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Funneling dynamics in conjugated dendrimers has raised great interest in the context of artificial
light-harvesting processes. Photoinduced relaxation has been explored by time-resolved spectroscopy
and simulations, mainly by semiclassical approaches or referring to open quantum systems meth-
ods, within the Redfield approximation. Here, we take benefit of an ab initio investigation of a
Phenylacetylene trimer and in the spirit of a divide-and-conquer approach, we focus on the early
dynamics of the hierarchy of interactions. We build a simplified but realistic model by retaining only
bright electronic states and selecting the vibrational domain expected to play the dominant role for
timescales shorter than 500fs. We specifically analyze the role of the in-plane high-frequency skele-
tal vibrational modes involving the triple bonds. Open quantum systems non-adiabatic dynamics
involving conical intersections is conducted by separating the electronic subsystem from the high-
frequency tuning and coupling vibrational baths. This partition is implemented within a robust
non-perturbative and non-Markovian method, here the hierarchical equations of motion. We will
more precisely analyze the coherent preparation of donor states or of their superposition by short
laser pulses with different polarizations. In particular, we extend the π-pulse strategy for the cre-
ation of a superposition to a V-type system. We study the relaxation induced by the high-frequency
vibrational collective modes and the transitory dissymetry, which results from the creation of a
superposition of electronic donor states.

I. INTRODUCTION

The challenge of converting photoexcitation into work
has attracted great interest in the context of biologi-
cal antennae1–5 or organic photovoltaic devices6–9. A
crucial debate concerns the role of quantum coher-
ence to explain the performance of the process ob-
served in photosynthetic complexes. The principal ques-
tions address different points, namely: the effective
role of a coherent transfer versus an incoherent state
hopping10, the nature, purely electronic or vibronic of
the coherence11–14, the influence of the initial prepara-
tion to modulate the decoherence. This has given rise
to a multitude of experimental works mainly based on
two-dimensional spectroscopy15 and to a lot of theo-
retical investigations16–20 in the framework of quantum
open systems21–23. Indeed, decoherence is a concept
that implies separation of a reduced active subspace
from residual modes, built in an environment causing
dephasing and relaxation. Transfer from an initial donor
to a target acceptor involves an excited state gradient
leading to the final spatial localization from which the
photonic energy may be captured. In a complex molecu-
lar system, this corresponds to nonadiabatic transitions
among potential energy surfaces possibly through coni-
cal intersections24–30. A key factor is also the absorption
process driving the system from the ground state. In-
coherent excitation with sunlight has been examined in
many recent works31–36. On the other hand, investiga-
tion of coherent preparation and control with ultrashort

laser pulses remain major issues for modifying the en-
ergy transport mechanism37–39.

Different initializations of the electronic subsystem
have been recently compared for a model trimer pre-
senting the so-called Λ scheme between a donor and an
acceptor via a bridge40. This Λ arrangement should al-
low a transfer by an adiabatic passage inspired by the
STIRAP strategy41. In this work, we rather address
a V-type system formed by the ground electronic state
radiatively coupled to two donor eigenstates, which fur-
ther decay towards an acceptor state via the bath of
vibrational modes. We investigate the particular situ-
ation where the transition dipole moments towards the
delocalized donor eigenstates are orthogonal such that
the states are addressable by laser pulses with different
polarizations. This situation differs from dipole align-
ment, which is a condition for long-lived quasi station-
ary coherence in a V-type system driven by incoherent
light32. As recently suggested39, the relative phase of
an initial electronic superposition could then be con-
trolled. In a symmetrical case, choosing the sign of the
superposition initializes the system in the left or right
zero-order donor sites inducing a transient dissymmetry
of the electronic distribution. We compare the efficiency
of three strategies for creating this electronic coherence
referring either to two linearly polarized pulses or a cir-
cularly polarized one, without and with the coupling to
vibrational baths.

The selected system presenting this remarkable prop-
erty with orthogonal transition dipoles is presented in
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Fig.1. It consists of a symmetrical trimer of pheny-
lene ethynylene, which is a brick of nanostar dendrimers.
Poly(phenylene ethynylene) (PPE) dendrimers are well
known as potentially efficient artificial light-harvesting
antennae. Such hyper-branched macromolecules are
able to collect photons from several peripheral sites.
Excitation energy is then funneled towards a focal
point or sink from which it is released as useful work,
for instance enhanced fluorescence or chemical activa-
tion. This unidirectional downhill mechanism has given
rise to a large amount of experimental and theoretical
investigations42–50. In the present example (see Fig.1),
the smallest building unit contains two phenylene rings
linked by a triple CC bond. The left and right donor
chromophores share a common phenylene ring. The ac-
ceptor fragment also shares this central part. The trimer
architecture (DDA Donor-Donor-Acceptor) may be seen
here as the interaction of a symmetrical dimer DD in-
volving two left and right donor sites with a third long
acceptor site A. A Frenkel-exciton model is calibrated
on such a system by an ab initio TD-DFT computation
at the CAM-B3LYP/6-31+G* level of theory. A similar
ab initio investigation of the dimer has been published
recently51.

