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ABSTRACT2

Hydrodynamic dispersion process in relation with the geometrical properties of the porous media3
are studied in two sets of 6 porous media samples of porosity θ ranging from 0.1 to 0.25. These4
two sets of samples display distinctly different evolutions of the microstructures with porosity but5
share the same permeability trend with porosity. The methodology combines three approaches.6
First, numerical experiments are performed to measure pre-asymptotic to asymptotic dispersion7
from diffusion-controlled to advection-controlled regime using Time-Domain Random Walk solute8
transport simulations. Second, a porosity-equivalent network of bonds is extracted in order to9
measure the geometrical properties of the samples. Third, the results of the direct numerical10
simulations are interpreted as a Continuous Time Random Walk (CTRW) process controlled by11
the flow speed distribution and correlation. Theses complementary modelling approaches allows12
evaluating the relation between the parameters of the conceptual transport process embedded in13
the CTRW model, the flow field properties and the pore-scale geometrical properties. The results14
of the direct numerical simulations for all the 12 samples show the same scaling properties of the15
mean flow distribution, the first passage time distribution and the asymptotic dispersion versus the16
Péclet number than those predicted by the CTRW model proposed by Puyguiraud et al. (2021). It17
allows predicting the asymptotic dispersion coefficient D∗ from Pe = 1 to the largest values of18
Pe expected for laminar flow in natural environments (Pe ≈ 4000). D∗ ∝ Pe2−α for Pe ≥ Pecrit,19
where α can be inferred from the Eulerian flow distribution and Pecrit depends on porosity. The20
Eulerian flow distribution is controlled by the distribution of fractions of fluid flowing at each of the21
pore network nodes and thus is determined mainly by the distribution of the throat radius and the22
coordination number. The later scales with the number of throats per unit volume independently23
on the porosity. The asymptotic dispersion coefficient D∗ decreases when porosity increases for24
all Péclet values larger than 1 due to the increase with porosity of both α and the flow speed25
decorrelation length.26

1 INTRODUCTION
Modeling transport of solute in porous media is a prerequisite for many environmental and engineering27
applications, ranging from aquifers contaminant risk assessment to industrial reactors, filters and batteries28
design. The solutes can be pollutants, reactants and products involved in solute-solute or solute-mineral29
reactions, but also (bio-)nanoparticles or nutriments involved in the growth of bio-mass. The mechanism30
under consideration is the spatial dispersion which leads to the spreading and the mixing of dissolved31
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chemicals, thus controlling the potential reactions in the flowing fluid and between the fluid and the porous32
media (Bear, 1972; Brenner and Edwards, 1993; Dentz et al., 2011). The dispersion process has been,33
and still is, a largely studied topic in the field of geosciences because rocks at depth are, as a general34
rule, porous media saturated with fluid(s) that move due to natural or artificial pressure gradients, and35
display a large spectrum of heterogeneities. In all these domains, reliable predictive models that can be36
parameterized by direct measurements are necessary, for example, to monitor and assess risks linked to37
the use of underground water resources, or in the course of industrial operations, such as hydrocarbon38
exploitation and CO2 or underground nuclear waste storage.39

Hydrodynamic dispersion is the macroscopic result of the mass transfers by diffusion and advection40
that occurs at the pore scale (Whitaker, 1967; Sahimi, 2011; De Anna et al., 2013). Together, diffusion41
and advection of solute produce a large spectrum of dispersion features because (natural) porous media42
display complex structures inducing a large diversity of velocity fields, and thus distinctly different speed43
distributions and spatial correlations. Probably the most obvious behavior that illustrates the complexity44
of dispersion mechanisms in porous media is the variably-lasting pre-asymptotic dispersion regime that45
cannot be modeled by a single Fickian dispersion coefficient. Pre-asymptotic, or non-Fickian, dispersion46
is commonly observed in laboratory experiments (Moroni and Cushman, 2001; Levy and Berkowitz,47
2003; Seymour et al., 2004; Morales et al., 2017; Carrel et al., 2018; Souzy et al., 2020), and numerical48
simulations (Bijeljic et al., 2011, 2013; De Anna et al., 2013; Icardi et al., 2014; Kang et al., 2014; Li49
et al., 2018; Puyguiraud et al., 2019c). It is characterized by heavy-tailed arrival time distributions ft(t)50
and super-diffusive growth of the longitudinal displacement variance σ2(t). For a given porous medium,51
the duration of the non-Fickian regime is controlled by solute particles that move the slowest, which52
emphasizes the determinant role of both the regions where the velocity is low and the tortuosity of the53
flow paths. Asymptotically dispersion converges toward Fickian behavior, characterized by the constant54
longitudinal dispersion coefficient D∗ (Bear, 1972; Brenner and Edwards, 1993).55

Evaluating the longitudinal asymptotic dispersion coefficient D∗ is a fundamental issue, because most56
operational modeling tools have been constructed around the Fickian advection-dispersion equation that57
reads for transport in the direction of the mean flow, here the z-direction, (Bear, 1972):58

∂θc(z, t)

∂t
− ∂

∂z

[
θD∗

∂c(z, t)

∂z
+ uz(z)c(z, t)

]
= 0, (1)59

60

where c is the solute concentration, θ is the connected porosity, uz = θ〈vz〉 denotes Darcy’s velocity, with61
〈vz〉 being the mean pore velocity.62

Many experimental studies and mathematical developments on dispersion using mainly simple porous63
media have been performed since the pioneering works of Danckwerts (1953). The reader will find an64
exhaustive review of the different results and models of both longitudinal and transverse dispersion in65
Delgado (2006). A main well observed feature of longitudinal dispersion D∗ is its non-linear increase66
with the mean flow velocity. It is recognized since the pioneering works of Saffman (1959) and then Bear67
(1972). It is generally expressed in terms of D∗/dm versus the Péclet number Pe = 〈ve〉`/dm, where ` is a68
characteristic length, dm is the molecular diffusion coefficient and 〈ve〉 is the mean Eulerian flow speed69

