment (e.g. modelling the dispersal of 
rafting brown algae at small spatial scale; Buonomo  et  al. 
2017, and the dispersal of coral larvae at the scale of the Great 
Barrier Reef; Riginos  et  al. 2019). To our knowledge, only 
one recent study (Jahnke et al. 2018) applied spatial graphs 
to explicitly compare patterns of demographic and genetic 
connectivity, but this study did not calculate the multi-
generational connectivity.

Here, we present a spatial graph approach that extends 
propagule dispersal networks with a stepping-stone model 
to represent dispersal between suitable habitat patches over 
multiple generations. This approach allows to estimate the 
multi-generation long-distance connectivity that is poten-
tially detected using genetic data, and to compare explicitly 
the spatial structure of multi-generational genetic connec-
tivity, single-generation propagule dispersal and multi-gen-
eration dispersal networks. Our approach also accounts for 
unsampled stepping-stone sites that contribute to the con-
nectivity patterns between the sampled sites (the so-called 
‘ghost population’ effect; Beerli 2004, Slatkin 2005). We 
then illustrate our approach by analyzing connectivity of a 
high gene-flow species, the red mullet Mullus surmuletus, in 
the Mediterranean Sea. Finally, we discuss how to extend our 
approach to other systems.

Methods

General approach: multi-generational spatial graphs for 
genetic connectivity

The first step of our approach to study multi-generational genetic 
connectivity is to model propagule dispersal in a given environ-
ment or habitat for a single generation. This first step produces 
dispersal probabilities between each pair of sites used to build a 
spatial graph (Box 1) of single-generation dispersal (Treml et al. 
2008, Kininmonth et al. 2010, Andrello et al. 2013).
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The second step examines nodes that are not directly con-
nected in the single-generation dispersal graph and calculate 
the number of stepping-stones to connect the shortest paths 
between all pairs of nodes (Table 1). For example, if no direct 
connection exists between nodes a and c (Fig. 1, single-gener-
ation propagule dispersal), the shortest path algorithm iden-
tifies node b as the most suitable stepping-stone and indicates 
that one stepping-stone is needed to connect nodes a and c 
through b. In this way, the single-generation dispersal graph 

allows to calculate multi-generational connectivity through 
stepping-stone nodes (Fig. 1, multi-generational propagule 
dispersal). To calculate the shortest paths, dispersal prob-
abilities between nodes are transformed into distance mea-
sures by taking the natural logarithm of their inverse; this 
transformation yields a distance matrix where pairs of nodes 
with the highest dispersal probabilities have the smallest dis-
tance, thereby ensuring that the shortest path between two 
nodes is effectively the most probable one (Costa et al. 2017). 

Table 1. Spatial graph metrics used in this study (Urban and Keitt 2001, Newman 2003, Urban et al. 2009).

Network assortativity Measure of how well nodes in a network show similar characteristics. Typically calculated as degree assortativity, 
which quantifies whether high-degree nodes tend to attach to other high-degree nodes (assortative mixing) or 
whether high-degree nodes rather attach to low-degree ones (disassortative mixing). Measured as the Pearson 
correlation coefficient r of the degrees at either ends of an edge, averaged over edges. 

Network clustering Probability that two nodes connected to a given third node are themselves connected, averaged for all the nodes in 
a network.

Node betweenness Fraction of all shortest paths between nodes that passes through a given node. Quantifies the relative importance of 
a single node in passing information through the network. The betweenness centrality (CB) of node i is calculated 
by taking the proportion of shortest paths connecting nodes s and t (σst) that passes through node i (σst(i)), and 
summing them over all possible node pairs:

C i
i

B
s t i

st

st
( ) = ( )

¹ ¹
å s

s
Node degree Number of edges connected to a given node. Quantifies the local importance of a node. 
Shortest path Minimum-weight path connecting two nodes. In an unweighted graph, the shortest path represents the path with 

the smallest number of edges. In a weighted graph, the shortest path represents the path in which the total weight 
of the sequence of edges is the smallest.

Box 1. How spatial graphs can illuminate connectivity

Spatial graphs stem from graph theory and help to better understand the dynamics of complex systems composed of many 
interacting units (Rozenfeld et al. 2008, Dale and Fortin 2010, Peterson et al. 2019). They explicitly consider the spatial 
context of data (Urban et al. 2009) and can be used to study dispersal and connectivity between multiple sites simultane-
ously (Dale and Fortin 2010, Eros et al. 2011). In graph theory, a graph G consists of a set of nodes or vertices that are 
pairwise linked by a set of edges E(G) (Urban and Keitt 2001). A graph can be built to study connectivity in a network by 
using populations or sampling localities as georeferenced nodes, rendering a spatial graph, and weighing the edges between 
them by their modelled dispersal to represent connection probability, or by their pairwise genetic distance to study gene 
flow (under the hypothesis that genetic differentiation is mainly the outcome of gene flow). In doing so, graph theory 
allows to visually represent the network of genetic connectivity and analyse topological features to test hypotheses of popu-
lation structure (Dyer and Nason 2004, Dale and Fortin 2010, Xuereb et al. 2018). At the same time, graph theory allows 
the quantitative estimation of network- and node-level properties (Rozenfeld et al. 2008, Albert et al. 2013).

Interpreting graph metrics
Node metrics allow the identification of nodes, e.g. populations, that are of increased importance to the whole network 
by simultaneously considering all nodes and edges of the graph. High node degrees indicate populations that exchange 
propagules with many others (in a dispersal graph) or that have already exchanged genes with many others (in a genetic 
connectivity graph). Such populations have potentially sent or received many migrants over evolutionary time scales, 
acting as sources or sinks in the network (Rozenfeld et al. 2008). Node betweenness centrality quantifies the importance 
of single nodes in passing information through the network by identifying nodes that represent important stepping-
stones for dispersers (in propagule dispersal graphs) or genes (in genetic connectivity graphs) (Garroway et al. 2008, 
Rozenfeld et al. 2008, Andrello et al. 2013). Network-level metrics allow us to quantitatively characterize the topology of 
a graph. They furthermore allow us to test landscape-genetic hypotheses by comparing the topology and associated char-
acteristics of a genetic connectivity graph to graphs representing explanatory variables relating to structural or functional 
connectivity (Dale and Fortin 2010).
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The shortest paths between all possible node pairs can then 
be estimated using the Floyd–Warshall algorithm for directed 
graphs (Floyd 1962, Warshall 1962). Unsampled sites poten-
tially acting as stepping-stones are included in the multi-gen-
erational propagule dispersal graph.