In open quantum systems, the full electro-nuclear
Hamiltonian can be partitioned adequately in several
ways, among which two have been abundantly discussed
with their pros and cons52–60, and in particular in the
context of conical intersections25,30. The so-called re-
action coordinate mapping incorporates some relevant
vibrational modes and their couplings through an effec-
tive Hamiltonian in the central system. The latter then
interacts only with a residual bath usually described
by an Ohmic spectral density52. The second approach
separates the electronic system from all the nuclear mo-
tions. The vibrational degrees of freedom are generally
assumed to be harmonic and linearly coupled to the
electronic degrees of freedom. This is the partition we
address here.
We derive a realistic model Hamiltonian for the DDA

trimer system by calibrating energies and normal modes
from ab initio simulations. However, the large cou-
pling of some vibrational modes of this system imposes
to work with non-perturbative, non-Markovian dynam-
ical methods. Several methods are available to tackle
such dynamics: discretization of the vibrational bath
and ML-MCTDH (Multi Layer Multi Configuration
Time Dependent Hartree)61,62, tensor network states63,
the Davydov ansatz64, or the statistical Schrödinger
equation65,66. Our choice for this work is the use of
HEOM (Hierarchical Equations Of Motion)67–72. Four
selected electronic states are used to describe the elec-
tronic system by a reduced density matrix while the
numerous vibrational degrees of freedom (namely, 174)
are dealt as several baths at thermal equilibrium. The
latter are taken into account with a large set of coupled
auxiliary matrices.
The high complexity of dendrimer systems requires

multi-scale and multi-method strategies. Here, we take

benefit of an ab initio investigation of the DDA trimer
and in the spirit of a divide-and-conquer approach, we
focus on the early dynamics of the hierarchy of inter-
actions. We build a simplified but realistic model by
selecting bright electronic states together with the vi-
brational domain expected to play the leading role for
timescales shorter than 500fs. We specifically analyze
the role of the in-plane high-frequency skeletal vibra-
tional modes involving the triple bonds. We will more
precisely analyze the coherent preparation of donor
states or of their superposition by short laser pulses with
different polarizations and study the relaxation induced
by the high-frequency vibrational collective motions.

This article is organized as follows. In Sec.II, we
present the main points of the ab initio investigation and
we describe the realistic system-bath model calibrated
by these data. Sec.III summarizes the HEOM dynami-
cal method. The relaxation mediated by the baths of the
system assumed to be prepared in excited donor eigen-
states and their superposition is presented in Sec.IV,
while Sec.V is devoted to the analysis of the coherent
preparation of these states by different laser pulses. Fi-
nally, Sec.VI concludes and gives some outlooks.

II. MODEL

A. Ab initio computation

All quantum-chemistry calculations were performed
with the Gaussian16 package (revision A03)73 using
DFT (ground states) and TD-DFT (excited states) at
the CAM-B3LYP/6-31+G* level of theory, the validity
of which having been already assessed for the small-
est chromophore (tolane) in Ref.74. Such calculations
were extended to other members of the series: para-
conjugated PPE oligomers with two, three, and four
rings, and we showed in Ref.75 that the 0–0 band ori-
gins and the dominant vibrational progressions were in
very good agreement with experimental data. This was
further applied to the first meta-substituted species in
Ref.51 showing a consistent dimer-like behavior with re-
spect to a pseudo-fragmentation scheme.

Minima and transitions structures were optimised in
ground and excited electronic states and characterised
with frequency calculations for the system of the present
work. Derivative couplings were obtained numerically
from the procedure exposed in Ref.76, based on a har-
monic analysis of the Hessian of the squared energy dif-
ference.

The ground state geometry is given in the Supple-
mental Material and a schematic representation of the
excited bright states in terms of their dominant exci-
tonic pairs (hole-electron) of natural transition orbitals
(NTOs)77 and their respective weights is provided in
Fig.2.

The conical intersection between the two upper ex-
cited donor states has been characterized and is schema-
tized in figure 3. The crossing occurs between two states
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Figure 1. Panel (a): DDA trimer of phenylene ethynylene
with a symmetric DD dimer of donor sites 1 and 2 (green
circles), and an acceptor A site 3 (red circle). These three
sites share a common central ring. The eigenstates mainly
localized on the donor sites are denoted E2 and E3 in the
text. The eigenstate with the main component on the accep-
tor site is denoted E1 in the text. Panel (b): The transition
dipoles µ0,k; k = 1, 2, 3 from the ground state E0 are indi-
cated by their corresponding vectors (k = 1 in red, k = 2
in blue and k = 3 in green). The (y, z)-axes are drawn in
Mulliken’s convention. Panel (c) : Schematic representation
of the main in plane skeletal vibrations responsible for the
fluctuation of the energy gaps and of the interstate coupling.

of different C2v symmetries (namely, A1 and B2) and
this is the lowest-energy point within the seam due to
the positive curvatures of the potential energy surfaces
there (except for the coupling mode, of course). Our
previous and simpler prototype (two donors connected
via meta-substitution) was characterized in the work of
Ho et al.75 as a slightly peaked conical intersection with
two Transition States (TSs) on both sides along the
C2v-preserving coordinate (and two equivalent broken-
symmetry, Cs, minima on both sides). Both TSs were
very close to the crossing point. Going to the trimer in-
vestigated in the present work, we observed a slight shift
of the local paraboloids, making the conical intersection
now slopped with both apparent minima in C2v on the
same side (yet, still close to the crossing) and turning the
upper apparent minimum as a true minimum (the lower
one still being a TS, unstable with respect to C2v → CS ,
as expected). In both cases, the tilt is not major and
the tuning effect is moderate, such that the most impor-
tant effect is the strong coupling that induces again a

Eigenstate Hole orbital Electron orbital Weight 

E1—1A1 

  

89% 

E2—1B2   

54% 

  

43% 

E3—1A1   

71% 

  

22% 

 

Figure 2. Schematic representation of the three locally ex-
cited bright states (acceptor, symmetric donnor, and an-
tisymmetric donnor) in terms of their dominant excitonic
pairs (hole-electron) of natural transition orbitals (NTOs)77

and their respective weights. NTOs are left and right sin-
gular vectors of the one-electron reduced transition density;
weights are the corresponding singular values.

symmetric double well, with a pair of CS mirror-image
minima on both sides.

