N

N

ATP8A2-related disorders as recessive cerebellar ataxia
Claire Guissart, Alexander Harrison, Mehdi Benkirane, Ibrahim Oncel, Elif
Acar Arslan, Anna Chassevent, Kristin Bara ano, Lise Larrieu, Maria Iascone,

Romano Tenconi, et al.

» To cite this version:

Claire Guissart, Alexander Harrison, Mehdi Benkirane, Ibrahim Oncel, Elif Acar Arslan, et al..
ATP8A2-related disorders as recessive cerebellar ataxia. Journal of Neurology, 2020, 267 (1), pp.203-
213. 10.1007/s00415-019-09579-4 . hal-03368381

HAL Id: hal-03368381
https://hal.umontpellier.fr /hal-03368381

Submitted on 19 Jun 2022

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.umontpellier.fr/hal-03368381
https://hal.archives-ouvertes.fr

ATP8A2-related disorders as recessive cerebellar ataxia

Claire Guissart’ - Alexander N. Harrison? - Mehdi Benkirane' - Ibrahim Oncel® - Elif Acar Arslan* -
Anna K . Chassevent® - Kristin Barafjano® - Lise Larrieu' - Maria lascone® - Romano Tenconi’ - Mireille Claustres’ -
Nesibe Eroglu-Ertugrul® - Patrick Calvas® - Haluk Topaloglu® - Robert S. Molday? - Michel Koenig'

Abstract

ATPS8A2-related disorders are autosomal recessive conditions that associate encephalopathy with or without hypotonia,
psychomotor delay, abnormal movements, chorea, tremor, optic atrophy and cerebellar atrophy (CARMQ4). Through a multi-
centric collaboration, we identified six point mutations (one splice site and five missense mutations) involving ATPSA2 in
six individuals from five families. Two patients from one family with the homozygous p.Gly585Val mutation had a milder
presentation without encephalopathy. Expression and functional studies of the missense mutations demonstrated that protein
levels of four of the five missense variants were very low and lacked phosphatidylserine-activated ATPase activity. One
variant p.Ile215Leu, however, expressed at normal levels and displayed phospholipid-activated ATPase activity similar to
the non-mutated protein. We therefore expand for the first time the phenotype related to ATPSA2 mutations to less severe
forms characterized by cerebellar ataxia without encephalopathy and suggest that ATP8A2 should be analyzed for all cases
of syndromic or non-syndromic recessive or sporadic ataxia.

Keywords Ataxia - ATP8A2 - CAMRQ - P4-ATPase - Psychomotor delay

Introduction

The cerebellar ataxia, mental retardation, and disequilibrium
syndrome (CAMRQ) is a heterogeneous group of genetic
disorders of autosomal recessive inheritance [1]. Several
genes responsible for the condition have been identified to
date, namely VLDLR (MIM: 224050) [2], WDR81 (MIM:
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610185) [3] and CA8 (MIM: 613227) [4] causing, respec-
tively, CAMRQ1, CAMRQ2, and CAMRQ3.

More recently, disease-causing mutations in ATPSA2
have been identified in CAMRQ4 patients. The initial
CAMRQ4 report identified a single ATP8A2 missense muta-
tion segregating in four patients of a large, multigenerational
consanguineous family [5]. Since then, a total of 26 patients
with CAMRQ4 have been described, confirming the involve-
ment of the ATP8A2 in severe early-onset hypotonia with
psychomotor delay, abnormal movements, tremor, mental
retardation, optic and cerebellar atrophy [6-8].

We report five additional patients from four families and
we describe for the first time two patients presenting with a
novel ATP8A2 phenotype characterized by mild cerebellar
ataxia.



Subjects and methods
Genetic studies and ethics statement

Human genetic studies conducted in research laboratories
were approved by local ethics committees from participat-
ing centers (Montpellier, France; Baltimore, USA; Padova-
Bergamo, Italy; Ankara, Turkey). Written informed consent
was obtained from all study participants. All five affected
individuals underwent extensive clinical examination by
at least one expert in the ataxia field. Either whole-exome
(individuals 1-A, 1-B, 3 and 4), mini-exome (individual 2)
or neuromuscular gene panel (individual 5) sequencing and
data analysis were performed according to previously pub-
lished protocols [5, 7, 9-11].

