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Abstract: In the last few decades, the epithelial cell adhesion molecule (EpCAM) has received
increased attention as the main membrane marker used in many enrichment technologies to isolate
circulating tumor cells (CTCs). Although there has been a great deal of progress in the implementation
of EpCAM-based CTC detection technologies in medical settings, several issues continue to limit
their clinical utility. The biology of EpCAM and its role are not completely understood but evidence
suggests that the expression of this epithelial cell-surface protein is crucial for metastasis-competent
CTCs and may not be lost completely during the epithelial-to-mesenchymal transition. In this review,
we summarize the most significant advantages and disadvantages of using EpCAM as a marker for
CTC enrichment and its potential biological role in the metastatic cascade.

Keywords: circulating tumor cells; epithelial cell adhesion molecule; epithelial cancer; epithelial-to-
mesenchymal transition

1. Introduction

Cancer diagnosis and management represent a huge challenge for clinicians worldwide. The high
mortality of cancer is often related to its late diagnosis and the appearance of resistance to the currently
used therapies [1–3]. Despite significant advances in oncology, there are still limitations in screening
and treating patients with carcinoma (i.e., cancer of epithelial origin). One of the best possible solutions
is the identification of reliable protein biomarkers that are strongly associated with the disease outcome
and that can be used for early detection, prognosis and prediction of the therapeutic response [4].

The epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein that has received
increased attention as a “universal” tumor marker for epithelial-derived cancer types [5]. Forty years
ago, EpCAM was first described as a major epithelial carcinoma antigen that is recognized by
monoclonal antibodies that bind specifically to human colorectal carcinoma cells [6]. It was first
considered to be an adhesion molecule, but its role in various biological functions has been progressively
identified: (i) gene regulation, (ii) cell proliferation, (iii) cancer stemness, and (iv) interaction with cell
adhesion molecules [7–9]. EpCAM is also overexpressed on the surface of the majority of primary and
metastatic cancers [10,11]. Therefore, EpCAM might be a valuable marker in patients with solid cancer.
Additionally, its interaction with other proteins might provide a therapeutic window to repress its
growth-promoting signaling in cancer [5].

EpCAM has received considerable attention in the liquid biopsy field because it is used in the
CellSearch® system (Menarini-Silicon Biosystems, Italy, 2020, and Janssen Diagnostics Raritan, NJ,
USA, 2004) to detect circulating tumor cells (CTCs) [12,13]. During cancer dissemination, tumor
cell motility and invasiveness increase, which enables the dissociation and extravasation of tumor
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cells into circulation to become CTCs. Eventually, the most aggressive CTCs, which can survive in
the bloodstream, will reach distant organs and form metastases. As many cancer-related deaths are
the result of late diagnosis and the development of metastasis [1–3], the in-depth characterization
of CTCs can give important information about the tumor’s molecular profile and this provides a
tremendous opportunity to identify the mechanisms underlying metastasis. It could also have clinical
significance. Indeed, CTC detection has been widely investigated as a tool to detect several cancer
types. Moreover, the expression of various prognostic markers by CTCs has been exploited to evaluate
cancer aggressiveness and patient’s overall survival (OS) [14].

As most cancers are of epithelial origin, targeting epithelial antigens was the first approach to
distinguish CTCs among the millions of normal blood cells that have a mesenchymal phenotype.
EpCAM quickly became the most used epithelial marker for CTC tracing and isolation in the
bloodstream. However, the clinical utility of CTCs remains to be established due to their rarity and
heterogeneity, and the lack of accurate methods to detect and select CTCs among the millions of other
blood cells.

In this review, we describe EpCAM biology and its role in the metastatic cascade and in targeted
therapies in cancer. We then discuss the strengths and limitations of using EpCAM for CTC capture
and isolation, especially in clinical studies.

2. EpCAM in Cancer

EpCAM is a cell-surface transmembrane glycoprotein that is expressed in healthy human epithelial
tissues but also in epithelial cancers, cancer stem cells, and inflammatory diseases [15–20]. EPCAM,
the gene encoding EpCAM, has nine exons and is located on chromosome 2 [21]. The mature form of this
protein consists of a large N-terminal extracellular domain (EpEX), a single spanning transmembrane
domain (TM) and a short C-terminal cytoplasmic domain (EpICD). EpEX includes the N-Domain
that contains epithelial growth factor sites, the thyroglobulin type 1A domain (TY-domain), and the
C-Domain. EpEX forms heart-shaped dimers on the cell surface [22].