B. Parametrization of the Frenkel Hamiltonian

A minimal model is built by selecting the electronic
states and the main vibrational motions expected to
play the major role in the early dynamics after prepar-
ing donor eigenstates or their superposition. The equi-
librium geometry is planar with C2v symmetry. The
primary vibrational modes involved in the fluctuation
of the energy gaps or of the interstate couplings are
the in-plane collective vibrations of the CC triple bonds
with A1 or B2 symmetry around 2360 cm−1. The elec-
tronic subspace is limited to the ground electronic state
and the first three bright states. We neglect the pres-
ence of dark states, which nevertheless could participate
to a more sophisticated relaxation mechanism, left for
further work. The ground adiabatic state E0 is cou-
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pled to the excited bright states only through transi-
tion dipole moments. In other words, in the absence of
non-radiative transitions, E0 could be qualified both as
adiabatic and diabatic. The first excited state E1 (A1)
is the acceptor. The higher excited states E2 (B2) and
E3 (A1) are the donors, which may be seen in first ap-
proximation as the in- and out of-phase combinations of
the localized electronic states of the two left and right
donor sites. According to the usual model of displaced
harmonic oscillators in open quantum systems, we work
with a linear vibronic Hamiltonian expressed in a dia-
batic representation. The equilibrium geometry of the
ground electronic state (i.e., the Franck-Condon geom-
etry) fixes the spatial origin of the normal modes. They
are assumed to be the same in each excited diabatic
state by neglecting the Duschinsky rotation. A generic
field-free Frenkel Hamiltonian then reads:

H =
∑
k

|k〉Hkk 〈k|+
∑
j 6=k
|j〉Hjk 〈k| (1)

which, in mass weighted coordinates, leads to:

Hkk = εk + 1/2
∑
α

(
p2
α + ω2

α(qα − dα(k))2
)

(2)

and

Hjk = hjk +
∑
α

κa(jk)qα (3)

where εk is the electronic energy at the equilibrium ge-
ometry of the ground state and hjk is the electronic
coupling between states j and k. The minimum energy
of state k is displaced by dα(k) with respect to the equi-
librium position of mode qα in the ground state. In the
harmonic model, cα(k) = −ω2

αdα(k) is the gradient at
the reference point qα = 0 and κα(jk) is the gradient of
the interstate coupling. The sum εk + 1/2

∑
α
ω2
αd

2
α(k)

gives the energy at the reference Franck-Condon ge-
ometry and λk = 1/2

∑
α
ω2
αd

2
α(k) is the reorganization

(renormalization) energy.
The system-bath-type Hamiltonian is recast as:

H = HS +HSB +HB (4)

where HS is the quantum subsystem explicitly treated.
Here, we address the specific partition where HS is the
electronic Hamiltonian at the minimum of the ground
electronic state. The diabatic electronic representation
is not unique since it is defined, formally, at least up to
an arbitrary unitary transformation that does not de-
pend on the nuclear coordinates (and depends, in prac-
tice, also on the specific choice of some diabatic crite-
rion among various and equally valid possibilities)78–80.
Some diabatic basis sets may be more suitable for dis-
cussing the vibronic couplings, in particular in the con-
text of conical intersections. Two particular diabatic
representations and the adiabatic states of the two
donor states are represented in Fig. 3. We denote Hd

the Hamiltonian expressed in the basis set formed by
the delocalized states adapted to C2v symmetry (Fig.
2, left panel). These states denoted D2 and D3 have
the same symmetry as the adiabatic states E2 (B2) and
E3 (A1), respectively. Their coupling vanishes in A1 ge-
ometry but their energy gap is varying, so that an A1
displacement is a tuning mode. However, they exhibit
a linear coupling along B2 displacements leading after
diagonalization to a double well profile for the lower E2
adiabatic state. At the Franck-Condon geometry, the
electronic matrix Hd

S is:

Hd
S =


E0 0 0 0
0 εA 0 hdAD3
0 0 εD2 0
0 hdD3A

0 εD3

 . (5)

Transforming through a π/4 rotation matrix R(π/4),
mixes D2 and D3 while leaving E0 and A unchanged.
One gets the Hamiltonian H l

S = Rt(π/4)Hd
SR(π/4) in

a basis set localized on the left or right donor sites:

H l
S =


E0 0 0 0
0 εA hlADL

hlADR

0 hlADL
εD hlDlDR

0 hlADR
hlDlDR

εD

 . (6)

In the DD dimer case, without interaction with the
third site, the minima of the diabatic states DL and DR

should coincide with those of the double well adiabatic
state along a B2 displacement. Their energy gap is vary-
ing along the B2 motion while they are degenerate along
A1. εDL

= εDD
= εD and hdAD3

=
√

2hlADL
=
√

2hlADR
.

The role of tuning and coupling modes are exchanged
due to the rotation R(π/4) of the electronic reduced ba-
sis set. The operators HSB and HB must be adapted
to the chosen basis set. Computations are performed
in the delocalized basis set which is transformed to the
localized one for some analysis. Energies and couplings
in Eqs.(5, 6) are ideally obtained from ab initio adia-
batic calculations. However, realistic assumptions are
made when we are missing some of them. More pre-
cisely, without coupling between the DD dimer and the
third A site, the diabatic energies of the delocalized ba-
sis set should be the adiabatic ones in C2v symmetry.
One may expect that the coupling hlADD/R

has a value in
the range

[
0, hlDLDR

]
. By a best fit procedure, we deter-

mined reasonable diabatic values ε0 = 0, εA = 3.8613
eV, εD2 = 4.3897 eV, εD3 = 4.4678 eV and hdAD3

=
0.03025 eV that provide the following adiabatic ener-
gies at the Franck-Condon geometry: E0 = 0, E1 =
3.8589 eV, E2 = 4.3895 eV, E3 = 4.4698 eV (These val-
ues are to be compared with the ab initio calculated
ones: E1 = 3.8598 eV, E2 = 4.3897 eV, E3 = 4.4692 eV
respectively).