(ve =
√

v2x + v2y + v2z , with vi denoting the flow velocity component i, see Section 2.2). Simulations in70

networks of constant velocity tubes (Sahimi and Imdakm, 1988) of radius r following distributions such as71

2



Longitudinal dispersion in variable porosity porous media

P (r) ∝ re−r
2

(Chatzis and Dullien, 1985) indicated a relation of the form72

D∗/dm ∝ Peβ, (2)7374

with β = 1.2∓ 0.1 (Sahimi, 2011), while for instance β = 2 in a single tube (Taylor, 1953). For infinite75
Pe, experimental particle tracking results (e.g, Souzy et al., 2020) give the relation D∗/dm ≈ Pe, where76
the characteristic length ` is of the order of the pore length. However, it is worth noticing that in Souzy77
et al. (2020)’s experiments the lowest velocities cannot be measured because they use finite-size particles78
that cannot access to the vicinity of the solid. Interestingly, the behavior (2) with β ' 1.2 was cited in79
numerous studies concerning bead-packs and homogeneous sand-packs for intermediate Péclet numbers80
(Pfannkuch, 1963; Han et al., 1985; Seymour and Callaghan, 1997; Sahimi et al., 1986; Bijeljic et al., 2004).81
For instance, particle tracking simulations in pore-networks reported in Bijeljic and Blunt (2006) gave82
β = 1.2, for Pe < 400 and β = 1, for Pe > 400. Conversely, similar numerical simulations (using random83
walk particle tracking) performed by Puyguiraud et al. (2021) using digitized images of consolidated84
sandstone, gave a value of β = 1.65 for 10 ≤ Pe ≤ 105. The few experimental data on rocks (obviously85
more heterogeneous than bead-packs) displayed a broader range of behaviors; for example Kinzel and Hill86
(1989) reported 1.30 ≤ β ≤ 1.33. However, it is worth noticing that evaluating dispersion in rocks, for a87
large range of Pe values, either at laboratory or field scale from tracer tests is challenging. For instance,88
controlling the boundary conditions and verifying that the tracer is conservative are some of the known89
issues that may introduce errors in the estimation. Yet, the main issue is probably linked to the fact that, by90
definition, the experimental results are interpreted using the Fickian model, whereas it is difficult to prove91
that dispersion is asymptotic without being able to measure the tracer breakthrough curves over several92
orders of magnitude in order to capture the low speed fraction of the solute transport (Gouze et al., 2008).93
We will show in Section 3.4 that measuring asymptotic dispersion for large values of Pe in natural porous94
media is in fact virtually impossible using cm- or even meter-scale experiments.95

While measuring dispersion experimentally is burdensome, modeling approaches are now mature to96
perform numerical experiments. Direct numerical simulations (DNS) are unique tools for investigating97
both the pre-asymptotic and the asymptotic behavior in a common frame. They can be used to accurately98
measure D∗, but also to study the mechanisms that produce dispersion in relation with the measurable99
(average) properties of the material, and to test upscaling theories. Recent works (Bijeljic and Blunt,100
2006, 2007; De Anna et al., 2013; Puyguiraud et al., 2019a, 2021) showed that hydrodynamic transport in101
porous media can be adequately conceptualized and modeled by a continuous time random walk (CTRW)102
that models streamwise transport through particle transitions over fixed spatial distance with a transition103
time given by the local flow speed and diffusion. The spatial distance at which particles speed changes104
corresponds to the decorrelation distance `c of the mean flow speed. The CTRW integrates in a statistical105
framework parameters that are similar to the classical representation of porous media as a network of106
throats and pores. As such one can be tempted to investigate how `c, which is a major ingredient of the107
CTRW model, is related to the topological and geometrical properties of the real 3-dimensional pore108
network. Moreover, the CTRW model predicts that asymptotic dispersion is controlled by the dispersion109
evolution during the pre-asymptotic regime which itself is controlled by the flow speed distribution. How110
the later is related to the properties of the pore network is a further issue that requires investigation.111

The main objective of the present study, is to investigate the relation between the longitudinal dispersion112
D∗ (and its evolution with the mean flow rate) and the porous media microstructural properties in the frame113
of the theory proposed by Puyguiraud et al. (2021) which gives a generalized explanation of longitudinal114
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dispersion (from pre-asymptotic to asymptotic regimes) and a formal relation between dispersion and the115
properties of the flow field (velocity distribution, velocity spatial decorrelation and flow path tortuosity).116

The core of this study is a set of about 150 numerical experiments designed to measure pre-asymptotic117
to asymptotic dispersion from diffusion-controlled to advection-controlled regime in 12 sandstone-like118
samples of porosity ranging from 10 to 25%. For that, one first computes the steady-state Stokes flow field119
from which, the flow speed distribution and the decorrelation distance as well as advective tortuosity are120
derived. Then, the direct numerical simulation (DNS) of solute transport at pore scale, involving diffusion121
and advection, are performed using Time-Domain Random Walk (TDRW). The dispersion mechanisms are122
characterized from the time-resolved particles displacement variance and the first passage time distribution123
(FPT) given as outputs of the TDRW simulations. In parallel, the geometrical properties of the porous124
samples are evaluated from the computation of the bonds network model (BNM) for each of the samples,125
that is obtained from the medial axis transform, or squeletonization, of the connected porosity. This gives126
us the unique opportunity to characterize the topology of the connected porosity including the number of127
throats (bonds) and pores (network nodes) and the coordination (number of throats per pore), as well as128
the throat radius and length. Then, the results of the direct numerical simulations are analyzed in the light129
of the CTRW theory proposed by Puyguiraud et al. (2021) which provides quantitative links between the130
tail behaviors of the FPT distribution ft(t), the distribution of flow speeds ve, the particles displacement131
variance σ2(t) and the asymptotic dispersion coefficient D∗ scaling with the Pe value.132