The third step of our approach estimates a spatial 
graph of genetic distances among sites, hereafter referred 

to as multi-generational genetic connectivity (Fig.  1) 
(Rozenfeld  et  al. 2008, Fortuna  et  al. 2009, Albert  et  al. 
2013). The apparent discrepancies between genetic con-
nectivity and propagule dispersal can in part be explained 
by the process of multi-generational dispersal connect-
ing nodes over larger spatial scales than single-generation 
dispersal.

Figure 1. Spatial graphs to analyse single-generation propagule dispersal (top), multi-generational propagule dispersal (middle) and multi-
generational genetic connectivity networks (bottom). Dots and arrows represent the nodes and the directional edges of the graph. Black dots 
are the sampled populations and grey dots are unsampled populations. Black and grey arrows are modelled propagule dispersal probabilities 
between sampled and unsampled populations, respectively. The width of the arrows is proportional to propagule dispersal probability (in 
the single-generation propagule dispersal graph) and inversely proportional to genetic distance (in the multi-generational genetic connectiv-
ity graph). In the multi-generational propagule dispersal graph, dispersal probabilities are used to estimate the number of stepping-stones 
needed to connect nodes that are not connected in the single-generation graph. Dashed lines represent multi-generational connectivity 
through stepping-stones and are highlighted for nodes a and c (brown) and nodes b and f (green). Adapted from Urban et al. (2009).
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Example: multi-generational genetic connectivity in 
the striped red mullet across the Mediterranean Sea

To illustrate our approach, we re-analysed a published genetic 
dataset of an economically important fish species with a 
pelagic larval stage, the striped red mullet Mullus surmule-
tus, in the Mediterranean Sea (Dalongeville et al. 2018b). We 
hypothesize that building a spatial graph of potential larval 
dispersal over multiple generations, can improve our under-
standing of the genetic structure across the Mediterranean 
Sea and of the temporal scale at which connectivity operates. 
We build the spatial graph of genetic connectivity to charac-
terize the spatial pattern of genetic structure and to compare 
it to the graph of multi-generational larval dispersal.

Species description, study area, sampling and genetic data
The striped red mullet Mullus surmuletus is a demersal fish 
species that is commonly found in the Mediterranean Sea 
particularly in areas characterised by a narrow continental 
shelf with rough substrate and at depths ranging from 10 to 
100 m (Lombarte et al. 2000). Adults move to deeper sites 
for spawning (70–150 m, Machias et al. 1998), which occurs 
from April to May and produces larvae with a pelagic larval 
duration (PLD) of approximately 30 d (Reñones et al. 1995, 
Macpherson and Raventos 2006, Arslan and İş 2015). Mullus 
surmuletus is one of the most economically valuable species in 
commercial landings of coastal Mediterranean demersal fish-
eries (Reñones et al. 1995, Félix-Hackradt et al. 2013).

The Mediterranean Sea harbours a complex oceanic circu-
lation that shapes larval dispersal patterns and creates puta-
tive barriers for gene flow (Pascual et al. 2017). To maximise 
the detection of these various processes influencing popula-
tion structure, M. surmuletus samples were collected along 
the entire Mediterranean coastal range including islands 
(47 sites, Fig. 2a). Fin clips were taken from specimens 
obtained at local artisanal fisheries landing sites. DNA was 
extracted using the DNeasy Blood & Tissue Kit (Qiagen) 
according to the manufacturer’s protocol, and individuals 
were genotyped using a Genotyping by Sequencing method 
(Elshire et al. 2011). Individual genotypes were then pooled 
by their sampling locality to maximize sequencing coverage 
(see Dalongeville et al. 2018b for a complete description of 
sampling, molecular and bioinformatics procedure). This 
resulted in a dataset containing the allele frequencies of 1153 
Single Nucleotide Polymorphism (SNP) loci for 47 pools of 
nine to 18 individuals, hereafter referred to as populations.

Genetic differentiation among these populations was cal-
culated in the ‘ade4’ package in R v3.2.3 (Dray and Dufour 
2007, R Core Team) using Cavalli-Sforza and Edwards’ 
chord distance Dc (Cavalli-Sforza and Edwards 1967), which 
is well-suited to distinguish genetically similar populations in 
high gene flow species (Libiger et al. 2009).

Step 1. Single-generation propagule dispersal
Larval dispersal was simulated using the biophysical model of 
Andrello et al. (2013), which was adapted to fit the life his-
tory parameters of M. surmuletus (Dalongeville et al. 2018b). 

In brief, three-dimensional sea current velocities were 
obtained from the hydrodynamics model NEMOMED12 
(Beuvier et al. 2012) and used to simulate passive larval dis-
persion using the software Ichthyop 3.1 (Lett  et  al. 2008). 
Larvae were released in 1/10th degree cells covering the 
Mediterranean continental shelf (7703 cells; Andrello et al. 
2015) every three days during the species’ spawning season 
(1–28 May) and allowed to passively disperse during 30 d. 
Pairwise probabilities of larval dispersal c(i,j) between cells i 
and j were calculated from the numbers of simulated larvae 
released in cell j that arrived in cell i after 30 d. Probabilities 
of dispersal were averaged over a grid of 100 cells covering 
the full coastal range of the Mediterranean Sea, resulting in 
a 100 × 100 asymmetric connectivity matrix C100. Not every 
grid cell could be sampled for the genetic analysis described 
above. To allow comparison between the larval dispersal 
probabilities and the genetic connectivity estimates between 
the 47 sampled sites, a 47 × 47 connectivity matrix C47 was 
extracted from the C100 matrix with the cell centroids cor-
responding to the 47 sites sampled for the genetic analysis 
(Supplementary material Appendix 1 Fig. A1).

We constructed directed spatial graphs of single-generation 
larval dispersal both for the 47 × 47 and 100 × 100 larval con-
nectivity matrices. Edges of the spatial graphs were weighted 
by the modelled larval dispersal probabilities and nodes rep-
resented the cell-centroids of the 47 populations and the 100 
modelled sites, respectively. The 47 populations are connected 
through single-generation larval dispersal by 108 edges.

Marine geographic distances (minimum distances con-
strained by water) were computed as least-cost path distances 
between all pairs of populations by assigning infinite resis-
tance to land areas and constant zero resistance to water using 
the functions ‘transition’, ‘geoCorrection’ and ‘costDistance’ 
of the R package ‘gdistance’ v. 1.1-1 (van Etten 2017). The 
nearest geographical neighbour was additionally determined 
for each population.

Step 2. Multi-generational propagule dispersal
Both larval dispersal matrices (C100 and C47) reflect dispersal 
only from the current generation. We calculated larval con-
nections for the matrix C100 between non-connected nodes 
based on a stepping-stone approach. We hypothesize that lar-
vae that dispersed from site j to i successfully settle in their 
arrival site and, upon reaching maturity, produce larvae that 
potentially disperse to other sites. As M. surmuletus popula-
tions occur across the full Mediterranean coastal range, we 
hypothesize that all the 100 grid cells represent suitable habi-
tat and all sites contribute equally to larval production.