The bath is a collection of harmonic oscillators rep-
resenting the discrete intramolecular vibrational modes
as well as the effect of an environment. In the frame-
work of conical intersections with symmetry properties,
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Figure 3. 3D-schematic view of the potential energy surfaces of the diabatic harmonic model. Delocalized diabatic donor
states D2 and D3 (left panel), localized diabatic states DL and DR (middle panel) and adiabatic states (right panel). The
tuning mode (coordinate Qt) is the vibrational mode of A1 symmetry at 2369 cm−1 and the coupling mode (coordinate Qc)
is the vibrational mode of B2 symmetry at 2368 cm−1. Energy minima were obtained from ab initio data.

the modes are usually separated into tuning type modes
coupled to the diagonal elements of HS , and coupling
type modes which are off-diagonally coupled25,30,81–84.
The system-bath coupling is HSB =

∑
n
Sn ⊗ Bn where

Sn and Bn are operators acting in the space of the
electronic system or in the complementary vibrational
space, respectively. The Bn operator corresponds to a
collective mode having the dimension of an energy. n
is a generic index equal to k for the tuning baths af-
fecting the diagonal elements and jk for the coupling
baths linked to the off-diagonal elements. For the tun-
ing mode,

Bdiagk =
∑

α
cα(k)qα = −

∑
k
ω2
αdα(k)qα (7)

where the vibronic couplings cα(k) are the gradients at
the reference point (see Eq.(2)). For the coupling modes
(off-diagonal part),

Boffjk =
∑

α
κα(jk)qα (8)

where κα(jk) are the linear interstate couplings
(Eq.(3)). In this application, the tuning-type (Eq.(7))
and coupling-type (Eq.(8)) collective modes are orthog-
onal since they involve subsets of modes belonging to
different symmetries. If this were not the case an or-
thogonalisation procedure has to be used as referred to
in references82,83. Finally, figure 4 summarizes the pa-
rameters of the system-bath model.

C. Parametrization of the baths

The tuning baths make the energies fluctuate and
are linked to the diagonal elements of Hd

S . They
are denoted by a single index k = A,D2, D3. On
the contrary, the coupling baths connect two states
and are denoted by the corresponding pair of indices,

A1

eA 3.8613 eV

A1

B2

eD2 4.3897 eV

eD3 4.4678 eV

e0 = 0E0 = 0

E1 3.8598 eV

E3 4.4692 eV

E2 4.3897 eV

mz mz my

JA

JD3 =w2JD2

JD2

JD2,D3

JA,D2

Figure 4. Schematic representation of the system-bath
model providing the adiabatic energies Ej , the energies of
the delocalized diabatic representation εj , and the allowed
dipolar transitions (red, along z-axis; blue, along y-axis).
Are also indicated on the right panel: (in blue) the cou-
plings to the tuning baths Jk for k = A, D2 and D3, (the
parameter w is discussed in the text, here w = = 0.77), and
(in red) those to the coupling baths JD2D3 and JAD2 .

namely: jk = AD2, D2D3. The corresponding col-
lective bath modes are defined in Eqs.(7) and (8).
The fluctuation-dissipation induced by the baths is de-
scribed by two-point correlation functions of the collec-
tive modes Cnm(t) = 〈Bn(t)Bm(0)〉eq (n and m being
collective indexes equal to k for the tuning modes or kk′
for the coupling modes) where Bn(t) is the Heisenberg
representation of the operator and 〈�〉eq = TrB [�ρeqB ] de-
notes the average over a Boltzmann thermal ensemble of
harmonic oscillators at temperature T . These correla-
tion functions of collective modes are a basic tool in open
quantum systems85 and in particular, they have been
used in the context of the hierarchical representation of
the sepctral density in master equations86,87. They are
related to the spectral densities through a temperature-
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dependent modified Fourier transform:

Cnm(t) = 1/π
∫ ∞
−∞

dωJnm(ω) [f(ω) + 1]e−iωt (9)

where f(ω) =
(
eβω − 1

)−1 is the Bose function, β =
1/kBT and Jnm(−ω) = −Jnm(ω). In a discrete rep-
resentation the spectral density may be expressed from
the system-bath coupling coefficients cα(k) or κα(jk).
For the tuning baths, one has:

Jk,k′(ω) = π

2
∑

α

cα(k)cα(k′)
ωα

δ(ω − ωα). (10)

and accordingly, for the coupling modes:

Jjk,j′k′(ω) = π

2
∑

α

κα(jk)κα(j′k′)
ωα

δ(ω − ωα). (11)

We recall that the diagonal terms are denoted with a
single index when k′ = k in Eq.(10) or j′k′ = jk in
Eq.(11).

1. Tuning baths

For independent baths, the operators corresponding
to tuning ones are merely Sk = |k〉 〈k|, whereas they are
written Skj = |k〉 〈j| for coupling baths. In cases where
off diagonal terms Ckk′(t) (or Jkk′(ω)) with k′ 6= k can-
not be discarded, baths are correlated. Some recent
works have addressed such situations leading to more
complicated dynamical treatments88–90. There are how-
ever some circumstances under which the correlation of
two baths 1 and 2 could be implicitly taken into ac-
count by referring to a single bath, but a different S
operator88. Two baths should be perfectly correlated
or anti-correlated if the variation of a given impor-
tant mode affects the system-bath coupling in a sim-
ilar way, i.e., cα(k′) = cα(k), or in an opposite way,
i.e, cα(k′) = −cα(k), respectively. In other words,
the gradients are then the same or have opposite di-
rections in the two electronic states. The operator
linked to the single bath then reads |1〉 〈1| + |2〉 〈2| or
|1〉 〈1|− |2〉 〈2| respectively. Upon assuming the relation
cα(k′) = wcα(k), it is possible to work with a single
bath described by the spectral density Jkk and a com-
posite operator S = |k〉 〈k| + w |k′〉 〈k′|. This may be
verified for instance by considering the HEOM equa-
tions at the first level, which correspond to the gener-
alized Bloch-Redfield equations at the second order of
perturbation57.
We estimate the coefficients cα(k) = −ω2