Generation of human ATPS8A2 mutant constructs

Human ATPSA2 constructs (NCBI NM_016529.6) contain-
ing encoding a C-terminal 9 amino acid 1D4 tag in pcDNA
3.1 have been described previously [12]. Disease-associ-
ated missense mutations were generated using the Q5 site-
directed mutagenesis kit (NEB, #E0552S—New England
Biolabs, Whitby, ON) with primers specific to each point
mutation (Supplementary Table S2). The mutant plasmids
were verified by Sanger sequencing of the entire coding and
promoter region.

Expression of ATP8A2 constructs

HEK?293T cells (American type culture collection, Manas-
sas, VA) were transfected in 10 cm plates at 80% confluency
with 5 ug of human ATP8A2-1D4 and 5 pg of CDC50A
plasmids using 30 pg of the transfection agent polyethylen-
imine (PEI). Cells were harvested 24 h post-transfection and
lysed in 4% SDS with stirring. Samples were centrifuged at
40,000 rpm for 10 min and supernatant was quantified for
total protein. Protein expression was analyzed on western
blots labeled for ATP8A2 and tubulin as a loading control.
Briefly, SDS-PAGE gels were transferred onto immobilon
FL membranes (millipore) and blocked for 30 min in 1%
milk/PBS. ATP8A?2 expression was determined using an in-
house Rho-1D4 antibody (1/500 dilution, 1 h labeling) and
goat anti-mouse Ig secondary antibody coupled to IR dye
680 (1/40,000, 40 min labeling). Anti-p-tubulin antibody
(Abcam, ab15568) was used to detect f-tubulin together
with donkey anti-rabbit Ig secondary antibody coupled to IR
dye 800. Membranes were washed in between antibody incu-
bations with PBS containing 0.5% Tween 20. Imaging of
blots was carried out on the LI-COR Odyssey infrared imag-
ing system. Band intensities of both Rho1D4 and p-tubulin

labeling were quantified and the ratio of 1D4/p-tubulin was
calculated and plotted for each ATP8A?2 variant. All experi-
ments were done at least three times.

The ATP8A2-CDCS0A variants were purified on a Rho
1D4-Sepharose immunoaffinity matrix as described previ-
ously [13]. For more details, see the supplementary method
in Appendix A.

ATPase activity assay

1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and
1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) (Avanti
Polar Lipids, Alabaster, AL) were dried at a concentra-
tion of 50 mg/ml under N, gas and resuspended in ATPase
Assay buffer (50 mM HEPES—NaOH pH 7.5, 150 mM NacCl,
12.5 mM MgCl,, 1 mM DTT, and 10 mM CHAPS) to make
a final concentration of 5 mg/ml. Each protein eluate was
diluted in ATPase Assay buffer at 0.4 ng/ul. Resuspended
lipids contained either 100% DOPC or 84% DOPC and
16% DOPS. Each reaction contained 12.5 pl of 5 mg/ml
lipids, 10 pl of 1.25 mM ATP in assay buffer, and 2.5 pl of
diluted protein. Controls contained 25 pl of 12% SDS and
each sample was done in triplicate. All samples were incu-
bated at 37 C for 30 min to stimulate the ATPase reaction.
Twenty-five microliter of 12% SDS was added to each sam-
ple (except controls) to terminate the reaction. The amount
of hydrolyzed phosphate was measured using a colorimetric
assay previously described [14]. Absorbance measurements
were compared to those of known phosphate standards car-
ried out in parallel. The specific activity (umol Pi released
per min per mg protein) was calculated. Data were analyzed
for n=2 for 100% PC and n=3 for 84%PC/16%PS with
error bars (SD) or as indicated.

Results

Identification of point mutation variants disrupting
ATP8A2

Through a multi-centric collaboration, we identified six
point mutations (one splice site and five missense mutations)
involving ATP8A2 in six individuals from five families.
Because of parental consanguinity, we investigated all
homozygous variants found by whole exome (individuals
1-A, 1-B, 3), mini-exome (individual 2) or neuromuscu-
lar panel (individual 5) sequencing analysis. We identified
three homozygous non-conservative missense changes:
¢.1754G > T, p.Gly585Val (G585V) in individuals 1-A and
1-B, ¢.1762C > T, p.Arg588Trp (R588W) in individual 2
and c.1312A > G, p.Met438Val (M438V) in individual 5,
all located in the catalytic cytoplasmic domain [amino acids
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364-877] of ATP8A2 (NM_016529.4) and predicted to be
pathogenic (Fig. 1b, c).

In individual 3, WES revealed a homozygous point
mutation, ¢.1057 +5G > C, affecting the splice donor site
of intron 11. Human splicing finder 3.1 (https://www.umd.
be/HSF/index.html) predicts a reduction of the splice site
score from 92 (wild type) to 65 (mutant), most probably
affecting splicing.