After transforming the single-generation larval dispersal 
probabilities of C100 into distance measures, we calculated 
the shortest paths between all possible node pairs using the 
Floyd–Warshall algorithm embedded in the R package ‘Rfast’ 
(Papadakis  et  al. 2018) (Supplementary material Appendix 
1 Fig. A2). We then extracted the multi-generational dis-
persal measures between the 47 sampled populations from 
the C100 multi-generational dispersal graph (Supplementary 
material Appendix 1 Fig. A3). The final spatial graph of 



1172

Figure 2. Spatial graph of genetic connectivity. (a) Map of the Mediterranean Sea with the location of the 47 sampling sites, the Siculo-
Tunisian Strait (STS), Mediterranean regions and ecoregions (ALB, Alboran Sea; ADR, Adriatic Sea; ION, Ionian Sea; AEG, Aegean Sea; 
LEV, Levantine Sea). (b) Spatial graph representing the genetic connectivity network of Mullus surmuletus in the Mediterranean Sea. Edges 
between nodes (populations) are weighted by their pairwise genetic distance (Dc), represented by a colour gradient (dark red for the smallest 
distances and thus the highest genetic similarity). The size of the nodes is proportional to their betweenness centrality.
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multi-generational dispersal is constructed using the 47 pop-
ulations as nodes and weighting the edges by the number of 
stepping stones connecting them.

Step 3. Spatial graph of multi-generational genetic 
connectivity
The network of genetic connectivity was constructed by des-
ignating the 47 sampled populations as nodes, and their pair-
wise genetic distance (Dc) as weighted edges. The construction 
of a spatial graph from all Dc values results in a fully saturated 
network, where every node is connected to every other node. 
The calculation of most graph metrics, such as node degree, 
network assortativity and network clustering, depends on the 
number of edges connected to the graph’s nodes and can-
not be calculated in a saturated network (Table 1). As the 
weights of the genetic graph have a small range (see further), 
the shortest-path algorithm always identified the direct path 
between two nodes as the most efficient one and impeded the 
calculation of informative node betweenness. We thus pro-
ceeded to prune the graph edges to get a more informative 
graph topology (Garroway et al. 2008). Edges were pruned 
by retaining only the 108 edges with the smallest genetic 
distance (approximately 10% of all edges), thus obtaining a 
multi-generational genetic connectivity graph with the same 
number of edges as the single-generation larval dispersal 
graph. The retained connections are considered as the rel-
evant genetic relationships for further network analyses.

As this pruning parameter is arbitrary, we also imple-
mented an edge removal scenario where edges of decreasing 
genetic distances were discarded one by one. The resulting 
genetic connectivity spatial graphs were compared after each 
removal to test the influence of the pruning parameter choice 
on the graph topology. Additionally, we ranked each node 
according to their betweenness values for each node removal 
scenario and compared the variation in node ranks.

Analysis of the spatial graphs
Network topology was analysed by estimating several graph 
metrics (Table 1). For the multi-generational genetic connec-
tivity graph, we calculated node degree and node between-
ness centrality to identify important stepping-stone nodes in 
the network (Box 1) (Rozenfeld et al. 2008). Network assor-
tativity and network clustering were calculated to evaluate 
the structure of the genetic network. To determine whether 
assortativity and clustering resulted from biological processes 
(such as habitat patch location and quality and between-hab-
itat migration) versus random configuration, we generated 
10 000 random networks with the same number of nodes 
and edges as our genetic connectivity network following 
the Erdös–Rényi model (Erdös and Rényi 1959). The mean 
graph metrics (assortativity and clustering) and their stan-
dard deviations were calculated and compared to the values 
of the genetic graph. Network assortativity and clustering 
were also calculated for the single-generation propagule dis-
persal graph.

The pruned genetic graph was constructed with the 
‘gengraph’ function in the R package ‘adegenet’, and all 

subsequent graph–theoretic analyses were conducted with the 
R package ‘igraph’ (functions ‘degree’, ‘betweenness’, ‘assor-
tativity_degree’ and ‘transitivity’) (Csardi and Nepusz 2006, 
Jombart 2008). Random networks were generated using the 
‘sample_gnm’ function.

Correlations between genetic distances and marine 
geographic distances, single-generation larval dispersal 
probabilities as well as multi-generational larval dispersal 
distances were estimated using the Mantel coefficient along 
with 9999 permutations (R package ‘vegan’, Oksanen et al. 
2016). As the Mantel test is known to have an inflated type 
I error rate and low statistical power (Legendre and Fortin 
2010, Guillot and Rousset 2013), we also computed maxi-
mum-likelihood population-effects (MLPE) mixed models 
(Clarke  et  al. 2002) which account for the non-indepen-
dence of pairwise data and provide the greatest probability 
of identifying the true model from competing alternatives 
(Shirk  et  al. 2018). We used the ‘lmer’ function of the 
R package ‘lme4’ to fit the MLPE mixed models with a ran-
dom-effects term accounting for population-level influence 
(Bates et al. 2015, Row et al. 2017). Model fit was evaluated 
using the coefficient of determination R2 calculated with 
the ‘MuMIn’ package (Bartoń 2019).

Results

Single-generation larval dispersal

The larval dispersal matrix C47 is highly sparse, with only 108 
realised connections out of 1081 (Supplementary material 
Appendix 1 Fig. A4). The constructed larval network con-
nects all nodes to at least one other node with connections 
primarily made to the nearest neighbours. It is fragmented 
in three main clusters roughly representing the western 
Mediterranean, the Aegean sea and the Levantine sea (Fig. 3a, 
Supplementary material Appendix 1 Fig. A5). The graph has 
a high level of clustering and a positive degree assortativity 
(Supplementary material Appendix 1 Table A1).

The C100 network of modelled larval dispersal however 
fully connects the Mediterranean Sea, i.e. the network con-
sists of one large cluster connecting all nodes to at least three 
other nodes (Supplementary material Appendix 1 Fig. A6).