The methodology, including the conceptual and numerical tools used in this study are detailed in Section 2.133
The geometrical and topological characteristics of the samples and the flow field properties are presented134
in Section 3. The results of the direct numerical simulation of solute transport and the calculation of the135
dispersion coefficient for a large range of values of Pe are discussed in Section 3.4. The conclusions of this136
study are exposed in Section 4.137

2 METHODOLOGY
2.1 Porous media samples138

The porous media are binary images made of 4803 regular voxels (cubes) that are either void or solid.139
The first set of 6 samples, noted FSxx, were xx is replaced by the porosity value expressed in percent (ex:140
FS13 for the sample with θ=0.13) was downloaded from the Digital Rocks Portal (Berg, 2016a). They141
were generated with the commercial software e-Core following a methodology described in (Oren, 2002)142
in order to mimic Fontainebleau sandstone at different porosity (Berg, 2016b). The op. cit. author indicated143
that they use identically parameterized silica grain sedimentation and compaction processes typical for144
Fontainebleau sandstones, the different porosity values (0.10, 0.13, 0.15, 0.21 and 0.25) being obtained by145
varying the amount of silica cement. As such, this process mimics the progressive diagenetic cementation146
by silica precipitation (from FS25 to FS10) of an initially poorly cemented sandstone. Conversely, we147
made the second set of samples by step-by-step homogeneous erosion of the solid phase starting from148
FS10. By removing 1 to 6 layers of solid at the solid-void interface we obtain 6 samples, denoted FSDxx149
of porosity 0.12, 0.15, 0.17, 0.20, 0.23 and 0.25. This process mimics homogeneous dissolution of the150
silica material. The top panel in Figure 1 displays the three-dimensional structure of the lowest porosity151
sample FS10, and the highest porosity samples FS25 and FSD25. It can be qualitatively appraised that152
the cement precipitation model used to construct FS25 increases the number of pores compared FS10,153
while the pore size is kept roughly similar. In contrast, the dissolution process producing FS25 from FS10154
acts as increasing strongly the pore size, while the number of pores remains roughly unchanged. This set of155
sample is viewed as ideal for investigating dispersion of end-members of natural sandstones.156
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2.2 Flow157

Flow simulations are performed on the three-dimensional binary images. The mesh used for solving the158
flow is obtained by dividing each of the image voxels by 3 in each of the directions so that 1 voxel of the159
raw image is represented by 9 cubic cells of size ∆x = ∆y = ∆z = 2.85 × 10−6 m. This procedure is160
applied for improving the resolution of the flow field in the smallest throats (Gjetvaj et al., 2015). The161
resulting discretization for the regular grid consists of 9603 cubic cells. We are considering steady-state162
flow of an non-compressible Newtonian fluid at low Reynolds number so that the pore-scale flow velocity163
v(x) is given by the Stokes equation164

µ∇2v(x)−∇p(x) = 0, (3)165166

where p(x) is the fluid pressure. Stokes flow is solved using the finite volume SIMPLE (SemiImplicit167
Method for Pressure Linked Equations algorithm) scheme implemented in the SIMPLEFOAM solver of168
the OpenFOAM platform (Weller et al., 1998). Twenty layers are added at the inlet and outlet in order to169
minimize boundary effects (Guibert et al., 2016). The main flow direction is considered in the z-direction170
all over this study. We prescribe 1) a macroscopic pressure gradient ∇∗p between the inlet (z = 0) and171
the outlet (z = Lz) boundary conditions such that the Reynolds number Re is smaller than 10−6, i.e.172
laminar flow and 2) no-slip conditions at the void-solid interfaces and at the remaining boundaries of the173
sample. After convergence, that is, once the normalized residual of the pressure and velocity components174
is below 10−5 between two consecutive steps, we extract the components of the velocity at the voxel175
interfaces (vx, vy, vz). The results of the flow simulations allow us to extract the three properties that176
control dispersion according to Puyguiraud et al. (2019b): 1) the Eulerian speed distribution pe(v) 2)177
the decorrelation distance `c and 3) the advective tortuosity χa. These fundamental flow properties are178
respectively displayed in Figures 5, 6, and 7, and discussed in Section 3.179

2.3 Solute transport180

Pore-scale hydrodynamic transport is classically modeled by the advection-diffusion equation181

∂c(x, t)

∂t
−∇ · [dm∇+ v(x)] c(x, t) = 0, (4)182

183

where c(x, t) is the solute concentration at position x and time t, dm is the molecular diffusion coefficient184
which is set equal to dm = 10−9 m2/s, and v(x) is the flow velocity at position x which is obtained by185
solving the Stokes problem (see Section 2.2). Here we use the time domain random walk (TDRW) method186
that is based on a finite volume discretization of Equation (4) (Delay et al., 2005). A detailed description187
of the TDRW method, its derivation and implementation using voxelized binary images can be found188
in Dentz (2012) and Russian et al. (2016); the main features of the method are given below. A study of the189
performance and accuracy of the TDRW method for a large range of values of the Péclet number can be190
found in (Gouze et al., 2021). The domain discretization used for transport is that used for computing the191
flow, i.e., 9603 cubic voxels .192

