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Abstract 

Although radiation therapy (RT) is a main treatment of brain tumors, delayed cerebral 

toxicity may lead to cognitive deteriorations with adverse effects on quality of life. Despite 

technological advances in RT, the concept of brain connectome has not yet been incorporated 

in the strategy of irradiation. Because white matter tracts represent the main limitation of 

neuroplasticity, tumor surgery is increasingly performed with awake cortical-subcortical 

mapping. Here, the purpose is to reinforce the link between cognitive neurosciences and 

neurooncology, which is critical for neurosurgeons but also for medical oncologists, 

especially brain radiation oncologists. The goal is to optimize RT planning by sparing 

individual critical neural networks. A redefinition of "organs at risk" should be proposed, 

beyond the few structures (such as brainstem, optic pathway, pituitary gland, hippocampi) 

which are classically preserved for brain radiation, by considering the structural and 

functional connectivity in order to evolve toward a RT “à la carte”. 
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1. Introduction 

Radiation therapy (RT) is a cornerstone of medical treatment for primary and 

metastatic brain tumors, which represent a major public health problem. When feasible, 

maximal safe surgical resection must be considered before radiation, optionally combined 

with chemotherapy, in order to reduce the tumoral volume and to collect tissue for integrated 

histomolecular diagnosis (Louis et al., 2016). Elaboration of personalized therapeutic 

strategies based upon the combination of surgery, RT and chemotherapy has resulted in an 

increase of the overall survival (OS) in various brain neoplasms, such as low-grade gliomas 

(LGG) (Duffau and Tallandier, 2015), glioblastomas (Stupp et al., 2005) and metastasis 

(Fecci et al., 2019). Due to this prolonged OS, the goal is also to preserve the quality of life 

(QoL), or even to improve it, especially by controlling epilepsy which represents a frequent 

symptom in cerebral tumors. To optimize the benefit-to-risk ratio of surgery, surgical 

procedures are increasingly performed under the guidance of intraoperative mapping, which 

allows a maximization of the extent of resection while significantly minimizing the rate of 

permanent severe deficits, even for surgery in so-called eloquent structures (De Witt Hamer et 

al., 2012). To achieve functional-based resection, i.e., to pursue the tumor removal up to 

critical neural networks, understanding the organization of the brain is crucial for each patient. 

In fact, there is a considerable interindividual variability across human brains, with an 

increase of these variations due to mechanisms of neuroplasticity induced by the tumor 

(Duffau, 2005). This is particularly true in slow-growing neoplasm such as LGG, explaining 

why the patients have usually no or only mild deficits at diagnosis. However, although the 

plastic potential is high at the cortical level, it is limited at the level of the white matter (WM) 

tracts (Herbet et al., 2016a). Therefore, preservation of structural and functional connectivity 

by means of axonal mapping in awake patient is a priority in tumor surgery. The aim is to 

detect and spare the cortico-subcortical networks underpinning movement, language, 
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visuopatial processing, cognitive functions (as semantics and executive control) as well as 

behavior (e.g. theory of mind), in order for the patient to enjoy an active familial, social and 

professional life (Duffau, 2015). Such an improved knowledge of the human connectome 

benefited from developments in the field of neurosciences, in particular with the rise of 

functional neuroimaging and the proposal of new connectomal models of cerebral 

organization, which are helpful to better understand brain disorders (van den Heuvel and 

Sporns, 2019). In this spirit, a dynamic anatomo-functional architecture based upon a meta-

networking theory of brain functions has recently been proposed (Herbet and Duffau, 2020). 

This concept is founded on a perpetual succession of equilibrium states made possible thanks 

to transient modifications of relationship within and between delocalized large-scale neural 

circuits which mediate conation, cognition and emotion: this results in long-lasting changes of 

circuit properties, including use-dependent brain plasticity. In other words, neural processing 

cannot be conceived in a segregated view, with parallel networks acting in isolation: complex 

cognitions at the service of adaptive, context-specific behaviors emerge from spatiotemporal 

dynamic interactions across the specialized functional systems. Such an integration must be 

generated to succeed cognitive demanding, functionally multi-determined behavior tasks 

(Herbet and Duffau, 2020). 