Multi-generational larval dispersal

The stepping-stone approach to larval connectivity converted 
our sparse connectivity matrix C47 into a fully saturated con-
nectivity matrix, although a substructuring separating the 
western and eastern basin was still visible (Fig. 3a). The spa-
tial graph of the multi-generational larval dispersal network 
shows that the Aegean and Levantine Sea are connected when 
including one stepping-stone (Fig. 3b), and that the west–
east barrier is breached when including two stepping-stones 
(Fig. 3c). Allowing for more stepping-stones increased graph 
connectivity (Fig. 3d–e), saturating the network with 24 
stepping-stones (suggesting 25 generations).
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Multi-generational genetic connectivity

Pairwise genetic distance Dc varied between 0.10 and 0.20. 
The pruned spatial graph built with these genetic dis-
tances connected 29 out of 47 nodes (Fig. 2b). Topological 

analysis of the graph reveals no substructuring into clus-
ters but instead more and stronger connections between 
the western and eastern Mediterranean basin than within 
each basin. Network metrics showed a high level of disas-
sortative mixing with r = −0.57, which was considerably 

Figure 3. Temporal perspective of marine connectivity: spatial graphs representing the amount of generations needed to connect our 47 
populations through stepping-stone larval dispersal. (a) Graph with all pairwise edges, the colours represent the number of edges in the 
shortest path (= number of generations) connecting each node pair. The darkest green colour (1 edge) represents the direct larval dispersal 
over one generation. The Mediterranean Sea is fully connected through larval dispersal when allowing up to 25 edges (or 24 stepping stones) 
in the shortest paths (a). (b–e) Graph built using edges representing two, three, four and five generations respectively.
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lower than that of the randomized networks (r0 = −0.05) 
(Supplementary material Appendix 1 Table A1), which 
indicates a centralized network. This means that the genetic 
network has a central core of a few highly connected popu-
lations (i.e. with a high degree), that are in turn linked to 
lesser connected populations (i.e. with a low degree) in the 
periphery (Supplementary material Appendix 1 Fig. A7). 
The level of clustering c = 0.58 was considerably higher than 
the mean of the randomized graphs (c0 = 0.10). These stron-
ger levels of disassortativity and clustering demonstrate that 
the genetic connectivity network is more structured than 
would be expected from a random process alone. The cen-
tralised structure was robust under varying levels of pruning 
(Supplementary material Appendix 1 Fig. A8). The sequen-
tial removal of edges also shows that the unconnected nodes 
in the pruned graph are not completely isolated but rather 
increasingly differentiated from the central structure.

The values of betweenness centrality also suggest a central-
ized structure, which attribute an importance to only six out 
of the 29 connected nodes. In particular, populations 11_86 
in Sicily (present in 50.0% of all shortest paths) and 55_56 
in Turkey (23.3%) appear to be the main stepping stones for 
the gene flow through the network (Fig. 1b). The remain-
ing populations with a nonzero betweenness are 19_27 in 
Corsica (9.9%), 13_15 in Sardinia (8.1%), 29_96 in Crete 
(7.8%) and 93_94 in Cyprus (0.9%). These six nodes con-
sistently ranked highest out of all nodes by their betweenness 
values under varying pruning criteria (Supplementary mate-
rial Appendix 1 Fig. A9).

Comparison between single-generation larval 
dispersal, multi-generational larval dispersal and 
multi-generational genetic connectivity

The mean larval dispersal was estimated to 266 km (SD = 137) 
for the single-generation dispersal graph and to 1139 km 
(SD = 694) for the genetic connectivity graph, revealing the 
different spatial scales of both components of connectivity. 
Sixty-six of the 72 nearest neighbour pairs were connected in 
the single-generation larval dispersal graph, whereas only 16 
of the nearest neighbour pairs were connected in the genetic 
connectivity graph.

The Mantel test and maximum-likelihood population-
effects (MLPE) mixed model between the genetic distances 
(pairwise Dc) and the geographic distances for the 47 popu-
lations were significant (Mantel r = 0.31, MLPE R2

m = 0.17, 

both p < 0.001) (Table 2) indicating a pattern of isolation by 
distance (IBD). The Mantel test and MLPE model between 
genetic distances and single-generation larval dispersal were 
not significant (Table 2). Conversely, the Mantel test and 
MLPE model between genetic distances and multi-genera-
tional larval dispersal revealed a significant positive correla-
tion (Mantel r = 0.18, MLPE R2

m = 0.12, both p < 0.001) 
(Table 2), indicating an isolation by larval dispersal when 
considering multiple generations. The multi-generational 
estimates of larval dispersal were also significantly correlated 
to the geographic distances (Mantel r = 0.70, p = 0.001).

Discussion

Here we demonstrate how stepping-stone dispersal graphs 
can be used as a proxies of multi-generational connectivity 
and increase our understanding of genetic connectivity. We 
present a spatial graph approach applied to red mullet in the 
Mediterranean Sea that calculates shortest paths between 
populations unconnected by direct modelled larval dispersal 
but showing strong genetic connectivity. The increased cor-
relation between the resulting multi-generational connectiv-
ity and genetic connectivity, compared to single-generation 
dispersal, highlights the underlying discrepancy in spatio-
temporal scales in our landscape genetic study.

The spatial graph of single-generation larval dispersal 
was mostly realized between nearest neighbours, resulting 
in a highly clustered structure. The spatial graph of genetic 
connectivity revealed an absence of subdivision between the 
western and eastern Mediterranean sub basins and a stronger 
between-basin than within-basin connectivity. No significant 
correlation could be found between the genetic distances 
and the direct larval dispersal probabilities at the scale of the 
Mediterranean Sea.

Visualisation of the larval dispersal and gene flow net-
work showed that genetic connectivity is realised at a much 
larger spatial scale than larval dispersal, as already found by 
Dalongeville  et  al. (2018b), reflecting different temporal 
scales. Biophysical connectivity is usually modelled for a single 
generation of larvae (White et al. 2010), whereas genetic con-
nectivity integrates gene flows over multi-generational time 
scales (Hedgecock et al. 2007). Intermediate stepping-stones 
for dispersal are crucial in maintaining genetic connectivity 
across large spatial scales (Crandall et al. 2012). The short-
est-path approach to larval dispersal explores the temporal 

Table 2. Mantel test and maximum-likelihood population-effects (MLPE) mixed model results comparing the multi-generational genetic 
connectivity (Cavalli–Sforza and Edwards’ chord distance Dc) to the geographic distance, single-generation propagule dispersal (larval dis-
persal probability cij) and the multi-generational propagule dispersal (stepping-stone larval distance). Only the geographic distance and 
stepping-stone larval distance were significantly correlated to the genetic chord distance (p < 0.001).

Predictor variable
Genetic chord distance Dc

Mantel correlation p value MLPE R2
m p value

Geographic distance r = 0.31 < 0.001 0.17 < 2.2e-16
Larval dispersal probability (cij) r = 0.02 0.24 0.0007 0.37
Stepping-stone larval distance (Floyd–Warshall shortest  

path on ln(1/cij))
r = 0.18 < 0.001 0.12 < 2.2e-16
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aspect of marine connectivity by suggesting how sites would 
be connected if M. surmuletus larvae were successfully spread 
through the Mediterranean Sea over multiple generations fol-
lowing a stepping-stone model. Multigenerational dispersal 
can thus increase the explanatory power of dispersal models 
for population genetic analyses, and our understanding of the 
drivers of population genetic structure (White  et  al. 2010, 
Buonomo et al. 2017).