The TDRW method is a grid-based method that models the displacement of particles in space and time193
according to the master equation that results from a finite volume discretization of the advection-diffusion194
equation. The ensemble average of the particle displacement gives the solution of the transport equation.195
A particle transition corresponds to a single transition of a constant length ξ = ∆x from the center of a196
voxel j to the center of one of the 6 face-neighboring voxels i. The direction and the transition duration are197
random variables ruled by the local values of the fluid velocity at the voxel interface embedded into the198
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local coefficients bij (Russian et al., 2016)199

bij =
dm
ξ2

+
|vij |
2ξ

(
vij
|vij |

+ 1

)
, (5)200

where vij is the velocity component of vj in the direction of voxel i, vij = vj · ξij . Voxel i is downstream201
from voxel j if vij > 0, as a convention. The velocity at the solid-void interface is zero and dm = 0 if202
voxel i is a solid voxel. The recursive relations that describe the random walk from position xj to position203
xi of a given particle transition n is204

xi(n+ 1) = xj(n) + ξ, t(n+ 1) = t(n) + τj . (6)205

The probability pij for a transition of length ξ from voxel j to voxel i is206

pij =
bij∑
[jk] bkj

, (7)207

where
∑

[jk] denotes the summation over the nearest neighbors of voxel j. The transition time τj is208
independent on the transition direction and is exponentially distributed ψτj (t) = τ j exp(−t/τ j) with τ j209
the mean transition time from voxel j;210

τ j =
1∑

[jk] bkj
. (8)211

The algorithm consists in computing once the probability pij (7) and the mean transition time τ j (8) for212
each of the voxels belonging to the pore space and then solving the random walk (6) in which the direction213
for each particle transition is drawn from the pij vector and the transition time is drawn from the exponential214
distribution of mean τ j .215

2.3.1 Simulation setup216

For each sample, we performed simulations for different values of the Péclet number. The Péclet number217
is defined as Pe = 〈ve〉λ/dm where λ is the mean throat length that is displayed for the 12 samples in218
Figure 2 and ranges from 6.5 × 10−5m to 8.8 × 10−5m. The different flow fields used for the TDRW219
simulations at different Péclet numbers are obtained by multiplying the raw flow field resulting from the220
Stokes simulation by a constant.221

A pulse of constant concentration at the sample inlet (z = 0) is applied at t = 0 by locating particles222
in a flux weighted injection mode. Note that the pulse is formally an exponential distribution function223
of characteristic time τj |z=0 whose mean value is negligible compared to the mean time required for the224
particles to move through the sample (Russian et al., 2016). Flux weighted injection means that the number225
of particles injected at a location is proportional to the local velocity. This corresponds to a constant226
concentration Dirichlet boundary condition. Particles that reach the sample outlet with a speed vout are227
reinjected randomly at the inlet plane at a position x satisfying the condition |vx − vout| � 〈v〉.228

The distribution (PDF) of first passage times at a given distance Z from the injection location, that229
denotes the solute breakthrough curve (BTC) usually measured in laboratory or field tracer tests, is noted230
ft(t) (Figure 8). The apparent longitudinal dispersion coefficient D(t) is evaluated from the displacement231
variance σ2z(t) of the particles (Fischer, 1966):232
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D(t) =
1

2

dσ2z(t)

dt
, (9)

with σ2z(t) = 〈(z(t) − 〈z〉)2〉 − 〈z(t) − 〈z〉〉2. The asymptotic longitudinal dispersion coefficient D∗ =233
σ2z(t)/2t is obtained for t > t∗, where t∗ is the time required for all the particles to sample the entire234
heterogeneity, i.e. when σ2z(t) ∼ t (see for example Figure 10).235

2.4 The equivalent bond network model236

We compute the bond network model (BNM) for each of the FS and FSD samples in order to extract237
the geometrical and topological characteristics of the connected porosity. The methodology to obtain the238
network representation of the connected porosity of the sample includes two main steps. The first one is the239
extraction of the void space skeleton which is the one-dimensional continuous object centrally located (and240
spatial referenced) inside the pore space. The skeleton can be computed using different approaches; here we241
used a thinning algorithm inspirited from the works of Lee et al. (1994) that provides the local medial-axis.242
The coordinate of the skeleton is known with a spatial resolution equivalent to that of the original 3D-image243
and associated with the local hydraulic radius rl normal to the local medial axis that is evaluated using a244
pondered 45 degree multi-ray method. Thus, the skeleton keeps the relevant geometrical and topological245
features of the pore space (Siddiqi and Pizer, 2008). The second step consists in transforming the skeleton246
into a network of bonds and nodes that connect three or more bonds. This yields an irregular lattice. The247
length λ of a given bond is the sum of the length of the skeleton components used to built this bond,248
so that the local tortuosity of the skeleton is embedded into λ. For each bond, the radius rh is obtained249
from the harmonic means (noted 〈〉H ) of the local conductance, so that rh = (〈rl〉H)1/4. The algorithm is250
non-parametric; there is no assumption on any of the characteristics of obtained the lattice.251

2.5 Upscaled CTRW model252

Puyguiraud et al. (2021) propose a continuous time random walk (CTRW) model that describes transport253
through particle transitions over the length `c with a transition time that is given by the local flow speed254
and diffusion. The central assumption of this model is that transition times at subsequent CTRW steps are255
independent identically distributed random variables. Furthermore, it is assumed that particles move at the256
mean pore velocity, that is, it is assumed that during a transition particles are able to diffusively sample the257
velocities across pore conducts. The scale `c is set equal to the decorrelation distance of particle speeds so258
that subsequent particle speeds can be considered statistically independent. The distribution of Eulerian259
mean flow speeds pm(v) is obtained from the Eulerian speed PDF as260

pm(v) = −2v
dpe(2v)

dv
. (10)

As particles move at equidistant spatial steps, they sample flow speeds in a flux-weighted manner. This261
is due to the fact that particles are distributed at pore intersections according to the relative downstream262
fluxes. Thus, the distribution pv(v) of subsequent particle speeds are related to the distribution of Eulerian263
flow speeds through flux-weighting as (Puyguiraud et al., 2021)264
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pv(v) =
vpm(v)