EpCAM signaling requires regulated intramembrane proteolysis (RIP), a conserved
signal-transducing mechanism that allows the transit of information across cellular compartments [23].
EpCAM, as a substrate of RIP, is first cleaved by metalloprotease tumor necrosis factor-alpha converting
enzyme (TACE/ADAM17), which leads to the release of EpEX [24]. Then, a protease component of the
γ-secretase complex presenilin 2 (PS-2) cleaves EpICD [24]. EpICD is translocated from the cytoplasm to
the nucleus where it may be implicated in the Wnt pathway through involvement in a nuclear complex
with lymphoid enhancer-binding factor 1 (LEF-1), four and a half LIM domain protein 2 (FHL2),
and β-catenin [7,25–27]. This nuclear complex binds to promoters of genes that are involved in the
cell cycle and stemness regulation, and can increase cancer cell proliferation [7,24,25]. Several studies
have focused on the role of the different EpCAM domains in cancer. For instance, an analysis of
the localization and expression of EpEX, EpICD and β-catenin in surgical specimens of extrahepatic
cholangiocarcinoma indicated concomitant nuclear expression of EpICD and β-catenin [28]. Moreover,
EpICD accumulation in the nucleus predicts an aggressive clinical course in patients with early stage
breast cancer [29]. Likewise, analysis of colorectal and thyroid cancer samples showed that EpICD
accumulation in the nucleus is strongly correlated with poor prognosis [28,30]. Besides EpICD, loss of
EpEX membrane expression has been correlated with lower OS in patients with aggressive thyroid
cancer [28].

EpCAM expression varies according to the tumor type. Indeed, it is often strongly expressed
in breast, lung, colon, intestine and prostate carcinoma, whereas it is not detected in lymphoma,
melanoma, sarcoma and neurogenic tumors [31]. Its expression is also different in primary and
metastatic tumors [11]. Moreover, the prognostic value of EpCAM expression might be different
depending on the type of cancer. For instance, higher EpCAM expression is linked to a lower median OS
in patients with gastric cancer [32]. In contrast, EpCAM has a positive prognostic value in patients with
head and neck squamous cell carcinoma, where it was correlated with longer OS [33]. In breast cancer,
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EpCAM expression was correlated with favorable prognosis in the HER2 molecular subtype, and with
unfavorable prognosis in the basal-like and luminal molecular subtypes [34]. Therefore, the prognostic
value of EpCAM expression is intrinsically associated with the cancer type and/or subtype.

EpCAM is involved in the regulation of cancer cell adhesion, proliferation, migration, invasion,
stemness, and epithelial-to-mesenchymal transition (EMT) during cancer progression [35,36]. EpCAM
expression was correlated with abnormal cell proliferation in cervical squamous epithelium for the
first time in 1996 [37]. Other studies then showed the role of EpCAM in the regulation of cancer cell
proliferation, migration, and invasion [38,39]. Specifically, EpCAM expression is positively correlated
with the proliferation marker Ki67, the high expression and nuclear localization of cyclin D1, and Rb
phosphorylation. These findings strongly suggest that EpCAM promotes cell cycle progression via the
classical cyclin-regulated pathway [27]. Moreover, Gaiserit et al. generated conditional knockout mice
with EpCAM-deficient Langerhans cells (LCs) to show that EpCAM promotes epidermal LC motility
and migration. In esophagus cancer, high EpCAM expression has been correlated with proliferative
stages, whereas low or negative expression was associated with cancer cell migration, invasion and
dissemination [40]. Similarly, EPCAM silencing in breast cancer cell lines leads to a 35–80% reduction
in the rate of cell proliferation [39]. Moreover, wild type p53 controls breast cancer invasion partly by
negatively regulating EpCAM expression through binding to a response element within the EPCAM
gene (intron 4). These studies show EpCAM’s key role in cancer development and progression.