αdα(k) in the
delocalized basis set (Eq.(5)). This is done by assuming
that the DD donor dimer is weakly coupled to the A ac-
ceptor site. The gradient of each potential electronic
surface at the Franck-Condon geometry and minima
displacements from that geometry are extracted from
ab initio computations. Vibronic couplings can be ob-
tained from both quantities and the agreement between

Figure 5. Contribution of the intramolecular modes to the
discrete spectral densities Jk (Eq.10) for k = A (blue circle),
D2 (red triangle) and D3 (black rectangle). The inset is an
enlargement on the frequency domain corresponding to the
vibration of the CC triple bonds.

both approaches is a test of the harmonic and linear
coupling approximations. For the D2 and D3 states,
the displacements are from the Franck-Condon geome-
try to the minimum in the A1 geometry. For D3, this
minimum corresponds to the Transition State with re-
spect to the B2 modes.

The discrete contributions c2α(k)/ωα to the spectral
densities of the three tuning baths A,D2 and D3 are
given in Fig. 5. The dominant intramolecular motions
leading to the highest couplings are the vibration of the
CC triple bonds around 2360 cm−1. The strength of
the vibronic coupling could also be estimated by the
dimensionless Huang-Rhys factor sα(k) = ωαd

2
α(k)/2~.

The weighting by the frequencies is then different but
the selected high-frequency range remains the most cou-
pled to the system. The zoom in the inset of figure 5
shows that the mode at 2369 cm−1 induces large coef-
ficients for both D2 and D3 states. This is an example
of the relation cα(D3) = wcα(D2) discussed above. On
the contrary, the tuning bath of state A is dominated
by the vibration at 2360 cm−1 where the contribution
of other two states are negligible. As we focus on this
high-frequency domain, the tuning bath A is therefore
considered as independent (SA = |A〉 〈A| while the tun-
ing baths D2 and D3 are treated as correlated with a
single operator S = |D2〉 〈D2| + w |D3〉 〈D3| with w =
0.77.

The discrete spectral density and undamped oscilla-
tors could be directly used as it has been done in simula-
tions with ML-MCTDH61,62, Thermo Field Dynamics91
and HEOM71,92,93. However, the benchmark examples
mainly concern dynamics in the Fenna-Matthews-Olson
(FMO) complex where the system-bath coupling re-
mains weak and does not involve high levels of hier-
archy. The system-bath partition adopted here leads to
very strong coupling in the context of conical intersec-
tion and high hierarchy level. We prefer to take benefit
of a simple model based on a continuous representa-
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Figure 6. Spectral densities in the high-frequency range
of the skeletal CC triple bonds smoothed by Tannor-Meier
Lorentzians (Eq.(12)). Panel (a): spectral densities Jk for
the tuning baths k = A, D2 and D3; panel (b) : spectral
densities Jjk of the coupling baths jk = D2D3 and AD2 .

tion of the spectral density (Eq. 10) already used in a
previous work30. The delta distribution in the spectral
density is broadened by a Lorentzian smoothing func-
tion δ(ω − ωk)→ 1

π
Γ

(ω−ωk)2+Γ2
90,94,95. In this work, we

used Γ = 160 cm−1. Truncating to the high-frequency
domain, the sharp peaks are fitted by two-pole Tannor-
Meier Lorentzians96 represented in Fig. 6(a).

Jnm(ω) =
∑

j

pjω[
(ω + Ωj)2 + Γ2

j

] [
(ω − Ωj)2 + Γ2

j

] .
(12)

The parameters are given in Appendix A.

2. Coupling baths

The linear coupling coefficients κα(D2D3) (Eq.(8)) of
the delocalized donor states D2 and D3 may be esti-
mated from some adiabatic data in the harmonic model.
As schematized in Fig.3, the energy gap between the de-
localized diabatic states is varying along a tuning mode
but is constant along any coupling mode, which breaks
the symmetry. The linear coupling leads to a lower adi-
abatic state that may present a double-well shape when
the coupling is strong. The ab initio data provide the
geometry of these minima in the restricted planar geom-
etry we consider here. For each vibrational mode, the
linear coupling gradient may be estimated from the ana-
lytic expression of the lower adiabatic state, by imposing
that the first derivative of this adiabatic energy vanishes
at the local minimum. It is this approximate procedure
that we have adopted. For the largest off-diagonal lin-
ear coupling terms aimed at inducing both equivalent
minima in E2, we have compared their agreement to a
direct evaluation according to the numerical procedure
described in Ref.76. The agreement justifies the har-
monic and linear approximation. The spectral density
is then obtained by a Lorentzian smoothing function,

in the same way as for the tuning baths. It presents a
sharp peak centered at the B2 vibrational mode at 2368
cm−1, which is the antisymmetric vibration of the triple
bonds in the two right and left sites. The parameters of
the Tannor-Meier Lorentzian are given in Appendix A.

The coupling between the A and D2 states vanishes in
C2v symmetry (see Eq.(5)). However, it does not cancel
when B2 vibrations are activated. At this stage, our use
of local ab initio energies and derivatives is not global
enough to precisely fix the linear coefficients κα(AD2).
One may reasonably assume that they are smaller than
the corresponding κα(D2D3). We consider that the
coupling baths are uncorrelated and that the spectral
densities are related by JAD2 = w′JD2D3 with a fac-
tor w′ = 0.3. We give in the supplemental material a
comparison of dynamics carried out with w′ = 0.1 and
w′ = 0.5 to illustrate the qualitative stability of the re-
sults. Finally, the weak interaction between the A and
D3 states, which does not vanish in C2v symmetry, is
taken as a small constant.