Connectivity can promote the spread of adaptive alleles 
from populations locally adapted to presently extreme envi-
ronmental conditions that could become more common in 
the future. Such spreading of adaptive alleles can strengthen 
the adaptation of populations to future environmental con-
ditions, and in some cases even result in genetic rescue of 
declining populations (Whiteley  et  al. 2015, Xuereb  et  al. 
2019). In the marine environment, populations can be 
locally adapted to climate-related variables such as salin-
ity (Dalongeville  et  al. 2018a). Climate projections under 
a business-as-usual scenario (RCP8.5) predict that sea sur-
face salinity (SSS) in the Mediterranean Sea will increase, 
with marked regional differences, by 0.13 practical salinity 
unit (± 0.13 PSU) for the 2021–2050 period and to come 
back to its current global climate value (± 0.01 PSU) for the 
2071–2100 period (Moullec et al. 2019). In some areas, the 
increase in SSS might result in extreme environmental condi-
tions that cannot be tolerated by populations of M. surmule-
tus, because the future conditions will be too different from 
the present conditions to which the populations are adapted 
(Rellstab et al. 2016). In order to persist, these populations 
will have to move to more suitable areas or adapt to the new 
local conditions from standing genetic variation and/or immi-
gration of adaptive genotypes. Analysis of the association 
between SNP and salinity have suggested a signal of adap-
tation to local water salinity in Mediterranean populations 
of M. surmuletus (Dalongeville et al. 2018a). The results of 
our spatial graph analysis indicate that about five generations 
will be necessary to spread beneficial alleles from populations 
adapted to current high salinity in the east, to populations 
with similar projected future physiochemical conditions in 
the central Mediterranean (Fig. 3e). Given an average age at 
first reproduction of 1.5 yr for M. surmuletus (Reñones et al. 
1995), this corresponds to one decade which has been judged 
as a small enough timescale to keep pace with the temporal 
scale of climatic changes (Jönsson and Watson 2016).

The strong basin-wide genetic connectivity highlighted 
by the genetic spatial graph identified the Siculo-Tunisian 
Strait (STS) as an important corridor for gene flow. Beyond 
analysing the topology of a spatial network, graph theory 
allows to quantitatively analyse the properties of the nodes 
and edges in the spatial graph (Rozenfeld et al. 2008). The 
calculation of network- and node-metrics revealed a disas-
sortative, centralised network. This means that the network 
consists of a central core with a few high-degree hubs, which 
are in turn linked to lesser connected nodes in the periph-
ery (Rozenfeld  et  al. 2008). These highly connected hubs 
could act as sources and/or sinks in the gene flow network 
(Peery  et  al. 2008). Betweenness centrality measures the 

importance of a single node in relaying information through 
the network (Rozenfeld et  al. 2008). The populations with 
high genetic betweenness could thus be interpreted as 
prominent stepping-stones for gene flow. These are popu-
lations where individuals from multiple locations seem to 
have aggregated and reproduced, to subsequently further 
spread their genes to multiple other locations. Six popula-
tions, located in Sicily (11_86), Turkey (55_56), Corsica 
(19_27), Sardinia (13_15), Crete (29_96) and Cyprus 
(93_94) were identified as important stepping-stones in our 
network. These populations lay along the longitudinal axis 
and seem to form a path connecting the western and eastern 
Mediterranean. Remarkably, five out of these six populations 
are located along islands and coincide with the location of the 
high degree nodes. These results detect islands as important 
stepping-stones in the network-wide genetic connectivity of 
M. surmuletus, and suggest that islands can be important sites 
for gene flow between continental populations by provid-
ing intermediate suitable habitats for larval settlement in the 
deeper parts of the Mediterranean basin.

The construction of a genetic spatial graph requires defin-
ing a criterion to prune the initially saturated graph. The 
appropriate strategy depends largely on the questions asked. 
For example Dyer and Nason (2004) developed the popula-
tion graph approach where graph edges are trimmed based 
on the genetic covariance among populations. This approach 
requires individual genotypes and is not applicable to our 
population-level data. Because one of our hypotheses was 
that genetic connectivity is in part the result of larval dis-
persal, edges were pruned by retaining only the 108 edges 
with the smallest genetic distance (approximately 10% of all 
edges), thus obtaining a multi-generational genetic connec-
tivity graph with the same number of edges as the single-
generation larval dispersal graph. The disassortative structure 
with a strong cross-basin connectivity in the gene flow graph 
remained robust under the edge removal scenario. The nodes 
with the higher betweenness values in the pruned gene flow 
graph also consistently ranked higher under varying prun-
ing values. The consistency of these results validates that our 
pruned graph correctly represents the gene flow patterns of 
M. surmuletus in the Mediterranean Sea.

A large portion of the genetic differences still remains 
unexplained. Bottom-trawl surveys suggest that M. sur-
muletus migrates to deeper water during maturation but 
realises rather short-distance than long-distance movement 
(Machias et al. 1998). Together with the small home ranges 
of sympatric demersal species (reviewed by Calò et al. 2013) 
this suggests that adult dispersal might be rather limited. 
Other processes that could explain the remaining genetic 
structure are larval behaviour and higher-resolution ocean-
ographic circulation patterns not resolved by the hydrody-
namic model used to simulate larval dispersal (Briton et al. 
2018, Faillettaz et al. 2018). Larvae at the settlement stage 
can use oriented swimming driven by e.g. odour or sound 
to detect favourable settlement habitats (Simpson 2005, 
Paris  et  al. 2013). Shoreward swimming at the end of the 
pelagic stage can strongly influence the rate of recruitment 
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of larvae, resulting in longer dispersal distances than pre-
dicted with purely passive dispersal (Faillettaz  et  al. 2017). 
In contrast, vertical migration of larvae at night as well as 
homing behaviour of larvae returning to their natal reef result 
in greater retention than predicted by advection models and 
smaller dispersal distances (Gerlach et al. 2007, Andrello et al. 
2013, Bottesch et al. 2016). This would decrease the amount 
of connectivity in the larval dispersal system and would high-
light even more the importance of stepping-stone migration 
over multiple generations to realize the observed long-dis-
tance genetic connectivity. Predicting how larval behaviour 
would affect larval dispersal patterns thus requires including 
larval swimming and orientation mechanisms in the larval 
dispersal model, but the parametrization of these processes 
would be difficult because of the lack of biological knowledge 
on larval dispersal in M. surmuletus.