Although EpCAM has not been directly associated with any classical junctional structure,
it interacts with different adhesion proteins and this might contribute to its role in cancer progression [41].
For instance, EpCAM modulates tight junction functions by regulating the intracellular localization
and degradation of claudins (tight junction proteins) through the direct interaction of its TM domain
with claudin-7 [42]. The interaction of E-cadherin, integrin αvβ6 and EpCAM on cancer cells can
trigger the activation of tumor-mediated fibroblasts that then influence gene expression and sensitivity
to therapeutic agents [43]. EpCAM also can inhibit cadherin-mediated cell–cell adhesion in breast
epithelial cells through interaction with phosphoinositide 3-kinase [44]. Additionally, by disrupting
the link between α-catenin and F-actin, EpCAM can modulate the strength of E-cadherin-mediated
cell-cell adhesion [45].

The influence of EMT on EpCAM expression is still not well understood. Jojovi et al. were
the first to describe the loss of EpCAM expression during EMT by immunohistochemical analysis
of breast, colon, ovarian and lung tumor cell xenografts and metastases from severe combined
immunodeficient mice [46]. Specifically, they found transient EpCAM downregulation in the early
stages of migration. Additional studies showed that EpCAM downregulation is associated with
mesenchymal features [47,48]. To determine the underlying mechanism, Sankpal et al. induced EMT
in normal epithelial and epithelial cancer cell lines by incubation with cytokines (transforming growth
factor-β1 [TGFβ1] and tumor necrosis factor-α [TNFα]) and found that EpCAM expression was reduced.
They also showed that this effect was mediated by ERK, a key EMT regulator whose expression is
regulated by EpCAM, in a double negative feedback loop [49]. Pan et al. showed that EpCAM
might also activate epidermal growth factor receptor (EGFR) via its EpEX domain. They suggested
another feedback loop in which EpEX binding to EGFR activates ERK2 and phosphorylation of
AKT, thus promoting EGFR-dependent cell proliferation and suppressing EGF-dependent EMT [33].
Interestingly, EGF/EGFR signal transduction triggers cell-surface EpCAM cleavage, leading to nuclear
internalization of its EpICD, which activates genes involved in oncogenic functions, particularly
EMT. This mechanism was blocked by treatment with an inhibitor of γ-secretase that normally
regulates EpCAM intra-membrane proteolysis and results in EpEX shedding from the cell surface
and EpICD release in the cytoplasm [50]. This finding might explain the contradictory effects of
EpCAM on proliferation/invasion and shed light on EpCAM-based plasticity in cancer progression.
However, several studies do not support the finding of a direct effect of γ-secretase inhibition on
EGF/EGFR–mediated EpEX shedding [51]. These examples strongly suggest that EpCAM expression
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changes during EMT, although other studies suggest that EpCAM is upregulated and/or promotes
EMT [52,53].

Finally, EpCAM is not only present on the surface of cells, but also in extracellular vesicles
(EVs), such as exosomes. Therefore, EpCAM can be detected in CTCs and also in circulating
exosomes isolated from the blood of patients with cancer [54]. Indeed, in the liquid biopsy field,
antibodies against EpCAM are among the strategies used to detect and isolate exosomes for downstream
analyses [55,56]. For instance, EpCAM+ exosome level is associated with the stage of ovarian cancer and
its aggressiveness [57]. Moreover, EpCAM has been detected in exosomes secreted by human colorectal
cell-derived organoids and isolated using magnetic beads coupled to an anti-EpCAM-antibody [58].
Recently, the CellSearch® system (an EpCAM-dependent method) was also applied for the enumeration
of EpCAM+ large tumor-derived EVs (tdEVs). Nanou et al. demonstrated that a cut-off of≥20 EpCAM+

tdEVs/7.5 mL in blood from patients with different cancer types can predict OS, with a prognostic
value equivalent to CTC enumeration [59].