 

2. Radiation-induced cognitive impairment 

In this context of improved oncological outcomes in brain tumor patients, with a 

prolonged life expectancy, a reappraisal of RT is crucial. Indeed, beyond acute radiation-

induced cerebral injury, which is the most often transitory, delayed brain toxicity has been 

evidenced following radiation, leading to cognitive deteriorations with negative consequences 

on QoL. These late brain damages, characterized histopathologically by vascular 
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abnormalities, demyelination, and ultimately WM necrosis (Schultheiss and Stephens, 1992; 

Greene-Schloesser et al., 2013), are classically seen more than 6 months post-irradiation, and 

are irreversible. In fact, despite the use of fractionated RT, radiation-induced cognitive decline 

has been observed in up to 90% of adult brain tumor patients who survive >6 months after RT 

(Brown et al., 2013). For instance, in long-term survivors with LGG, although patients who 

did not received RT had a stable cognitive examination, those with RT exhibited a progressive 

impairment in attention and executive functions, even for fraction doses that are traditionally 

considered safe (≤2 Gy) (Douw et al., 2009). Moreover, the risk of cognitive worsening is 

higher after whole-brain RT: indeed, cognitive disturbances are still noted in more than half of 

the patients who received fractionated whole brain irradiation (Meyers and Brown, 2006; 

Greene-Schloesser and Robbins, 2012). This resulted in the proposal of a reduction of volume 

of RT, made possible thanks to technical advances, which have allowed a more precise 

irradiation, such as sophisticated techniques of stereotactic radiosurgery, intensity-modulated 

radiotherapy, volumetric-modulated arc therapy or proton therapy (Scaringi et al., 2018). The 

principle became to irradiate the tumor more focally, in particular in case of residue after 

surgical resection, instead of achieving a more diffuse RT of the brain. Such a modulation of 

the strategy enabled a decrease of the cognitive disturbances, as demonstrated in cerebral 

metastasis, with a less frequent decline in neurocognition when administering postoperative 

radiosurgery rather than whole-brain RT (Brown et al., 2017).  

 

3. The pivotal role of objective neurocognitive assessment before and after RT 

The first lesson gained from these observations is that an objective neuropsychological 

evaluation must be achieved in a more systematic way before RT in order to benefit from a 

baseline neuropsychological testing, then at the end RT as well as several months/years 



5 

 

(according to the pathology) following radiation. This is particularly true for patients with a 

long-life expectancy (e.g. with a LGG) to evaluate the long-term consequences of RT on 

cognition and QoL using longitudinal detailed neurocognitive assessments, as performed 

before and after surgery (Mandonnet et al., 2015) - with also evaluation of the return to work 

following surgical resection (Mandonnet et al., 2015; Ng et al., 2020). However, in recent 

trials, only a Mini-Mental State Examination has been used, namely, a task which was 

initially designed for patients with dementia (Buckner et al., 2016). The second lesson is that 

these neuropsychological scores should be correlated with neuroimaging, in particular 

Diffusion Tensor Imaging (DTI). Indeed, it has been proposed that imaging biomarkers of 

WM damage, e.g. early diffusivity changes within the cingulate WM, may lead to the 

elaboration of new predictive models of cognitive decline following radiation (Chapman et 

al., 2012; Tringale et al., 2019). Such a reasoning would be in line with recent findings in 

glioma patients, which revealed that tumoral infiltration of WM tracts may result in specific 

neurological deficits before any treatment - explaining why a baseline neuropsychological 

testing is crucial. For example, glioma diffusion within the right arcuate fasciculus (AF) has 

been correlated with disturbances of social cognition (Nakajima et al., 2018), invasion of the 

right cingulate with high-level mentalistic deficits (Herbet et al., 2014), invasion of the left 

inferior fronto-occipital fasciculus (IFOF) with deteriorations of verbal semantic processing 

(Almairac et al., 2015), or invasion of the right superior longitudinal fasciculus with visuo-

spatial deficits (Liu et al., 2020).  

In the same way, anatomo-functional correlations have been established thanks to 

intraoperative electrostimulation achieved in awake patients to map not only the critical 

cortical hubs but also the subcortical tracts (Duffau, 2015), resulting in the elaboration of 

functional atlas of white matter bundles (Sarrubo et al., 2015; Sarrubo et al., 2020) (Figure 1). 

For example, stimulation of the left and right IFOF elicited verbal and non-verbal semantic 



6 

 

disorders, respectively (Duffau et al., 2005; Moritz-Gasser et al., 2013); stimulation of the left 

AF generated phonemic paraphasias (Duffau et al., 2014); stimulation of the left superior 

longitudinal fasciculus evoked articulatory disturbances (van Geemen et al., 2015); or 

stimulation of the fronto-striatal tract and frontal aslant tract induced initiation disorders 

(Kinoshita et al., 2015). Remarkably, intraoperative mapping and preservation of the 

structural and functional connectome have resulted in a dramatic decrease of the rate of 

permanent postsurgical deficits in glioma patients (Duffau, 2018). 