Although applied here to the larval dispersal of a demer-
sal fish species, the stepping-stone approach to dispersal 
can be generalized to other environments or living systems. 
Connectivity estimates can be applied to any organisms 
with a dispersing propagule stage, by modelling wind dis-
persal (Nathan et al. 2011), animal-mediated seed dispersal 
(García-Fernández et al. 2019) or riverine resistance (Schick 
and Lindley 2007, Oliveira et al. 2019). The approach can 
be adapted by modelling dispersal between species-specific 
suitable habitats such as coral reefs (Williamson et al. 2016), 
forests (Wang et al. 2008) or breeding ponds (Fortuna et al. 
2006, Decout  et  al. 2012). Additionally, the model could 
be improved by taking into account species-specific settle-
ment success rates, population-specific productivity rates and 
behavioural responses.

Data availability statement

Data for this study are available from the Dryad Digital 
Repository: < https://doi.org/10.5061/dryad.31tk592 > 
(Dalongeville et al. 2018c). The R script for the shortest-path 
analysis and to produce Fig. 3 is available at < https://github.
com/eboulanger/seaConnect--spatialGraph >.

Acknowledgements – We thank Raquel Torres, Laure Velez, Jennifer 
Tournois, Eva Maire, Sebastien Villeger, Johanna Brun-Vitelli, 
Manuel Muntoni, Claire Seceh, Sofiène Ben Abdelhamid, Achraf 
Barbena, Itai Granot, Ori Frid and Shahar Malamud for collecting 
M. surmuletus samples, as well as all the fishermen that provided 
the fishes. We are grateful to the SMGE platform, and especially 
Veronique Arnal and Marie-Pierre Dubois for technical support 
during molecular analyses. We also thank Stéphane Lobreaux for 
the bioinformatic analyses. We thank the anonymous referees as 
well as the editor for their insightful comments.
Funding – This study was funded by the ‘ANR’ through the 
RESERVEBENEFIT project, PSL Environment through the project 
RESMOD, and EB was partially funded by the Region Occitanie.
Author contributions – All authors generated hypotheses and 
designed research. AD conducted the sampling and molecular 
analyses; EB analysed the data and wrote the first draft. All authors 
helped to improve manuscript writing.

References

Albert, E. M. et al. 2013. Assessing the robustness of networks of 
spatial genetic variation. – Ecol. Lett. 16: 86–93.

Anderson, C. D. et al. 2010. Considering spatial and temporal scale 
in landscape-genetic studies of gene flow. – Mol. Ecol. 19: 
3565–3575.

Andrello, M. et al. 2013. Low connectivity between Mediterranean 
marine protected areas: a biophysical modeling approach for the 
dusky grouper Epinephelus marginatus. – PLoS One 8: e68564.

Andrello, M. et al. 2015. Extending networks of protected areas to 
optimize connectivity and population growth rate. – Ecography 
38: 273–282.

Arslan, M. and İş, A. 2015. Age, growth and reproduction of Mul-
lus surmuletus (Linnaeus, 1758) in Saros Bay (northern Aegean 
Sea). – J. Black Sea/Mediterr. Environ. 19: 217–233.

Baguette, M. et al. 2013. Individual dispersal, landscape connectiv-
ity and ecological networks. – Biol. Rev. 88: 310–326.

Bartoń, K. 2019. MuMIn: multi-model inference. – R package ver. 
1.43.6.

Bates, D.  et  al. 2015. Fitting linear mixed-effects models using 
lme4. – J. Stat. Softw. 67: 1–48.

Beerli, P. 2004. Effect of unsampled populations on the estimation 
of population sizes and migration rates between sampled popu-
lations. – Mol. Ecol. 13: 827–836.

Beuvier, J. et al. 2012. MED12, oceanic component for the mod-
eling of the regional Mediterannean Earth system. – Mercat. 
Ocean Q. Newsl. 46: 60–66.

Bode, M.  et  al. 2019. Successful validation of a larval dispersal 
model using genetic parentage data. – PLoS Biol. 17: e3000380.

Bottesch, M. et al. 2016. A magnetic compass that might help coral 
reef fish larvae return to their natal reef. – Curr. Biol. 26: 
R1266–R1267.

Briton, F. et al. 2018. High-resolution modelling of ocean circula-
tion can reveal retention spots important for biodiversity con-
servation. – Aquat. Conserv. Mar. Freshwater Ecosyst. 28: 
882–893.

Buonomo, R.  et  al. 2017. Habitat continuity and stepping-stone 
oceanographic distances explain population genetic connectiv-
ity of the brown alga Cystoseira amentacea. – Mol. Ecol. 26: 
766–780.

Calò, A. et al. 2013. A review of methods to assess connectivity and 
dispersal between fish populations in the Mediterranean Sea. 
– Adv. Oceanogr. Limnol. 4: 150–175.

Castillo, J. A.  et  al. 2014. Landscape effects on gene flow for a 
climate-sensitive montane species, the American pika. – Mol. 
Ecol. 23: 843–856.

Castorani, M. C. N. et al. 2017. Fluctuations in population fecun-
dity drive variation in demographic connectivity and metap-
opulation dynamics. – Proc. R. Soc. B 284: 20162086.

Cavalli-Sforza, L. L. and Edwards, A. W. 1967. Phylogenetic anal-
ysis. Models and estimation procedures. – Evolution 21: 
550–570.

Clarke, R. T. et al. 2002. Confidence limits for regression relation-
ships between distance matrices: estimating gene flow with dis-
tance. – J. Agric. Biol. Environ. Stat. 7: 361–372.

Costa, A. et al. 2017. On the calculation of betweenness centrality 
in marine connectivity studies using transfer probabilities. 
– PLoS One 12: e0189021.

Crandall, E. D. et al. 2012. Coalescent and biophysical models of 
stepping-stone gene flow in neritid snails. – Mol. Ecol. 21: 
5579–5598.



1178

Csardi, G. and Nepusz, T. 2006. The igraph software package for 
complex network research. – InterJounal Complex Syst. 1695: 
1–9.

Dale, M. R. T. and Fortin, M.-J. 2010. From graphs to spatial 
graphs. – Annu. Rev. Ecol. Evol. Syst. 41: 21–38.

Dalongeville, A. et al. 2018a. Combining six genome scan methods 
to detect candidate genes to salinity in the Mediterranean 
striped red mullet (Mullus surmuletus). – BMC Genomics 19: 
1–13.

Dalongeville, A. et al. 2018b. Geographic isolation and larval dis-
persal shape seascape genetic patterns differently according to 
spatial scale. – Evol. Appl. 11: 1437–1447.