3. Advantages of EpCAM Use as a CTC Diagnostic Marker

EpCAM-based enrichment for CTC detection has provided a reliable prognostic tool in different
cancers. The CellSearch® system, the only US Food and Drug Administration (FDA) approved system
and currently the gold standard for CTC detection, is the most widely used technology for prognostic
purposes in clinical studies. It is based on the enumeration of epithelial cells that are separated from
whole blood samples by positive enrichment using anti-EpCAM antibodies coated with magnetic
beads (Figure 1) [13,60]. Specifically, the ferrofluid reagent consists of particles with a magnetic core
surrounded by a polymeric layer coated with anti-EpCAM antibodies for directly capturing CTCs.
After immunomagnetic capture and enrichment, fluorescent antibodies (against cytokeratin, CK, 8,18
and 19 that are expressed in the CTC cytoplasm; and against CD45 expressed on the leukocyte surface)
and the nuclear dye DAPI are added for CTC identification and enumeration. Thus, CTCs are defined
as EpCAM+/CK8/18/19+/DAPI+/CD45− cells [12]. Overall, this EpCAM-based enrichment step allows
a relatively pure sample to be obtained. However, EpCAMlow/negative CTCs are not detected with
this system, thus CTC recovery rate might not be optimal, which results in an underestimation of
CTC number.
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Figure 1. Use of the epithelial cell adhesion molecule (EpCAM) to detect clinically relevant
circulating tumor cells. In the FDA-cleared CellSearch® system, circulating tumor cells (CTCs)
are enriched positively using ferrofluid nanoparticles coated with anti-EpCAM antibodies that bind to
EpCAM-positive CTCs. Then, CTCs are selected using anti-CK8, -CK18, and -CK19 antibodies and
DAPI nuclear staining. Leukocytes are excluded using anti-CD45 antibodies. CTC, circulating tumor
cell; CK, cytokeratin; Ab, antibody; EpCAM, epithelial cell adhesion molecule.
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The first two studies [9,15] that used this EpCAM-based enrichment method represent the
beginning of a still growing number of published studies that show evidence for the relevance of
CTC enumeration. In 2004, Cristofanilli et al. used CTC enumeration to evaluate cancer progression
and survival of patients with metastatic breast cancer before and after treatment. They found
that progression-free survival (PFS) and OS were shorter in patients with ≥5 CTCs per 7.5 mL of
whole blood compared with patients with <5 CTCs. Moreover, the reduction in the percentage of
patients with ≥5 CTCs at the first follow-up visit after treatment initiation suggested that the therapy
was beneficial. [12]. Simultaneously, Allard et al. showed the analytical accuracy, sensitivity and
reproducibility of CTC detection with the CellSearch® system by using blood samples from healthy
controls and patients with benign and metastatic carcinoma. Although CTC detection was variable
among cancer types, CTCs were extremely rare or absent in controls [61]. Then, De Bono et al. in a
prospective study on patients with castration-resistant prostate cancer demonstrated that CTCs are
the most accurate and independent predictor of OS, and that CTC counts predict OS better than PSA
decrement algorithms at all time points [62]. In another study on metastatic colorectal cancer, patients
were stratified in two groups (unfavorable and favorable prognosis) based on a cut-off of ≥3 CTCs
per 7.5 mL of blood. This cut-off was a good predictor of OS and PFS. Baseline and follow-up CTC
levels remained strong predictors of PFS and OS after adjustment for clinically significant factors [63].
The data obtained in these four clinical trials were used by the FDA to approve the CellSearch® system
for CTC enumeration.

Therefore, targeting EpCAM to capture CTCs is a relevant approach and it demonstrates the
clinical relevance of CTCs. Indeed, strong associations between reduced CTC count and PFS or OS
have been established, and the change from high to low CTC count after therapy indicates good
prognosis in breast [12,64], prostate [62,65], and colon cancer [63]. More recently, CTC analysis has
been proposed for many clinical applications [66] including (i) evaluating the risk of metastatic relapse
(prognosis), (ii) real-time monitoring of the treatment response, (iii) identification of therapeutic targets
and resistance mechanisms, (iv) patient stratification and therapeutic intervention, and (v) screening
and early detection of cancer. Finally, detecting EpCAM+ CTCs with the CellSearch® system is
important because their presence is always correlated with the clinical outcome.