Finally, after glioma surgical resection, detailed neuropsychological evaluations have 

shown that postoperative subtle cognitive deficits were related to injury of specific WM 

pathways, e.g., anomic aphasia associated with lesion of the left inferior longitudinal 

fasciculus (Herbet et al., 2016b) or deficit of mentalizing (theory of mind) associated with 

lesion of the right IFOF (Yordanova et al., 2017).  

To sum up, because of a considerable interindividual anatomo-functional variability in 

glioma patients, due to mechanisms of neuroplasticity, the way in which structural 

disconnection may relate to functional connectivity changes seems highly variable (Duffau, 

2017). On the other hand, the recent data detailed above have evidenced that a better 

knowledge of the anatomo-functional connectivity, already and successfully used in awake 

surgery for glioma patients, may currently be applied to the radiotherapy planning in order to 

preserve cognition. 

 

4. Why the strategy of brain RT should integrate the structural and functional 

connectivity 

It is worth noting that RT has started to spare specific neural structures, especially the 

optic pathway and the hippocampus to preserve memory (Gondi et al., 2014; Kim et al., 
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2018). Nonetheless, despite these technological refinements, it must be acknowledged that the 

new concepts regarding the brain connectome have not yet been incorporated in the strategy 

of irradiation – contrary to the surgical management of brain tumor patients. In other words, 

RT should take account of the structural and functional connectivity, by modulating the 

radiotherapy treatment planning with the goal to decrease the risk to generate a disabling 

deficit depending on the neural networks incorporated in the radiation field. Furthermore, the 

neuroplastic potential should also be taken into account, by considering the lower potential of 

functional reorganization at the level of the subcortical WM pathways rather than at the 

cortical level. This might explain why a recent analysis within the EORTC 22033 clinical trial 

reported that the hippocampus normal tissue complication probability model did not perform 

as expected to predict cognitive decline based on dose to 40% of the bilateral hippocampus: 

indeed, WM connectivity has not been investigated in this study (Jaspers et al., 2019). This is 

a crucial issue because one of the major mechanisms of radiation-brain injury is WM 

degeneration (Greene-Schloesser and Robbins, 2012; Greene-Schloesser et al., 2013). 

Additionally, if a maximal surgical resection has previously been performed until functional 

boundaries, by definition, this means that the residual tumor which should be irradiated 

involves the most eloquent (non-compensable) cerebral structures. Thus, the paradox is that 

the risk of RT could be similar or even higher, despite technological advances enabling a 

smaller volume of irradiation, because radiation will be delivered on more critical networks 

with a less potential of recovery.  

As mentioned, beyond inhibition of hippocampal neurogenesis, radiation-induced 

cognitive impairment is mainly related to WM tracts damages (Greene-Schloesser et al., 

2013; Szerlip et al., 2011). For example, using longitudinal DTI achieved before, during and 

after partial brain RT for cerebral tumors, changes in radial and axial diffusivity have been 

observed, which correspond to demyelination and axonal degeneration, respectively (Hope et 
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al., 2015; Chapman et al., 2016; Zhu et al., 2016). Moreover, by combining these DTI data to 

neurocognitive assessments, in a multivariate model, increasing radial diffusivity at the end of 

RT significantly predicted decline in verbal fluency 18 months following radiation (Chapman 

et al., 2016). In the same spirit, Ding et al. (2018) have noted that focal RT of the temporal 

lobe may induce loss of functional connectivity due to progressive disruption to the integrity 

of the WM tracts, which became significant one year after radiation. These recent findings 

show that despite methodological advances in RT technology, even focal irradiation can lead 

to brain structural and functional injury, in particular concerning the subcortical connectivity. 

Furthermore, regional differences in sensitivity to WM damage after brain RT have been 

described, especially with a higher susceptibility at the level of the corpus callosum, cingulum 

bundle or fornix (Connor et al., 2017). In a cognitive perspective, such results should be 

correlated with the recent probabilistic maps of neuroplastic limitations, mainly represented 

by axonal pathways (Herbet et al., 2016a; Ius et al., 2011). 