〈vm〉
. (11)

At each turning point of the CTRW, particles are assigned a random speed from pv(v). The particle
transition time distribution ψ(t) reflects both advection and diffusion. It is cut-off at times larger than
τD = `2c/dm, the diffusion time over the decorrelation distance. For times small compared to the cut-off
time, ψ(t) can be approximated by

ψ(t) =
`2c

t3〈vm〉
pm(`c/t). (12)

At times larger than τD it is cut-off exponentially fast.265

The flow speed distribution is at the center of the transport process. In porous media, such as rocks, the266
mean flow speed can often be approximated by a Gamma-type distribution (Dentz et al., 2018; Puyguiraud267
et al., 2019b; Souzy et al., 2020) and displays a power-law scaling pe(v) ∼ vα−1 for v < 〈vm〉. For sphere268
packs and simple structures such as sand-pack the linear flow profile close to the grains (due to the no-slip269
boundary condition) implies that pe(v) is flat at low velocities, so that α ' 1 (Dentz et al., 2018). In more270
heterogeneous porous media, other values of α are expected. For example, Puyguiraud et al. (2021) found271
α ≈ 0.35 for a Berea sandstone sample. For such Gamma-type distributions, pe(v) ∼ vα−1 at small flow272
speeds, ψ(t) behaves for high Péclet numbers as ψ(t) ∼ t−2−α before the exponential cut-off at times273
larger than τD. The tortuosity of particle trajectories in this framework is given by the ratio of the mean274
asymptotic particle speed `c/〈τ〉 ≡ 〈ve〉 (where 〈τ〉 denotes the particle mean travel time) and the mean275
streamwise flow velocity 〈vz〉. Furthermore, for this type of flow speed distributions, the CTRW approach276
predicts some further interesting scaling laws that can be verified from direct numerical simulations. The277
behavior of particle breakthrough curves f(t, Z) at a control plane located at the streamwise location Z is278
analogous to the behavior of ψ(t). They show a power-law dependence as f(t, Z) ∼ t−2−α if Z/vz � τD279
(i.e., the peak time is much smaller than the cut-off time), and exponential decay for times larger than the280
cut-off time τD. The predicted dependence of the asymptotic longitudinal dispersion coefficients on the281
Péclet number is for Pe� 1282

D∗

dm
∼ Pe2−α (13)

for 0 < α < 1 and

D∗

dm
∼ Pe lnPe (14)

for α = 1, see also Saffman (1959) and Koch and Brady (1985).283

To sum-up, this upscaled model, constructed on the representation of the hydrodynamic transport as a284
CTRW process in a network of bonds, is fully constrained, for any values of Pe > 1 by the knowledge of285
the distribution of Eulerian flow speeds pe(v) and the decorrelation distance `c of particle speeds.286
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From here one can recognize on one hand the complementarity of the BNM and the DNS to explore the287
relation between the dispersion and the pore network characteristics, and on the other hand the conceptual288
framework that links the CTRW model and the BNM representation of the porous medium. This emphasizes289
the possibility of 1) relating the distribution of the Eulerian flow speed to the large scale transport behavior290
and 2) characterizing dispersion for different porous media based on the knowledge of the flow speed291
distribution. Indeed, the BNM gives us the information on the real topology of the pore network as292
well as the distribution and the average of bond properties (radius and length), while the DNS provides293
the information on the flow field (speed distribution and decorrelation distance as well as the advective294
tortuosity).295

3 PORE NETWORK PROPERTIES, FLOW FIELDS AND DISPERSION
The top row in Figure 1 illustrates the 3-dimensional structure of sample FS10 (θ = 0.1) and of both FS25296
and FSD25 sharing the same porosity θ = 0.25. The bottom row in Figure 1 displays flow lines (and the297
local velocity) within the connected porosity for these three samples and gives a qualitative appraisal of the298
dissimilarities between the lowest porosity and the highest porosity samples on one hand, and on the other299
hand those occurring between the highest porosity sample of each of the two sets in relation with the pore300
network structures. In the following we will quantify these differences and their implications on dispersion.301

3.1 Connected porosity geometrical properties retrieved from the BNM302

As explained in Section 2.1, we computed the Bond Network Model (BNM) for each of the 12 samples,303
in order to evaluated the topology and the geometry of the connected porosity and specifically how these304
characteristics change with the sample porosity for the FS and the FSD sets of samples. The main305
properties versus porosity are summarized in Figures 2 and 3. The topology of the connected porosity is306
characterized by the number of throats (network bonds) and pores (network nodes) per volume of rock307
(here the reference is the sample volume) as well as the coordination number κ that denotes the mean308
number of throats connected to a given pore. The bonds are characterized by the mean of the radius rh and309
length λ and by the radius rh distribution displayed in Figure 4.310

For the FS set, decreasing porosity from the highest to the lowest porosity values is obtained by allocating311
increasing amounts of cement into localized clusters that acts as increasingly closing connections and thus312
decreasing the number of pores and throats and the coordination number. The fixed distribution of the313
cement clusters determines the length of the bonds independently of the porosity (λ ≈ 65µm), but volume314
conservation imposes that the hydraulic radius rh increases with porosity. The distribution of rh/〈rh〉 is315
wide, decreases almost monotonically from small to high rh and does not depends on porosity.316