Besides the CellSearch® system, many other EpCAM-based methods have been developed for CTC
enrichment, capture and enumeration, such as the MagSweeper, an EpCAM-based immunomagnetic
separation method [67]; the GILPUI CellCollector® for the in vivo capture of EpCAM+ CTCs using a
nanowire in the arm vein for 30 min [68]; the IsoFlux that combines EpCAM-coated magnetic beads
with microfluidic processing [69]; and the Microvortex-Generating Herringbone-Chip, a microfluidic
device with EpCAM-coated microposts [70]. However, all of these methods still require analytical and
clinical validation, and to date, none have been cleared by the FDA.

The EpCAM-independent integrated subtraction enrichment and immunostaining-FISH (SE-iFISH)
method was used to investigate the role of EpCAM expression on CTCs and disseminated tumor cells
(DTCs) in patients with breast cancer. Among the isolated CTCs, EpCAM+ CTCs were only detected
in patients with metastatic cancer. Moreover, the mean DTC number per patient was six times higher
and the percentage of EpCAM+ DTCs was significantly higher in patients with metastatic cancer than
in patients without metastases (66.53% vs. 8%). This suggests that EpCAM+ CTCs and DTCs could be
reliable biomarkers for evaluating therapeutic efficacy and predicting cancer prognosis [71].

A study on esophageal cancer found that the majority of DTCs in bone marrow lacked EpCAM
expression, while EpCAM was strongly expressed in the tumor [40]. EpCAM downregulation was
also associated with partial loss of the epithelial phenotype. The authors showed that natural or
experimental (knock down) loss of EpCAM reduced the proliferation rate, but promoted cancer
cell migration and invasion [40]. Additionally, the number of EpCAM+ DTCs was correlated with
significantly lower OS in patients with esophageal cancer [40]. High EpCAM expression is associated
with proliferation, while EpCAMlow/negative expression is correlated with migration, invasion and



Cells 2020, 9, 1836 6 of 17

tumor cell dissemination. Therefore, the EpCAM phenotype might be a helpful guide for therapeutic
decision-making and should be taken into account when analyzing DTCs [40].

4. Disadvantages of EpCAM Use as a CTC Diagnostic Marker

Although EpCAM-based methods allow the identification of CTCs from epithelial cancers, many
CTCs detected in patients with different cancers [72–74] do not have sufficient epithelial characteristics
(i.e., there is a lack of or low expression of EpCAM). The failure of EpCAM-based technologies to detect
such CTCs might be explained by several reasons: (i) inefficiency of antibody clones that results in
variable CTC capture yields [75], and (ii) phenotypic plasticity. For instance, CTCs can undergo EMT and
mesenchymal-to-epithelial transition (MET). During the EMT of CTCs, some epithelial markers might
be downregulated (e.g., the loss or reduced expression of epithelial cell surface markers, such as EpCAM
and E-cadherin), while some mesenchymal surface markers are upregulated (e.g., N-cadherin) [76].
In vivo experiments showed that CTC detection using EpCAM-based technologies is limited by the
presence of CTCs undergoing EMT [77]. EpCAM+ CTC detection also varies among different types of
carcinoma. For instance, high numbers of EpCAM+ CTCs are often detected in blood samples from
patients with breast, prostate and small cell lung cancer. Conversely, EpCAM+ CTC count is low in
patients with pancreatic, colorectal and non-small cell lung cancer [78]. This could be explained by the
presence of CTCs undergoing EMT, but also by the tumor’s anatomical location [79]. Both factors could
limit the use of EpCAM-based technologies for CTC enrichment. Moreover, because EpCAM-based
technologies for CTC detection are optimized for carcinoma, they are not appropriate for detecting
CTCs derived from mesenchymal cancers (sarcoma, lymphoma, and neurogenic tumors) [19,31].

The downregulation of EpCAM in CTCs compared with primary and metastatic tumors suggests
that EpCAM expression might be transient and related to EMT [80]. Yu et al., evaluated the expression
of epithelial and mesenchymal markers in CTCs from patients with metastatic breast cancer by using an
EpCAM-independent isolation method. This demonstrated CTC heterogeneity as EMT markers were
differently expressed in CTCs from different breast cancer subtypes. Moreover, in CTCs from patients
with progressive disease after chemotherapy, they observed a change in CTC from a predominant
epithelial to a mesenchymal phenotype, suggesting that EMT plays a role in treatment resistance [81].
Other groups also reported the association between EMT and chemoresistance [82,83]. For instance,
Fischer et al. showed that EMT is associated with cyclophosphamide resistance using an in vivo model
of metastatic breast cancer and fibroblast specific protein 1 (Fsp1) as an EMT marker [82]. However,
as EMT is a complex process that involves several molecular pathways, a single marker to define
EMT might not represent the whole process. Indeed, most studies on EMT have similar limitations
with regard to the correct definition of EMT and MET [84]. Therefore, it is not possible to make a
firm conclusion about the role of EMT in chemoresistance. This complexity is also a reflection of the
heterogeneity of CTCs.