 

5. How to apply the better understanding of brain connectome for RT 

The original findings gained from intrasurgical electrostimulation mapping have 

permitted the elaboration of new atlases of functional anatomy of cortical areas (Tate et al., 

2014) and subcortical WM tracts (Sarubbo et al., 2015) (Figure 1), especially with regard to 

critical neural networks (Sarubbo et al., 2020), as well as atlases of potentials and limitations 

of brain plasticity (Herbet et al., 2016a; Ius et al., 2011) (Figure 2). Although such data are 

currently correlated with the preoperative results of neuropsychological assessments and 

functional neuroimaging examinations for each patient with brain tumor, with the aim to tailor 

the surgical planning and to improve both functional and oncological outcomes (Duffau, 

2018; Sanai and Berger, 2018), it is puzzling to note that this increasing knowledge of the 
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structural and functional connectome is not yet incorporated in the RT treatment planning. In 

fact, technological advances in cerebral radiation will not be sufficient to preserve high-order 

cognitive functions without a perfect understanding of the anatomo-functional organization of 

brain processing at the individual level. This knowledge of the interactions between neural 

networks may allow to predict to what extend functional compensation is possible after RT, 

on the condition that critical (non-compensable) structures are spared - as it has already been 

performed for surgical resection. According to this prediction, RT planning could be 

modulated by adapting crucial parameters such as the radiation timing – in particular by 

deferring RT as recently proposed in subgroups of LGG according to the 1p19q status (Rudà 

et al., 2019; Wahl et al., 2017) or MGMT methylation score (Bady et al., 2018) – the 

fractionation, doses and their distribution taking account of the regional susceptibility, as well 

as the target volume delineation based not only on the tumor boundaries visible on imaging 

but also on the structural-functional connectivity and limitation of plastic potential in a given 

patient at this moment. Therefore, an extensive discussion with the patient and his/her family 

is essential to tailor the therapeutic strategy according to his/her needs, based on the lifestyle 

(including job, hobbies, etc) (Duffau and Taillandier, 2015). Because this principle has 

previously been incorporated in the surgical planning, especially with elaboration for each 

patient of a "mapping à la carte", it would not be logical to preserve during surgery the 

functional pathways critical to return to a normal life (as defined by the patient 

himself/herself), but to perform subsequently a postoperative RT which does not take account 

of the neural connectivity. On the other hand, because preservation of the functional 

connectome could result in less optimal oncological outcomes, the choice of the treatment 

attitude should be given to the patient, based on the definition of his/her own “onco-functional 

balance” (Mandonnet and Duffau, 2018). It is worth noting that this is already done in 

surgery, especially by incorporating further cognitive tasks (or not) during awake surgery 
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(Duffau and Mandonnet, 2013): the question is to know why such as “RT à la carte” it is not 

(yet) proposed to the patients in a systematic way. 

 

6. Conclusion 

To conclude, in the era of development of cognitive neurosciences, stronger links 

should be created between the fields of human connectomics and neurooncology, not only for 

neurosurgeons but also for neuro-oncologists, especially brain radiation oncologists. The 

ultimate goal is to optimize RT planning, not seen in isolation but integrated in a global 

therapeutic management, by proposing to brain tumor patients to spare individual critical 

neural networks (as already done for surgical resection) in order to preserve long-term QoL 

and then to optimize the onco-functional balance. To this end, it is time to evolve towards a 

redefinition of "organs at risk", beyond the few structures (as the brainstem, optic nerves and 

chiasm, pituitary gland and hippocampi) which are classically preserved for brain radiation in 

clinical routine (Scoccianti et al., 2015), that is, to consider the individual structural and 

functional connectome as well as its potentials and limitations of neuroplasticity. Following 

the example of “atlas of functional resectability” previously elaborated for glioma surgery 

(Ius et al., 2011), the purpose would be to build an “atlas of functional irradiation” based on 

the cognitive-structural correlations which should be more systematically and accurately 

studied in patients treated with RT. 
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Figure Legends 

 

Figure 1 

Functional atlas of human white matter, with 3D representation of functional response 

errors collected during subcortical direct electrical stimulation in the left and right 

hemispheres. Different colors represent the different functional response errors. The small 

colored points represent the projections of functional response errors on the x–y and x–z 

planes of the Montreal Neurological Institute space (from Sarubbo et al., 2015). 

 

Figure 2 

Functional plasticity atlas of the human brain. Red indicates a low functional 

compensation index with a low level of confidence; purple indicates a low plasticity index 

with a high level of confidence; blue indicates a high functional compensation index with a 

high level of confidence; and black indicates a high functional compensation index with a low 

level of confidence (from Herbet et al., 2016a). 

 