For the FSD set, increasing porosity from the lowest to the highest is obtained by homogeneous erosion317
of the solid phase, i.e. both the grains and the cement. The number of pores and throats as well as κ first318
decreases for θ ≤ 0.15 caused by merging of adjacent throats following a process which is roughly the319
opposite of that described for the FS set of samples. Then, the number of pores and throats stays almost320
constant for θ > 0.15. As a result, the increase of porosity is mainly due to the increase of the throat length321
λ and radius rh. The distribution of rh/〈rh〉 is almost Gaussian around the mean value, and independent of322
the porosity for θ > 0.15. The transition from the original sample FS10 to the FSD12 and then FSD15323
is well visible the rh distribution. Note that, as soon as the throats are widely distributed like for the FS324
set of samples, κ is an indicator of the potential local flow rate disorder at the network nodes because the325
probability of having upstream and downstream bonds of distinctly different flow rates is high.326

Altogether, these results show that the two sets of samples are very different in terms of 1) the topology327
of the network; for the FSD set, the topology is almost similar for all the porosity range, while it is328
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increasingly complex (with increasing tortuosity, see discussion below) as porosity decreases for the FS329
set of samples, and 2) the characteristic size of the throats is almost independent of the porosity for the FD330
set whereas it increases with porosity for the FSD set.331

3.2 Permeability and flow field properties332

Permeability values k for the 12 samples computed using Darcy’s law (k = vzµ/∇∗p) are plotted in333
the left panel of Figure 5. Permeability increases from 1.4×10−13m2 for sample SF10 to 6.04×10−12m2334
(6.08×10−12m2) for sample SF25 (SFD25) and are all aligned with the relation k ∼ θ4 independently on335
geometrical characteristics of the pore space. The permeability computed on the BNM (solving a Kirchhoff336
problem) is also reported Figure 5 in order to evaluate the accuracy of the BNM.337

The right panel of Figure 5 displays the advective tortuosity χa, i.e. the mean tortuosity of the flow338
lines. The advective tortuosity is obtained from the ratio of the mean Eulerian speed ve to the mean339
velocity in the direction of the flow vz (Koponen et al., 1996; Ghanbarian et al., 2014; Puyguiraud et al.,340
2019c): χa = 〈ve〉/〈vz〉. For both the samples’ sets, χa decreases when porosity increases, but it is more341
pronounced for the FS set of samples. These trends seem to be mainly controlled by the increase of the342
throat radius as porosity increases, while the topological characteristic of the network plays a minor role343
which is probably resulting from a complex coupling of the geometrical and topologically parameters344
discussed above. This makes the advective tortuosity, which is one of the three parameters of the CTRW345
model proposed by Puyguiraud et al. (2021), an intrinsic characteristic of the hydrodynamic system that is346
essentially porosity-dependant.347

The distributions of the Eulerian mean speed for the 12 samples are plotted in Figure 6. The dissimilarity348
of the pm(v) curves between the FS and the FSD sets is clearly visible. The FSD samples are displaying349
almost the same mean speed distributions with power-law trend pm(v) ∼ vα−1 for v < 〈vm〉 with350
α = 0.245± 0.05. For the FS set, the evolution of pm(v) with porosity includes two features. First, pm(v)351
gradually diverges from a Gamma distribution as porosity increases, with the occurrence of increasingly352
marked transition between the values of speed larger than the mean (v > 〈vm〉) and the power-law slope353
for the slower speed values. Second, the power-law slope for v � 〈vm〉 increases when porosity decreases,354
ranging from β = α − 1 = 1.63 for θ = 0.25 to β = 1.75 for θ = 0.10. These values are in agreement355
with the value of 1.65 found by by Puyguiraud et al. (2021) for the Beara sandstone. As far as we know,356
they have been very few studies of the correlation between the flow speed distribution and the properties of357
the pore space microstructures (Siena et al., 2014; Matyka et al., 2016; Alim et al., 2017). For instance,358
Alim et al. (2017) investigated this issue using numerical simulations in 2-dimensional simple artificial359
porous media made of circular or elliptical discs placed on a square or triangular lattices with increasing360
disorder. By extracting and analyzing the corresponding network of tubes, following a procedure quite361
similar to that implemented for extracting the BNM (Section 2.4), they concluded that the flow distribution362
is mainly determined by the distribution of fractions of fluid flowing at each of the network node and not by363
the overall tube size distribution. Our results lead us to a similar conclusion for the complex 3-dimensional364
porous media studied here. The evolution of the mean flow speed with porosity for the FS set in comparison365
with the weak evolution of the mean flow speed with porosity for the FSD set appears to be correlated to366
the noticeable increase with porosity of the number of throats as well as the mean number of throats per367
pore κ (Figure 3) measured for the FS set, whereas both the number of throats and κ are almost constant368
for the FSD set of samples.369

3.3 Speed decorrelation distance length370

The decorrelation distance `c is evaluated from the Lagrangian flux weighted speed autocorrelation371
function Υvv(l) = 〈(vv(s) − 〈vv〉)(vv(s + l) − 〈vv〉)〉/σ2vv , where l denotes the lag. The decorrelation372
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distance `c is given by the value of the lag corresponding to Υvv(l) = 1/e. The two panels at left of373
Figure 7 display the Lagrangian flux weighted speed autocorrelation function Υvv(l) for the two set of374
samples. The corresponding values of the decorrelation distance `c versus porosity are given in the third375
panel of Figure 7, and the ratio of the decorrelation distance to the mean throat length η = `c/λ versus376
porosity is given in the right panel.377

For both the sample sets, the decorrelation distance `c increases with porosity from about 150 µm at378
θ = 0.1 to about 240 µm for FS and 290 µm for FSD. The slight increase of `c for the FSD set for379
θ > 0.15 compared to the FS set is caused by the increase of the throat radius and the decrease of tortuosity380
with porosity that are more important for FSD than for FS. The ratio η also displays an increase with381
porosity following a similar trend for both the FS and the FSD set of samples, the values for FSD being382
smaller of ∼ 0.5 unit than for FS. Thus, in average, the number of bond lengths travelled before losing the383
memory of the initial speed ranges from about 2 to 4. These values are in good agreement with the value of384
4 obtained by Puyguiraud et al. (2021) by fitting DNS and CTRW for Berea sandstone of porosity 0.18.385