In individual 4 who was born to unrelated parents from
Italian origin, WES revealed two segregating variants pre-
dicted to be pathogenic: c.643A > T, p.lle215Leu (I1215L)
located in the actuator domain of ATP8A2 and c.1916A > G,
p.Tyr639Cys (Y639C) located in the phosphorylation
domain (Fig. 1b, c, Table 1).

Clinical features of individuals with ATP8A2 variants

The five affected individuals in our cohort display devel-
opmental delay of differing severity ranging from delayed
walking with ataxia to severe encephalopathy with no ambu-
lation and severe intellectual disability (Table 1).

Two siblings (individual 1-A and 1-B) born from first-
degree consanguineous parents of Turkish origin were
affected by 2 years of age with head titubation, ataxic gait
and tremor. Both siblings have borderline intellectual func-
tioning with IQ ranging from 70 to 80. Cerebral magnetic
resonance imaging (MRI) revealed very mild vermian atro-
phy in the brother at 4 years (Fig. 1a). Both patients were
still ambulant, with unilateral aid, by ages ranging from 8
to 11 years.

In the second family from Algeria, a girl (individual 2)
was affected by a transient encephalopathy with brutal post
measles coma at around 15 months of age. She experienced
delayed walking, disequilibrium, severe hypotonia, dysme-
tria, multidirectional nystagmus and dysarthria. During a
short stay in France, this child progressed very significantly:
she became able to stand alone with support and to do three
consecutive walking steps with aid.

Individual 3 is an 8 year old female with Caucasian origin
who was adopted at 4 years of age. She has encephalopa-
thy, developmental delay, hypotonia, muscle weakness, sei-
zures, chorea, dystonia, mild/moderate intellectual disability,
microcephaly, optic atrophy and no ambulation. She is able
to say 20-30 words with dysarthria and is G-tube-depend-
ent. She had several EEGs around the ages of 5-6 which
revealed nonspecific background slowing, and subsequently
right occipital spike wave discharges and occasional right
central spikes.

Individual 4 is a 28 year old female with Italian origin
who is wheelchair-bound. She presents with a similar phe-
notype to that of individual 3 but with severe intellectual
disability, anarthria, strabismus and without optic atro-
phy. EEGs were normal up to the age of 17 years, and then

revealed focal paroxysms and slow wave activity. MRI at the
age of 5 years and 11 years showed microcephaly, oligogyria
with few shallow sulci, bilateral moderate thinning of white
matter, mild thinning of the corpus callosum and normal
cerebellum.

Individual 5 is a 2 year old boy from Turkey who pre-
sents with developmental delay, intellectual disability, severe
hypotonia, muscle weakness, chorea, dystonia, facial dyski-
nesia, strabismus, severe ptosis, ophthalmoplegia, hearing
impairment and bilateral frontal atrophy on brain MRI. At
24 months, he experienced generalized febrile seizures. Two
routine EEGs obtained at different timepoints showed no
epileptiform abnormality. He also has feeding difficulties.

Expression and functional analysis

To determine the effect of the missense mutations on
ATP8A2, HEK293T cells were co-transfected with plasmids
containing the ATP8A2 variant and CDC50A (also known as
TMEM30A). The expression of the ATP8A?2 variants relative
to the non-mutated protein was examined on Western blots
(Fig. 2). The I215L variant expressed at levels comparable to
control ATP8A2, whereas the four other variants expressed
at levels less than 15% of control ATPSA?2.

The ATPase activity of immunoaffinity purified ATP8A2
and the I1215L variant was measured in the presence of 100%
phosphatidylcholine and 84% phosphatidylcholine-16%
phosphatidylserine. As shown in Fig. 3, the ATPase activ-
ity of the I215L variant, like control ATP8A2, was strongly
activated by increasing concentrations of phosphatidyl-
serine. The M438YV, G585V, R588W, and Y639C variants
expressed at very low levels making ATPase activity meas-
urements difficult. However, by increasing the number of
transfected cells, we were able to obtain sufficient protein to
assess the ATPase activity of the G585V and M438V vari-
ants. As shown in Fig. 3, neither variant displayed significant
phosphatidylserine-activated ATPase.

Discussion

Through a multi-centric collaboration, we identified five
patients from four unrelated families who presented in child-
hood with neurological deficits distinguished by ataxia and/
or developmental delay of differing severities that were
caused by mutations in ATPSA2.