Alternative methods, such as surface-enhanced Raman spectroscopy-based biosensors, have been
suggested to trace EpCAM expression in cancer cells during EMT [45], but they have not been tested
for CTC detection yet.

Therefore, the scientific community has raised doubts on whether EpCAM-based methods
are appropriate to detect all the CTCs that are relevant to metastatic progression or to therapeutic
resistance. Many groups are trying to improve the existing technologies or to develop new systems for
CTC enrichment and isolation [85] by focusing mainly on EpCAM-independent CTC identification
approaches [60,86–88]. Several groups have combined different markers for CTC isolation. They showed
that the sensitivity of CTC detection can be increased by using EpCAM with other epithelial markers
(e.g., HER2, HER3, EGFR and MUC1) [89–92] or some mesenchymal markers (e.g., vimentin, N-cadherin,
twist) [93–95]. For instance, CTC detection in patients with metastatic colorectal cancer is improved
when the CellSearch® system is combined with the AdnaTest® (AdnaGen GmbH, Langenhagen),
which uses RT-PCR to detect EPCAM, EGFR, and CEA expression in the EpCAM-enriched cell
fraction [96].
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Other groups have developed EpCAM-independent technologies, mainly based on the physical
features of CTCs (such as electrical charge, density, size and deformability). One example is the
ParsortixTM PC1 system (ANGLE North America, Inc., King of Prussia, PA, USA), a microfluid
device that captures CTCs based on their size and deformability. This method has the theoretical
advantage of capturing CTCs with low expression of epithelial markers [97]. A clinical trial (ANG-002;
NCT03427450) is currently assessing the validity and utility of this method. Another example is ISET®

(Isolation by Size of Tumor cells), a filtration system in which CTCs are selected as a result of their
large size. ISET® has already been used for CTC isolation in clinical studies [98,99]. However, EMT
not only leads to a reduction in EpCAM expression, but can also affect the physical features (mass and
size) of CTC [48].

5. EpCAM Expression on Metastasis-Competent CTCs

EpCAM is strongly expressed not only on cancer cells, but also on stem cells. For instance, in
the intestinal epithelium, there is a gradient of EpCAM expression from the crypts (where stem cells
are located) to the villi (where differentiated cells reside) [100]. EpCAM is also implicated in the
proliferation of human embryonic stem cells, because EPCAM knockdown in such cells significantly
reduces their proliferation rate independently of other stem cell markers [101]. Therefore, EpCAM has
been proposed as a stem cell marker, and its presence in cells should be understood as a proliferative
marker, and not just as an epithelial marker [25,102].

EpCAM overexpression is frequently observed in cancer tissue samples from patients with
colon, stomach, prostate, kidney, ovary, liver, lung, and breast cancer [11,103,104], and correlates
with poorer prognosis. This suggests that EpCAM overexpression in tumor cells might be associated
with the presence of a higher number of cancer stem cells (CSCs) that can become metastatic-initiator
cells (MICs).