3.4 Dispersion386

In this section we are presenting the results of the transport DNS, discussing them in the frame of387
the scaling properties derived from the CTRW model proposed by Puyguiraud et al. (2021) and of the388
properties retrieved from the BNM (Section 3.1).389

The first passage time distributions ft(t) (or breakthrough curves) at a distance of 20 times the sample390
size are given in Figure 8 for Pe = 100 and also for purely advective transport (dm = 0;Pe = ∞).391
For the latter, all the curves display the power-law tailing that characterize pre-asymptotic (non-Fickian)392
regime over 3 to 4 orders of magnitude. The scaling ft(t) ∼ t−2−α predicted by Puyguiraud et al. (2021)393
with the values of α corresponding to those measured on the mean speed distribution is confirmed for394
all the samples. The comparison of the value of α (0.24 ≤ α ≤ 0.37) for the FS set of samples is given395
in Figure 9. For Pe = 100, even if it can be considered a quite large value for natural porous media,396
diffusion acts as increasing the rate at which ft(t) decreases with time and the α-dependent power-law397
trend is not present. Note that the beginning of the exponential decrease is visible for FSD25 at t ≈ 5τD,398
where τD = `2c/dm ≈ 80s.399

We now focus on determining the asymptotic dispersion coefficient D∗ from the asymptotic regime of400
the displacement variance. Figure 10 displays, as an example, the displacement variance normalized to401
the throat length (σ2/λ2) for the 12 samples in the case Pe = 100, but the following comments apply for402
all values of Pe larger than 1. All curves converge to the asymptotic regime (σ2/λ2 ∼ t) for time t ≥ ta,403
where ta is independent of the value of Pe but depends on porosity; ta ≈ 103s for θ = 0.1 and ta ≈ 104s404
for θ = 0.25, i.e. about 40 and 120 times τD, respectively. This point is important regarding the possibilities405
of measuring the asymptotic dispersion from laboratory experiments, deriving D∗ from the breakthrough406
curves, for instance. For Pe = 100, that corresponds to a mean flow speed of 1.5× 10−3 m/s for FS10, a407
sample of about 1.5 m long displaying the same properties of the mm-scale sample would be necessary408
to measure D∗; a distance of 60 m would be necessary for Pe = 4000. This indicates that experimental409
measurement of D∗ can be performed only for low values of Pe, typically of the order Pe ≤ 10. However,410
for such low values of Pe it is not possible to measure α and thus determine the trend D∗(Pe).411

Conversely, the DNS allows us to perform numerical experiments over large range of Pe values; Figure 11412
displays the value of D∗ versus Pe for the 12 samples from diffusion-dominant regime (Pe = 10−3)413
to advection-dominant (Pe = 2 × 104). These curves can be commented in terms of their slope and of414
their scaling with porosity, for Pe � 1. Note that for Pe → 0 the ratio D∗/dm is equal to the inverse415
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of the diffusive tortuosity (D∗/dm = χ−1d ). For both the FS and FSD sets of samples, the relation416
D∗/dm ∝ Pe2−α predicted by the CTRW model for Pe� 1 is observed. The values of α compared to417
those measured using the speed distribution and the tailing of ft(t) are given in Figure 9. The minimum418
value Pec at whichD∗/dm ∝ Pe2−α is effectively observed, is correlated with the shape of the mean speed419
distribution (Figure 6). For FS10, the trend pm(v) ∼ vα−1 with α = 0.24 extends up to 5× 10−3v/〈vm〉,420
while for FS25 the trend α = 0.37 extends up to 3× 10−4v/〈vm〉 only. This gives values of Pec ranging421
from 1000 for FS10 to 50 for FS25. The same trend is observed for the FSD set of samples. These results422
demonstrate the clear control of the particle mean speed distribution on the evolution of D∗ with the Péclet423
number. However, both the two sets of samples display a scaling of D∗ with porosity, independently of424
the slope determined for Pe ≥ Pec. The expected decrease of D∗ for all values of Pe > 1 when porosity425
increases, corresponding to a decrease of the slope of pm(v) for v � 〈vm〉 is clearly visible for the FS426
set of samples. But, the results for the FSD set, that share the same mean speed distribution (Figure 6),427
show also a clear decrease of D∗ as porosity increases, which indicates that the dispersion scaling with428
porosity is not solely controlled by pm(v) for v � 〈vm〉. Indeed, the increase of D∗ with porosity is also429
related to the increase of the speed decorrelation distance `c with porosity. In the frame of the CTRW430
model lc denotes the length at which a new velocity is drawn from the mean speed distribution, and as such431
`c determines the rate at which the speed changes.432

Furthermore, we observe in Figure 11 that D∗ shows different power-law behaviors for Pe < Pec that433
can be related to the scaling behavior of the distribution of mean flow speeds and the transition time434
distribution. In the limit of infinite Pe, the transition time distribution is given by (12). For finite Pe, it435
is cut-off at the diffusion time τD. The log-slope of ψ(t) at the cut-off time depends on the average flow436
speed 〈vm〉. This is shown in Figure 12, which displays the distribution of purely advective transition437
times rescaled by τv = `c/〈vm〉 for FS10 and FS25. The behavior of D∗ for Pe < Pec corresponds to438
the power-law scaling of ψ(t) at dimensionless times equal to Pe. The slope of the ψ(t) curves display439

the power-law behaviors t−2−α
′

for Pe < Pec with α′ = 0.38 and 0.79 for FS10 and FS25, respectively.440
For Pe ≥ Pec the values of α are similar to those reported in Figure 9 for ft(t), pm(v) and D∗(Pe), i.e.441
α = 0.23 and 0.37 for FS10 and FS25, respectively.442