To date, 26 patients from thirteen families have been
described in the literature: six families have homozygous or
compound heterozygous truncating mutations, one sporadic
case has a presumed dominant de novo balanced transloca-
tion of chromosomes 10 and 13 disrupting the ATPSA2 cod-
ing sequence, while the six remaining families have homozy-
gous or compound heterozygous missense mutations, almost
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Mild cerebellar and cer-
ebral atrophy

Onat et al. [5]

B-1
NA
NA
NA
NA
NA
NA

Cacciagli et al. [15]

Normal
No
No
No
No
NA
NA

F3-2
Normal
Yes
Yes
Yes

No

NA
Yes

F2-3
Normal
Yes

No

Yes

No

NA
Yes

Alsahli et al. [8]

F1-3
Normal
No

No

No

No

NA
Yes

temporal lobes

11

Delayed myelination in

Yes
No
Yes
No
NA
Yes

for age; mild cerebral
atrophy, thin corpus

callosum

Yes

McMillan et al. [7] and Martin-Hernadez et al. [6]

Delayed myelination

10
No
Yes
No
NA
Yes

imaging

*Nomenclature HGVS V2.0 according to mRNA reference sequence NM_016529.4. Nucleotide numbering uses+ 1 as the A of the ATG translation initiation codon in the reference sequence,

with the initiation codon as codon 1. All mutations are homozygous unless noted compound heterozygous or heterozygous

NA data not available, SD standard deviation, F female, M male, NA not available, ND not determined

Table 1 (continued)
Cohort

Patient

Gender

Anomalies on brain
Ophtalmoplegia
Nystagmus

Optic atrophy
Hearing impairment
Pes-planus

Feeding difficulties

all located in the catalytic cytoplasmic domain and adjacent
transmembrane segment VI [amino acids 364—877] of the
phospholipid-transporting ATP8A2 (6/7 mutations).

Mutations in genes coding for flippases are globally rare
and are often responsible for severe early onset encephalopa-
thy. In the initial report of CAMRQA4, p.Ile376Met homozy-
gous mutation was predicted to change the secondary struc-
ture of the ATP8A2 protein. The patients with p.Ile376Met
presented with encephalopathy, developmental delay, hypo-
tonia, quadrupedal gait, truncal ataxia and dysarthric speech.

Since then, 22 additional cases have been described
and presented with an even more severe phenotype with
absence of ambulation, non-verbal or absent language and
feeding difficulties. Among them, nine individuals also
experienced optic atrophy [6-8, 15] (see Supplementary
clinical data Table S1).

In this report we expand the phenotype of ATPSA2
mutations describing for the first time two patients with a
less severe form characterized by cerebellar ataxia without
encephalopathy (individuals 1-A and 1-B).

Remarkably, individual 2 who presented at birth with
encephalopathy, clearly improved with physiotherapy and
had a relatively mild presentation at 10 years. As individu-
als 1-A and 1-B, she was able to walk with unilateral aid
and could speak with dysarthria.

In our study, the pathogenicity of the missense mutations
was evaluated by analysis of the ATP8A2 variants expressed
in culture cells. Four variants (M438V, G585V, R588W, and
Y639C) expressed at exceedingly low levels compared to
control ATP8A2. The low expression of these variants har-
boring missense mutations in the catalytic domains is likely
caused by significant misfolding of the protein together with
proteasomal degradation. Interestingly, the 1215L variant
harboring a relatively conserved isoleucine to leucine substi-
tution displayed a level of expression and phosphatidylserine
(PS)-activated ATPase activity comparable to non-mutated
control ATP8A?2. It is unclear why this variant is associated
with the severe disease phenotype in patient 4 also harbor-
ing the severe p.Y639C mutation. It is possible that there is
an additional mutation in the introns or promoter regions,
or a gene rearrangement (which could not be ruled out from
exome analysis) of the allele encoding the I215L variant or
alternatively this mutation affects a property of ATPSA2 not
reproduced in the heterologous expression system used here.
Likewise, it is unclear why patients 1 and 2 homozygous
for the G585V mutation display a mild disease phenotype
despite the finding that this variant expresses at low levels
and is devoid of ATPase activity. It is possible that other
genetic modifiers or P4-ATPases may compensate for the
loss in expression/activity of this variant.