Dalongeville, A. et al. 2018c. Data from: Geographic isolation and 
larval dispersal shape seascape genetic patterns differently 
according to spatial scale. – Dryad Digital Repository, <https://
doi.org/10.5061/dryad.31tk592>.

Decout, S.  et  al. 2012. Integrative approach for landscape-based 
graph connectivity analysis: a case study with the common frog 
(Rana temporaria) in human-dominated landscapes. – Land-
scape Ecol. 27: 267–279.

Donati, G. F. A.  et  al. 2019. A process‐based model supports an 
association between dispersal and the prevalence of species traits 
in tropical reef fish assemblages. – Ecography 42: 1–12.

Dray, S. and Dufour, A. B. 2007. The ade4 package: implement-
ing the duality diagram for ecologists. – J. Stat. Softw. 22: 
1–20.

Dyer, R. J. and Nason, J. D. 2004. Population graphs: the graph 
theoretic shape of genetic structure. – Mol. Ecol. 13: 1713–1727.

Elshire, R. J. et al. 2011. A robust, simple genotyping-by-sequenc-
ing (GBS) approach for high diversity species. – PLoS One 6: 
e19379.

Epps, C. W. et al. 2007. Optimizing dispersal and corridor models 
using landscape genetics. – J. Appl. Ecol. 44: 714–724.

Erdös, P. and Rényi, A. 1959. On random graphs. – Publ. Math. 
6: 290–297.

Eros, T. et al. 2011. Network thinking in riverscape conservation 
– a graph-based approach. – Biol. Conserv. 144: 184–192.

Escalante, M. A.  et  al. 2018. The interplay of riverscape features 
and exotic introgression on the genetic structure of the Mexican 
golden trout (Oncorhynchus chrysogaster), a simulation approach. 
– J. Biogeogr. 45: 1500–1514.

Faillettaz, R. et al. 2017. Swimming speeds of Mediterranean set-
tlement-stage fish larvae nuance Hjort’s aberrant drift hypoth-
esis. – Limnol. Oceanogr. 63: 509–523.

Faillettaz, R. et al. 2018. Larval fish swimming behavior alters dis-
persal patterns from marine protected areas in the north-west-
ern Mediterranean Sea. – Front. Mar. Sci. 5: 1–12.

Félix-Hackradt, F. C.  et  al. 2013. Discordant patterns of genetic 
connectivity between two sympatric species, Mullus barbatus 
(Linnaeus, 1758) and Mullus surmuletus (Linnaeus, 1758), in 
south-western Mediterranean Sea. – Mar. Environ. Res. 92: 
23–34.

Fischer, J. and Lindenmayer, D. B. 2007. Landscape modification 
and habitat fragmentation: a synthesis. – Global Ecol. Biogeogr. 
16: 265–280.

Floyd, R. W. 1962. Algorithms 97: shortest path. – Commun. 
ACM 5: 345.

Fortuna, M. A. et al. 2006. Spatial network structure and amphib-
ian persistence in stochastic environments. – Proc. R. Soc. B 
273: 1429–1434.

Fortuna, M. A. et al. 2009. Networks of spatial genetic variation 
across species. – Proc. Natl Acad. Syst. USA 106: 19044–19049.

García-Fernández, A.  et  al. 2019. Herbivore corridors sustain 
genetic footprint in plant populations: a case for Spanish drove 
roads. – PeerJ 7: e7311.

Garroway, C. J. et al. 2008. Applications of graph theory to land-
scape genetics. – Evol. Appl. 1: 620–630.

Gerlach, G.  et  al. 2007. Smelling home can prevent dispersal of 
reef fish larvae. – Proc. Natl Acad. Sci. USA 104: 858–863.

Guillot, G. and Rousset, F. 2013. Dismantling the Mantel tests. 
– Methods Ecol. Evol. 4: 336–344.

Hedgecock, D. et al. 2007. Genetic approaches to measuring con-
nectivity. – Oceanography 20: 70–79.

Hughes, A. R. and Stachowicz, J. J. 2004. Genetic diversity 
enhances the resistance of a seagrass ecosystem to disturbance. 
– Proc. Natl Acad. Sci. USA 101: 8998–9002.

Jahnke, M. et al. 2018. Seascape genetics and biophysical connec-
tivity modelling support conservation of the seagrass Zostera 
marina in the Skagerrak-Kattegat region of the eastern North 
Sea. – Evol. Appl. 11: 645–661.

Jombart, T. 2008. adegenet: a R package for the multivariate anal-
ysis of genetic markers. – Bioinforamtics 24: 1403–1405.

Jönsson, B. F. and Watson, J. R. 2016. The timescales of global 
surface-ocean connectivity. – Nat. Commun. 7: 1–6.

Kininmonth, S. J.  et  al. 2010. Graph theoretic topology of the 
Great but small Barrier Reef world. – Theor. Ecol. 3: 75–88.

Legendre, P. and Fortin, M. J. 2010. Comparison of the Mantel 
test and alternative approaches for detecting complex multi-
variate relationships in the spatial analysis of genetic data. 
– Mol. Ecol. Resour. 10: 831–844.

Lett, C. et al. 2008. A Lagrangian tool for modelling ichthyoplank-
ton dynamics. – Environ. Model. Softw. 23: 1210–1214.

Libiger, O. et al. 2009. Comparison of genetic distance measures 
using human SNP genotype data. – Hum. Biol. Int. Rec. Res. 
81: 389–406.

Lombarte, A.  et  al. 2000. Spatial segregation of two species of 
Mullidae in relation to habitat. – Mar. Ecol. Prog. Ser. 206: 
239–249.

Lowe, W. H. and Allendorf, F. W. 2010. What can genetics tell us 
about population connectivity? – Mol. Ecol. 19: 3038–3051.

Machias, A. et al. 1998. Bathymetric distribution and movements 
of red mullet Mullus surmuletus. – Mar. Ecol. Prog. Ser. 166: 
247–257.

Macpherson, E. and Raventos, N. 2006. Relationship between 
pelagic larval duration and geographic distribution of Mediter-
ranean littoral fishes. – Mar. Ecol. Prog. Ser. 327: 257–265.

Magris, R. A. et al. 2018. Biologically representative and well-con-
nected marine reserves enhance biodiversity persistence in con-
servation planning. – Conserv. Lett. 11: e12439.

Manel, S.  et  al. 2003. Landscape genetics: combining landscape 
ecology and population genetics. – Trends Ecol. Evol. 18: 
189–197.

Martensen, A. C. et al. 2017. Spatio-temporal connectivity: assess-
ing the amount of reachable habitat in dynamic landscapes. 
– Methods Ecol. Evol. 8: 1253–1264.