4 SUMMARY AND CONCLUSIONS
We performed numerical experiments of passive solute transport for two sets of porous media mimicking a443
large range of porosity and microstructures expected in sandstones. The aim was to test the validity of the444
CTRW model, to explore how the flow field characteristics are linked to the porous media geometrical445
properties and to determine the scaling of asymptotic dispersion coefficient D∗ with the Péclet number. The446
two sets of six samples share similar porosity, ranging from 0.1 to 0.25, and the same permeability-porosity447
trend k(θ) but displays distinctly different microstructures and thus dispersion evolution.448

The conceptual CTRW model of solute transport in porous media, as the one proposed by Puyguiraud449
et al. (2021), infers that solute spreading along particle paths is controlled by the transition time of the450
solute particles which is determined by the distribution of solute particle mean speeds pm(v), the velocity451
decorrelation distance `c and diffusion. The effective tortuosity factor that depends on Pe and on the452
advective tortuosity χa (that can be also easily evaluated form the flow field) allows mapping dispersion453
in the streamwise direction which is aligned with the mean pressure gradient. With decreasing Pe, the454
effective tortuosity of the solute particles increases and the control of pm(v) on dispersion decreases455
but remains important up to high values of Pe because of the wide distribution of the particles speeds456
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toward low speed values. This means that for heterogeneous media, such as sandstones, the pre-asymptotic457
(non-Fickian) dispersion regime is likely to persist over long time scales.458

We found that the scaling properties, measured by the coefficient α, predicted by Puyguiraud et al.459
(2021)’s model are effectively measurable for all the 12 studied samples. For instance, results shows460
that at high Pe, the tail of the breakthrough curves, that is controlled by the low flow speeds, scales as461
ft(t) ∼ t−2−α where α is given by the slope of the mean speed distribution pm(v) ∼ vα−1, for v < 〈vm〉.462
As Pe decreases, diffusion eventually dominates over low flow speeds, thus cuts off the power-law tail of463
the breakthrough curves and leads to Fickian behavior from which the asymptotic dispersion coefficient464
D∗ can be theoretically evaluated (Van Genuchten and Wierenga, 1986). However, the analysis of the465
displacement variance σ2(t) indicates that D∗ cannot be measured experimentally at laboratory scale, for466
high values of Pe, because the distance required for reaching the asymptotic regime is orders of magnitude467
larger than what is workable at laboratory scale. Thus, measuring experimentally the value of α, for468
determining how D∗ scales with Pe seems difficult.469

The asymptotic dispersion coefficient D∗ was computed up to the largest values of Pe expected for470
laminar flow in natural environments. Results show that D∗/dm ∝ Pe2−α from Pec up to the highest471
value of Pe (Pe = 4000). Note that for the values of α expected for such heterogeneous rock samples,472
neither the trend D∗ ∼ Pe ln(Pe) (Saffman, 1959; Koch and Brady, 1985) assuming that the distribution473
of flow speeds is flat (α = 1), nor the trend D∗ ∼ Pe expected for α > 1 at high Pe are expected. For474
1 < Pe < Pec, D∗/dm ∝ Pe2−α

′
where α′ > α depends on the mean speed distribution and the speed475

decorrelation distance `c that are the parameters that determine the advective particle transition distribution476
and subsequently the value of Pec. The mean particle speed remains correlated for longer distances in477
porous media with straighter and larger bonds (throats). As such `c is a good indicator of the complexity478
of flow field, because it encompasses the effect of tortuosity that ubiquitously decreases with increasing479
porosity and the effect of the mean throat radius that ubiquitously increases with porosity, while the other480
structural parameters are distinctly different for the two sets of samples. Yet, when reported in term of481
number of bonds length travelled before speed decorrelates, it is observed that FS and FSD sets behave482
quite similarly; the equivalent number of pores (intersection nodes) crossed before losing the memory of483
the initial speed equals η − 1 and ranges from about 1 for θ = 0.1 to about 3 for θ = 0.25. We conjecture484
that the increase of the number nodes crossed before speed decorrelates is linked to the speed changes485
caused by the splitting of the flow at the network node and thus to both the mean radius of the bonds and486
the coordination number κ. Similar conjecture can be done for the distribution of the solute mean speed487
pm(v) which should be controlled by the speed changes caused by splitting of the flow where throats are488
connected, as it was anticipated by Alim et al. (2017) in numerical simulations in 2-dimensional simple489
artificial networks. The structural and hydrodynamic mechanisms that determine the flow distribution490
in 3-dimensional porous media, focusing on the impact pore size distribution, coordination number and491
local correlations on the speed distributions will be discussed in a forthcoming paper. Yet, from the results492
presented in this paper, one can conclude that the flow distribution, and thus the mean speed, are controlled493
by the distribution of fractions of fluid flowing at each of the network nodes which in turn is determined494
by the distribution of the throat radius (and not the mean) and the coordination number. At given porosity495
and mean bond radius the latter is controlled by the number of throats per unit volume that increases with496
porosity for the FS set and decrease with porosity for the FSD set of samples. We believe that these results497
give a first insight into both the mechanisms and the microstructural parameters that control dispersion in498
porous media.499
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Figure 1. Three-dimensional structure of FS10 (left), FS25 (middle), FSD25 (right) samples. The top
row displays the void space. The lines in the bottom panel show particle paths, the color scheme indicating
the particle speed from white (u/〈u〉 ≤ 7× 10−4) to dark blue (u/〈u〉 = 10).
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Figure 2. From left to right panels: number of pores; number of throats; mean throat length λ; mean throat
radius rh versus porosity θ for the FS and FSD samples.
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