III. DYNAMICAL METHODS

We summarize hereafter the main equations
of the HEOM formalism,which is currently well
documented67–72. In the case of independent baths or
when the correlation may be treated by a composite
operator as discussed in section IIC, only the diagonal
correlation functions of the baths are required. As in
Sec.II, the diagonal elements will be denoted by a single
bath index Cj(t) = Cjj′(t)δjj′ where j = A,D2, D3 for
the tuning baths and j = D2D3, AD2 for the coupling
baths. The efficiency of the algorithm relies on the
expansion of the correlation functions Cj(t) as a sum
of nncor,j complex exponential functions associated
to pseudo decay modes. Different expansions have
been proposed71 among which the Tannor-Meier
scheme96,97, the Padé approximation98, the Fano spec-
trum decomposition99 and an expansion on Chebyshev
polynomials and Bessel functions100. According to
the Tannor-Meier method, the correlation function is
written as :

Cj (t) =
ncor,j∑
lj=1

αj,lje
iγj,lj

t (13)

Expressions for α and γ as functions of the parameters
of the spectral density (12) are given in Refs.96,97.
The reduced density matrix of the system

ρS(t) = TrB [ρtot(t)] (14)

is the partial trace over the bath of the time evo-
lution of the total density matrix ρtot(t). The aux-
iliary operators are matrices of the same dimension
as the system density matrix. They are denoted by
a collective index n giving the excitation number in
the pseudo modes of each correlation function, n =
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{n1,1, · · · , nncor,1 , · · · , n1,j , · · · , nncor,j , · · ·}. The equa-
tions in interaction representation take the form30

ρ̇S,I(t) =
K∑
k=1

Φj(t)ρ(1)
01,··· ,0k+1,··· ,0K

(t)

ρ̇
(ν)
n1,··· ,nK (t) =

K∑
k=1

Φj(t)ρ(ν+1)
n1,··· ,nk+1,··· ,nK

(t)

+
K∑
k=1

nkΘk (t) ρ(ν−1)
n1,··· ,nk−1,··· ,nK

(t)

+i
K∑
k=1

nkγkρ
(ν)
n1,··· ,nK (t).

(15)
where

Φj(τ)� = −[Sj(τ), �] (16)

and

Θk(t′)� = αj,ljSj (t′) �−α̃j,lj � Sj (t′) . (17)

ρS,I(t) = ρ
(0)
0,··· ,0(t) is the reduced density matrix for the

system in interaction representation. Expressions for
α̃, which are related to the complex conjugate of the
correlation function, are given in Ref.97. k = {lj , j} is
a global index related to an exponential element lj of
the j’s bath correlation function. K is the total number
of exponential functions involved in all the correlation
functions. (ν) is the hierarchy level of the matrix defined

such that ν =
K∑
i=1

ni.

The HEOM formalism provides insight on the cor-
related system-bath dynamics by probing the different
moments X

(n)
j (t) = TrBj

[
B

(n)
j ρtot(t)

]
of the collec-

tive mode Bj of the tuning (Eq.7) and coupling (Eq.8)
baths30,71,101,102. The first moment Xj(t) will be de-
noted without its exponent (n = 1). The expectation
value of the collective mode Bj in each electronic state
m is given by the mth diagonal elements of the matrix
Xj(t), which in turn is given by the sum of the first level
auxiliary matrices

Xj(t) = −
∑

n′
ρn′(t) (18)

where the sum runs over all index vectors belonging
to level 1 of the hierarchy, i.e.

∑ncor,j

k=1 nk,j = 1 and∑ncor,j′

k=1 nk,j′ = 0 with j′ 6= j. This first moment al-
ready provides a signature of the induced correlated
system-bath dynamics, in particular of the damped vi-
brational motion in the successive electronic states dur-
ing the relaxation. In order to get the dimension of a
coordinate, the moment is divided by the total coupling
strength of the corresponding bath Xj(t)/Dj with

Dj
2 = 2/π

∫ ∞
0

Jj(ω)ωdω. (19)

The investigation of the full distribution, which should
correspond to the distribution extracted from wave

packet dynamics in the alternative partition retaining
the collective coordinates into the active system, has
been illustrated recently30,102.

The equations at T = 298K are solved by the Cash-
Karp Runge Kutta adaptative algorithm103 with a fil-
ter procedure in order to reduce the number of auxil-
iary matrices. Convergence is reached at level 8 with
two Matsubara matrices for each bath. We give the re-
sults obtained without Matsubara terms since we have
checked on several cases that the error is less than
1%. For computational purposes, we adapt a filter-
ing strategy proposed by Q. Shi70 to our algorithm
in order to reduce the computational cost. Connec-
tivity between auxiliary matrices (up to the 8th level
in this case) is determined as a first computational
step. At each integration step, an algorithm computes
ζk =

√
max(|[ρ(νt)

n1,...,nK ]ij |) where νt(>= 0) indexes the
current upper hierarchical level at time t (at t = 0,
νt = 0), i,j are elements of the auxiliary density matri-
ces and k is an index of density matrix with

∑
nk = νt.

If ζk > εf = 1. × 10−9, all auxiliary matrices’ set of
equations connected to k are allowed to be solved. This
procedure is iterated up to convergence for each integra-
tion step. By keeping εf sufficiently small, one can en-
sure a numerically exact resolution of HEOM equations
while reducing the effective cost of the computation. In-
deed, at each step t, only a limited number of auxiliary
matrices contribute to the reduced density matrix. This
procedure has been checked with several εf parameters.