CTCs that overexpress EpCAM might represent the CSC and MIC subpopulations in the tumor.
This hypothesis is supported by clinical studies showing that EpCAM+ CTC number is associated
with prognosis [12], and by the finding that EpCAM expression is detected in all established CTC lines
and in CTCs expanded for a short time [105–111]. For example, Yu et al. established long-term CTC
lines from breast cancer by using an inertial focusing-enhanced microfluidic method for EpCAM+ CTC
enrichment. This assay is based on hydrodynamic cell sorting from whole blood, and it is combined
with immunomagnetic bead sorting (negative depletion of leukocytes with an anti-CD45 antibody,
or positive enrichment of CTCs, with an anti-EpCAM antibody) [105]. Similarly, Cayrefourcq et al.
obtained stable and permanent CTC lines from blood samples of patients with colorectal cancer using
the Ficoll–Hypaque density gradient centrifugation method, which includes a leukocyte depletion
step. The authors showed that these CTC lines can be used to develop tumor xenograft models that
express EpCAM [106]. Moreover, using a xenograft assay, Bacelli et al. demonstrated that CTCs with a
tumor-initiating phenotype (CD45−, EpCAM+, CD44+, CD47+, MET+) can produce metastases [109].
Similarly, Koch et al. established an EpCAM+ CTC line derived from breast cancer [112] and Faugeroux
et al. generated CTC-derived explant models by using EpCAM+ CTCs isolated from blood samples of
patients with castration-resistant prostate cancer (Figure 2) [113].

These studies suggest that EpCAM expression in CTCs is important to complete the metastatic
cascade. Indeed, to establish long-term and permanent CTC lines (or CTC xenografts) these cells
must have acquired the ability to grow independently, as observed in MICs. However, due to the
high variety of cancer types and subtypes, metastasis formation might not always require EpCAM
expression. For instance, Zhang et al. identified a subpopulation of EpCAM-CTCs in vitro and in vivo
that form brain metastases and that express EGFR and human epidermal growth factor receptor 2
(HER2) [114]. These markers correspond to the phenotype of the HER2 intrinsic molecular subtype
of breast cancer that, unlike luminal B and basal-like, is not associated with worse prognosis when
EpCAM is expressed [34]. In other words, the heterogeneity in cancer molecular subtypes might limit
the generalization of the importance of EpCAM expression and CTCs in clinical studies.
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Figure 2. In vivo and in vitro CTC expansion. In vitro and in vivo models are essential to identify and
characterize metastasis-competent CTCs. The successful expansion of this more aggressive subset of
CTCs after negative selection showed a clear EpCAM-positive phenotype in different studies from
independent research groups [105–109,112,113].

Although in vitro expansion of CTCs had been successfully achieved by using EpCAM- dependent
and -independent methods [106–108,112,114], as mentioned above, long-term CTC culture has been
possible only for EpCAM+ CTCs. These observations together with the association of EpCAM
expression with CSCs and the prognostic role of EpCAM+ CTCs, strongly suggest that EpCAM-based
technologies might detect CTC populations that include MICs, and that despite their limitations,
these methods still offer the most practical approach for most cancer types.

Finally, metastasis-competent CTCs display phenotypic plasticity and can acquire migratory
features. If full EMT occurs, EpCAM expression is completely lost [115], and EpCAM-based methods
cannot detect this CTC subpopulation. However, it has been suggested that EMT is a gradual and
reversible process (partial EMT) that is dictated by epigenetic mechanisms [84]. Therefore, CTCs
that undergo partial EMT express epithelial and mesenchymal markers (partial phenotype) and this
increases their survival fitness. This means that cells displaying less phenotypic plasticity will not
achieve the fitness required to successfully finalize the metastatic cascade. Thus, the clinical detection
of metastasis-competent EpCAM+ CTCs might not be limited by EMT, at least in cancer types/subtypes
where EpCAM expression is strongly associated with cancer progression (Figure 3).Cells 2020, 9, x 9 of 17 
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6. EpCAM+ CTCs Might Predict the Outcome of EpCAM-Targeted Therapies