In the central nervous system, apoptosis plays an impor-
tant role during development and is a primary pathogenic
mechanism in several adult neurodegenerative diseases.
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Fig.2 Effect of disease-causing mutations on ATP8A2 protein
expression. HEK293T cells co-expressing ATP8A2 variants and
CDC50A were solubilized in SDS and analyzed on western blots
labeled for the ATP8A2 variants with the Rho 1D4 antibody. Left:
example of a western blot of SDS-solubilized non-mutated ATPSA2,
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Fig.3 The ATPase activity of ATP8A2 disease-associated variants. a
Effect of increasing phosphatidylserine concentration on the ATPase
activity of non-mutated ATP8A2 and the 1215L variant. b ATPase
activity of ATP8A2 variants in the presence of 100% phosphatidyl-

Among apoptotic signaling pathways, the PS pathway
appears to have a crucial and unique role [16]. P4-ATPase
ATP8A2 is a 1188-amino-acid protein involved in the main-
tenance of transbilayer lipid asymmetry by actively trans-
porting specific phospholipids such as PS across cell mem-
branes [17]. ATP8A2-encoded flippase is strongly expressed
in the brain, cerebellum, retina and testis [5, 15]. ATPSA2
partial loss of function contributes to PS exposure and possi-
ble initiation of the early phase of apoptosis. On the surface
of cells, PS is recognized by macrophages through PtdSerR,
a phosphatidylserine receptor used for specific induction of
phagocytosis. The lack of genotype/phenotype correlation
in ATP8A2-related disorders suggests that variability of

Relative % Expression
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and the I215L, M438V, G585V, R588W, and Y639C variants and
anti-tubulin as a loading control. Right: quantification of expression
levels normalized to non-mutated ATP8A2. Values are the mean +SD
for n=3 independent experiments
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choline (PC) and 84% phosphatidylcholine-16% phosphatidylser-
ine (PS). Data were normalized to the phosphatidylserine-activated
ATPase activity of non-mutated ATP8A2. n=3 for ATPSA2 and the
1215L variant. n=1 for M438V and G585V variants

macrophage activation may also be an important contribu-
tor to clinical severity.

On the basis of amino acid sequence alignment, the
P4-ATPase ATP8A?2 is predicted to possess a transmem-
brane domain with 10 helices and three cytoplasmic
domains: P (phosphorylation) that contains the phosphoryl-
ated canonical aspartic acid residue, N (nucleotide binding)
that contains the ATP-binding pocket, and A (actuator) that
serves to dephosphorylate the phosphorylated P domain as
part of the reaction cycle of the P4-ATPase (Fig. 1b) [18]. P
and N belong to the haloacid dehalogenase domain shared by
a superfamily of enzymes that include phosphatases, phos-
phonatases, P-type ATPases, beta-phosphoglucomutases,



phosphomannomutases, and dehalogenases. Interestingly,
both missense mutations associated with the mildest pheno-
types (G585V, individuals 1-A, 1-B and R588W, individual
2) are located in the N domain (Fig. 1b). The three other
missense mutations identified in individuals with the classic
severe phenotype (individual 4 and 5) were located in the A
(I215L) and P (M438YV, Y639C) domains.

Mild cerebellar ataxia without encephalopathy has never
been reported in ATP8A2 disorders. The present report
underscores the strikingly variable clinical presentations
resulting from ATP8A2 mutations, ranging from early-onset
severe epileptic encephalopathy with cerebello-ocular syn-
drome to isolated ataxia. Since the detection of these milder
and new phenotypes is now possible by next generation
sequencing techniques (NGS), ATPS8A2 should be included
in NGS screening panels for the diagnosis of syndromic and
non-syndromic inherited ataxias.

Several classifications of inherited ataxias have been pro-
posed. Only the latest classifications, resulting from consen-
sus among panels of international experts, attempt to grasp
the complexity and phenotypic and genotypic heterogeneity
of ataxias that result from the explosion of gene identifica-
tion. In these classifications, ATP8A2-related disorders are
classified in the group of “other metabolic or complex auto-
somal recessive disorders that have ataxia as an associated
feature [19] or that have only occasional ataxia presenta-
tion [20]. Our report of novel patients is in agreement with
this classification since, for most ATPS8A2 patients, ataxia
remains an associated feature.

The huge functional diversity of affected proteins in
autosomal recessive ataxia impedes their exhaustive clas-
sification according to physiopathological mechanisms. On
the contrary, current knowledge about autosomal recessive
ataxias indicates that no particular pathophysiological path-
way explains the occurrence of this symptom, which results
rather from an extreme sensitivity of cerebellar, spinocer-
ebellar and sensory neurons to mild metabolic disturbances
[21] often by partial loss of function [22-25].
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