IV. FIELD-FREE RELAXATION DYNAMICS

We first examine the relaxation process when the sys-
tem is assumed to be prepared in the excited donor
eigenstates. As the radiative coupling is not introduced
in this work, the final state is the acceptor E1. Fig. 7
gives the adiabatic population evolution, when dynam-
ics are initiated in state E3 (panel a), E2 (panel b) or
in their superposition with equal weights (panel c). The
decay of both donor states is complete in about 250fs
and the acceptor yield reaches 90% in about 100fs. The
funneling mechanism from E3 towards E1 through E2
is clearly seen in Fig.7(a) since population in E1 in-
creases when E2 accumulates population and the relax-
ation slows down during the transitory return from E2
to E3. Fig.7(c) gives the population evolution of the su-
perposition. The population relaxation does not differ
from that of a mixture of both states with equal weights.
The difference is less than 1%. In the present case, the
initial electronic coherence decays in about 25 fs and it
does not influence the decay rate towards the acceptor.
However, dynamics is not the same with respect to the
occupation of the donor left and right sites. An initial
superposition |±〉 = (|2〉 ± |3〉) /

√
2 corresponds to an

initial population in one or the other localized diabatic
states |DR〉 or |DL〉. This leads to an early vibrational
displacement towards the right or left minimum followed
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Figure 7. Adiabatic populations as a function of time:
Solid line (magenta) for E0 (zero), dotted line (green) for
E1, dashed line (blue) for E2 and long-dashed line (orange)
for E3. The system is assumed to be prepared in donor
states E3 (panel a) or E2 (panel b) or in the superposition
|±〉 = (|2〉 ± |3〉) /

√
2 (panel c).

by a damped oscillation between the two wells. This
asymmetry is typical of the superposition since prepar-
ing an eigenstate or a mixture with equal weights gives
an equal population in both localized wells and therefore
a simultaneous motion towards both minima.
Insight into the vibrational motion is provided by

the average value of the collective bath modes (Eq.18),
which may be computed in any adiabatic or diabatic
representation. X/D (Eqs.(18,19)) in a given electronic
state corresponds to the mean position of the compo-
nent of a nuclear wave packet evolving on the coupled
potential energy surfaces. One may observe the damped
oscillatory motion. The average goes to zero when the
norm of the component vanishes due to nonadiabatic
transitions. We first focus on the coupling mode of
states E2 and E3 in the delocalized diabatic represen-
tation. Fig. 8 displays the average position in states
DL and DR when the system is prepared either in state
E3 (panel (a)), E2 (panel (b)), or in their superposi-
tion |+〉 = (|2〉+ |3〉) /

√
2 (panel (c)). In the first two

cases (a) and (b), the symmetry leads to a simultane-
ous occupation of each left or right donor monomer. In
the adiabatic representation where the potential energy

Figure 8. Evolution of the average value of the collective
vibrational mode of the coupling bath JD2D3 (Eqs.(18) and
(19)) in the localized diabatic states DL (dashed line (blue))
or DR (long-dashed line (orange)) when the system is as-
sumed to be prepared in the different states. Panel (a) :
initial state E3, panel (b) : initial state E2, panel (c) : ini-
tial superposed state |+〉 = (|2〉+ |3〉) /

√
2. The opposite

sign is obtained for |−〉 = (|2〉 − |3〉) /
√

2

surfaces are symmetrical, the average position is always
zero due to symmetry. The excitation of the superposed
state (panel (c)) clearly induces a transitory occupation
of a single left or right well. The large initial asymmetry
subsists for about 10fs only and it leads to subsequent
damped oscillations between the two wells. Obviously,
in the present example, a damped oscillatory behavior
due to the coherent superposition or a smooth decay of
a uniform population of both wells in a mixture induces
a similar decay towards the acceptor.

To have a similar analysis on the vibrational motion
of the tuning modes, we go back to the adiabatic repre-
sentation and we illustrate the evolution towards equi-
librium when the system is prepared in the upper donor
adiabatic state E3. Fig.9 displays the average position
(Eqs.(18,19)) of the collective vibrational mode of differ-
ent baths during the early dynamics. Panel (a) gives the
evolution of the collective tuning mode of the acceptor
bath JA. The mean position slightly oscillates around
the Franck-Condon geometry in the donor states and
stabilizes at zero when the population vanishes. For
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Figure 9. Evolution of the average value of the collective vi-
brational tuning modes (Eqs.(18) and (19)) in the adiabatic
states when the system is assumed to be prepared in the
donor state E3. Panel (a) : tuning mode of bath JA, panel
(b) : tuning mode of bath JD2 . The color code is the same
as in Fig.7.

this bath one may see the damped oscillations of the
component in E1, which relaxes towards the new equi-
librium position of the acceptor. As illustrated in panel
(b), the bath JD2 mainly affects the two donor states,
which have the same tuning mode. One observes the
first large oscillation towards the equilibrium position
of these states before the collapse due to the transition
towards E1. This tuning mode for E2 and E3 is not
the tuning mode for E1 and the motion in this state re-
sults in a damped oscillation around the Franck-Condon
geometry.
The stability of the dynamics with respect to the spec-

tral density range is verified in the Supporting Informa-
tion where we systematically add one or two regions
corresponding to the secondary maxima around 1700
cm−1 and 1200 cm−1 depicted in Fig. 5 in the accep-
tor or in the donor baths. This confirms that the early
relaxation is mainly driven by the triple bond high fre-
quency stretches, as already observed in semiclassical
simulations104. Consideration of the low frequencies for
the coupling baths is more problematic and will proba-
bly require the inclusion of out-of-plane motions.

V. COHERENT EXCITATION OF THE
DONOR STATES

We now discuss the effect of some coherent excita-
tions towards the donor states from the ground state
with laser pulses to decipher the role of the baths and of

the different polarisations. State E2 is excited through
a transition dipole µy,02 = 3.86 a.u. along Oy axis, and
state E3 through µz,03 = 1.58 a.u. along Oz axis (see
Figs.1 and 4). Our primary concern is not the popula-
tion control of the bright acceptor state that could oth-
erwise be excited directly from the ground state through
µz,03 = 5.47 a.u. We rather put the emphasis on the gen-
eral tendencies and the characteristic timescales of such
field-driven dynamics, and in particular on a prepara-
tion of a superposed state implying the two donors.