Moullec, F.  et  al. 2019. An end-to-end model reveals losers and 
winners in a warming Mediterranean Sea. – Front. Mar. Sci. 6: 
1–19.

Murphy, M. et al. 2015. Graph theory and network models in land-
scape genetics. – In: Balkenhol, N. et al. (eds), Landscape genet-
ics: concepts, methods, applications. Wiley, pp. 165–180.

Nathan, R. and Muller-Landau, H. C. 2000. Spatial patterns of 
seed dispersal, their determinants and consequences for recruit-
ment. – Trends Ecol. Evol. 15: 278–285.



1179

Nathan, R.  et  al. 2011. Mechanistic models of seed dispersal by 
wind. – Theor. Ecol. 4: 113–132.

Newman, M. E. J. 2003. The structure and function of complex 
networks. – SIAM Rev. 45: 167–256.

Oksanen, J. et al. 2016. vegan: community ecology package. – R 
package ver. 2.4-1.

Oliveira, J. dos A.  et  al. 2019. Model-based riverscape genetics: 
disentangling the roles of local and connectivity factors in shap-
ing spatial genetic patterns of two Amazonian turtles with dif-
ferent dispersal abilities. – Evol. Ecol. 33: 273–298.

Papadakis, M.  et  al. 2018. Rfast: a collection of efficient and 
extremely fast R functions. – R package ver. 1.99.1.

Paris, C. B. et al. 2013. Reef odor: a wake up call for navigation in 
reef fish larvae. – PLoS One 8: e72808.

Pascual, M. et al. 2017. Impact of life history traits on gene flow: 
a multispecies systematic review across oceanographic barriers 
in the Mediterranean Sea. – PLoS One 12: e0176419.

Peery, M. Z. et al. 2008. Characterizing source–sink dynamics with 
genetic parentage assignments. – Ecology 89: 2746–59.

Peterson, E. E. et al. 2019. Spatially structured statistical network 
models for landscape genetics. – Ecol. Monogr. 82: e01355.

Razgour, O.  et  al. 2019. Considering adaptive genetic variation 
in climate change vulnerability assessment reduces species 
range loss projections. – Proc. Natl Acad. Sci. USA 116: 
10418–10423.

Rellstab, C. et al. 2016. Signatures of local adaptation in candidate 
genes of oaks (Quercus spp.) with respect to present and future 
climatic conditions. – Mol. Ecol. 25: 5907–5924.

Reñones, O.  et  al. 1995. Life history of the red mullet Mullus 
surmuletus from the bottom-trawl fishery of the Island of 
Majorca (north-west Mediterranean). – Mar. Biol. 123: 
411–419.

Riginos, C. et al. 2019. Asymmetric dispersal is a critical element 
of concordance between biophysical dispersal models and spa-
tial genetic structure in Great Barrier Reef corals. – Divers. 
Distrib. 25: 1684–1696.

Row, J. R.  et  al. 2017. Developing approaches for linear mixed 
modeling in landscape genetics through landscape-directed dis-
persal simulations. – Ecol. Evol. 7: 3751–3761.

Row, J. R. et al. 2018. Quantifying functional connectivity: the role 
of breeding habitat, abundance and landscape features on 
range-wide gene flow in sage-grouse. – Evol. Appl. 11: 
1305–1321.

Rozenfeld, A. F. et al. 2008. Network analysis identifies weak and 
strong links in a metapopulation system. – Proc. Natl Acad. Sci. 
USA 105: 18824–18829.

Saura, S. et al. 2014. Stepping stones are crucial for species’ long-
distance dispersal and range expansion through habitat net-
works. – J. Appl. Ecol. 51: 171–182.

Schick, R. S. and Lindley, S. T. 2007. Directed connectivity among 
fish populations in a riverine network. – J. Appl. Ecol. 44: 
1116–1126.

Schoville, S. D. et al. 2018. Preserving genetic connectivity in the 
European Alps protected area network. – Biol. Conserv. 218: 
99–109.

Shirk, A. J.  et  al. 2018. A comparison of regression methods for 
model selection in individual-based landscape genetic analysis. 
– Mol. Ecol. Resour. 18: 55–67.

Simpson, S. D. 2005. Homeward Sound. – Science 308: 221–221.
Slatkin, M. 2005. Seeing ghosts: the effect of unsampled popula-

tions on migration rates estimated for sampled populations. – 
Mol. Ecol. 14: 67–73.

Taylor, P. D. et al. 1993. Connectivity is a vital element of landscape 
structure. – Oikos 68: 571–573.

Treml, E. A.  et  al. 2008. Modeling population connectivity by 
ocean currents, a graph–theoretic approach for marine conser-
vation. – Landscape Ecol. 23: 19–36.

Truelove, N. K. et al. 2016. Biophysical connectivity explains pop-
ulation genetic structure in a highly dispersive marine species. 
– Coral Reefs 36: 233–244.

Urban, D. and Keitt, T. 2001. Landscape connectivity: a graph–
theoretic perspective. – Ecology 82: 1205–1218.

Urban, D. L. et al. 2009. Graph models of habitat mosaics. – Ecol. 
Lett. 12: 260–273.

van Etten, J. 2017. R Package gdistance: distances and routes on 
geographical grids. – J. Stat. Softw. 76: 1–21.

Vandergast, A. G. et al. 2008. Are hotspots of evolutionary poten-
tial adequately protected in southern California? – Biol. Con-
serv. 141: 1648–1664.

Wang, Y. H. et al. 2008. Habitat suitability modelling to correlate 
gene flow with landscape connectivity. – Landscape Ecol. 23: 
989–1000.

Warshall, S. 1962. A theorem on Boolean matrices. – J. ACM 9: 
11–12.

White, C.  et  al. 2010. Ocean currents help explain population 
genetic structure. – Proc. R. Soc. B 277: 1685–1694.

Whiteley, A. R. et al. 2015. Genetic rescue to the rescue. – Trends 
Ecol. Evol. 30: 42–49.

Williamson, D. H. et al. 2016. Large-scale, multidirectional larval 
connectivity among coral reef fish populations in the Great Bar-
rier Reef Marine Park. – Mol. Ecol. 25: 6039–6054.

Xuereb, A. et al. 2018. Asymmetric oceanographic processes medi-
ate connectivity and population genetic structure, as revealed 
by RADseq, in a highly dispersive marine invertebrate (Paras-
tichopus californicus). – Mol. Ecol. 27: 2347–2364.

Xuereb, A. et al. 2019. Marine conservation and marine protected 
areas. – In: Oleksiak, M. and Rajora, O. (eds), Population 
genomics: marine organisms. Springer, pp. 423–446.

Supplementary material (available online as Appendix  
ecog-05024 at < www.ecography.org/appendix/ecog-05024 >). 
Appendix 1.