As EpCAM is highly expressed on the surface of many cancer cells and has been associated with
tumor cell proliferation, migration and invasion, some targeted therapies have been developed against
this protein. For example, edrecolomab is a mouse-derived monoclonal antibody that was approved
for clinical applications, based on results from early clinical trials that showed complete remission in
metastatic colorectal cancer [116,117]. However, another clinical trial demonstrated that edrecolomab
was in fact inferior to the standard 5-fluorouracil-based chemotherapy [118]. This resulted in its
withdrawal from the market. The lack of effectiveness of this antibody could be explained by its low
binding affinity to EpCAM. Adecatumumab, is another anti-EpCAM antibody that was developed to
increase the binding affinity to EpCAM; however, this antibody did not show any effect (i.e., tumor
regression) in patients with metastatic breast cancer [119,120]. Nevertheless, in a retrospective analysis,
patients with high EpCAM expression that were treated with high doses of adecatumumab showed a
lower risk of developing new metastases [119]. This observation suggests that adecatumumab might
mainly target cancer cells with metastatic potential that strongly express EpCAM. These cells might be
EpCAM+ CTCs (or EpCAM+ CTC precursors). The disappointing results of these trials may be partly
explained by the inaccurate selection of patients. Indeed, none of these trials selected patients based
on the number of EpCAM+ CTCs in blood. As their number in blood can vary among patients with
the same cancer type [78], selecting patients based on the EpCAM+ CTC count in the peripheral blood
could be a better and more precise way to identify patients who could benefit from such therapies.
CTC enumeration has been already used to pre-select patients for specific therapies. For instance,
in the STIC-METEBREAST trial on metastatic breast cancer, a cut-off of ≥5 CTCs per 7.5 mL was used
to predict the failure of hormone therapy, and these patients were switched to a more aggressive
treatment [121,122]. Similarly, for EpCAM targeted therapies, a higher number of EpCAM+ CTCs
might predict the efficacy of edrecolomab or adecatumumab.

Other anti-EpCAM approaches have been developed, such as chimeric antigen receptor T-cell
(CAR-T cell) therapy. However, their efficacy is limited by EpCAM expression in healthy tissues
(e.g., gastrointestinal tract), which might cause undesirable secondary effects. Perhaps, the use of
CTCs as a predictive marker could help to minimize these secondary effects. Specifically, routine
CTC analysis during treatment might contribute to better evaluate the treatment effects, to limit the
use of anti-EpCAM therapies to patients with clear benefits, and to stop the therapy once it is no
longer effective.

A disadvantage of any EpCAM-targeted therapy is that it might lead to EMT induction or
selection of resistant clones. Indeed, as observed with all cancer therapies, cancer cells adapt to and
generate mechanism of resistance. However, EpCAM might be a key molecule for CTC colonization,
and metastatic tumor formation, at least for most of the cancer types in which EpCAM+ CTCs are
abundant. Although the relevance of EpCAM targeted therapies is not clear, EpCAM+ CTCs might
help to select patients who would most benefit from these treatments.

7. Conclusions

CTCs provide more comprehensive molecular information on metastatic cancer than a single
metastatic lesion because they can represent tumor heterogeneity. CTC clinical applications in various
cancer types have been validated by EpCAM-based technologies. A high number of EpCAM-expressing
CTCs has been correlated with reduced OS in different cancer types [61–63,123]. Understanding
the regulation of variations in EpCAM expression in CTC subpopulations and during EMT might
provide new insights on the biology of the metastatic process. EpCAM is a relevant marker for CTC
detection [124], although the total CTC count is underestimated due to the presence of EpCAM-negative
CTCs. For instance, the detection of CTCs in only about 60–80% of patients with metastatic breast
cancer may be explained by the presence of EpCAM-negative CTCs in some patients [86,125]. As the
EpCAM-based CellSearch® system remains the only technology validated for CTC detection in the
clinic, other markers should be included to overcome its limitations. In addition, the current methods
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need to be improved and new technologies developed [60] to resolve the ongoing debate and provide
insights into CTC biology.

EpCAM might also be a target for personalized medicine. Therapies against EpCAM+ CTCs
could target not only cancer cells in the primary tumor, but also CTCs as the drivers of cancer
dissemination [126,127]. The potential roles of EpCAM in cell transformation, and its strong impact on
the activity of metastasis-initiating cells and on the regulation of self-renewal and pluripotency in stem
and progenitor cells [7] highlight its relevance in the metastatic cascade. EpCAM expression is also
associated with cancer stem cell-like phenotypes in breast cancer that contribute to the formation of
bone metastasis [128].

Finally, the development of CTC lines and the recent results from interventional clinical trials
support the observations that EpCAM has a key role in the metastatic cascade. Moreover, EpCAM is a
target marker on tumor cells, and it is also expressed on the membrane of other liquid biopsy analytes,
such as EVs. Therefore, this protein will play a fundamental role in the liquid biopsy field in the future.
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