The trimer is studied in planar geometry and assumed
to be oriented in the plane Oyz orthogonal to the prop-
agation direction Ox of the electromagnetic waves, as
indicated in Fig.1. The time-dependent system Hamil-
tonian becomes HS(t) = HS + V (t) where the inter-
action with the electromagnetic field ~E(t) is written in
length gauge and within the dipole approximation as:

V (t) = −~µ~E(t) = −µyEy(t)− µzEz(t). (20)

The transition dipole matrices are computed in the adia-
batic representation and transformed to the delocalized
diabatic basis for the dynamical treatment. They are
given in Appendix A. A pulse linearly polarized along
Oy or Oz induces the E0 → E2 or E0 → E3 transi-
tion respectively. However, for strong fields polarized
along Oz one can also expect an interference with the
transfer E0 → E1. Spontaneous radiative decay is not
included in the simulations. We address the preparation
of the donor states E2 or E3 or of their superposition
|±〉 = (|2〉 ± |3〉) /

√
2, in other words, in the left or right

donor site, DL or DR. In the following, we examine dif-
ferent excitation strategies, referring to appropriately
shaped pulsed lasers, with different polarizations.

A. Excitation of a single eigenstate

Simple strategies leading to analytical solutions are
available for the bath-free electronic system for two- or
three-state models. However, these simple schemes are
perturbed by possible interference with detuned tran-
sitions in the complete basis set or by the baths, i.e.,
by the vibronic couplings, which make fluctuate the en-
ergy gaps. These are precisely the effects we intend to
analyze in the following.

A π-pulse is such a possible strategy105,106. The
pulses polarized along Oy or Oz are assumed to have a
sine square envelope and the carrier frequency is in res-
onance with the transition towards the selected donor
state. The electric field amplitude reads:

Ey/z(t) = Ay/z(t) cos
(
ωy/zt+ φy/z

)
(21)

with

Ay/z(t) = Ay/zsin2
(

πt

τmax

)
. (22)

In a two-state case, the transfer is complete if the in-
tegral of the Rabi frequency Ωy/z(t) = µ0,2/3Ay/z(t)/~
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over the pulse duration τmax is equal to π. With the
sine square envelope, the field amplitude is then related
to the pulse duration by Ay/z = 2π/µ0,2/3τmax. How-
ever, the bath obviously modifies all the electronic en-
ergy gaps and induces nonadiabatic transitions so that
the depopulation of the ground state is not complete
anymore. Short pulses and thus large amplitudes are
then expected to be more efficient to prepare a selected
excited state and recover more population in the ac-
ceptor. For instance, a pulse duration of 13fs involves
large maximal amplitudes, Ay = 2.875× 10−3 a.u. and
Az = 5.4739× 10−3 a.u. but for a short time. For a lin-
ear polarization along Oy, the E0 → E2 transition is a
two-state case. Without interaction with the bath, the
π-pulse always populates the E2 state with a yield of
100%. However, for a linear polarization along Oz, the
detuned transition E0 → E1 transition may interfere
and modify the prediction of the two-state model, when
the field amplitude increases. The perturbation remains
very weak for a pulse duration longer than about 50 fs
but is strong for short pulses of about 10 fs leading to a
yield of only 50%.
An interesting alternative is a chirped pulse107,108 for

which the carrier frequency is linearly varying in time:

Ey/z(t) = Ay/z(t) cos
(
ωy/z(t)t+ φy/z

)
. (23)

with ωy/z(t) = ω0,y/z ± αy/zt. The parameters ω0,y/z
and αy/z are chosen so that ωy/z(τmax/2) is the reso-
nance frequency of each transition and the frequency
variation during the pulse is 4% of the central fre-
quency. These parameters have been chosen to remain
rather realistic, in agreement with current chirped laser
pulses109. Since the vibronic motion from the initial
Franck-Condon geometry decreases the energy gap with
the ground state, a decrease of the frequency is expected
to favor the transition by following the vibrational wave
packet110,111. We actually observed that a positive chirp
is effectively less efficient. In every case, the amplitudes
Ay/z are those adopted for the corresponding π-pulses.

Figure 10 gives the final yield in the acceptor obtained
with different τmax for the π and positive or negative
chirps with the two polarizations preparing E2 or E3 re-
spectively. The yield would be 100% if the excited target
state was reached and the ground state was completely
depopulated. A decrease of the yield results solely from
the bath in the case of the E0 → E2 transition, with po-
larization Oy (thick blue line for the π-pulse and long
dashes for the negative chirp and small dashes for the
positive chirp). The yield decreases with τmax in every
case when E2 is prepared. It presents a weak maximum
for E3. The positive chirp is less efficient than a negative
chirp or a π-pulses.

B. Preparation of a superposed state

The preparation of a superposed state has already
been discussed in the two-state case with a π/2-pulse

Figure 10. Comparison of the final yield in the acceptor state
as a function of the pulse duration τmax in the presence of
the interaction with the baths. The system is prepared in
the donor states E2 or E3 by a π-pulse (Eq. 21) (full lines,
thick blue : E2, thin orange : E3), or by a negative chirp
(Eq.(23)) (long blue dashes: E2, orange dots: E3), or by a
positive chirp (small blue dashes : E2, orange long dashes
and dots: E3).

or in the Λ type three-state model using a F-STIRAP
(Fractional-STIRAP)41. However, these situations dif-
fer from our goal since in these applications the initial
state is included in the final superposed state. Our ob-
jective in the V-type system is to depopulate the ini-
tial ground state and create a superposition of the ex-
cited states. The preparation of an excited superposi-
tion from a ground state by one or two few-cycle laser
pulses with CEP (Carrier Envelope Phase) control has
also been discussed with respect to the stationary or
non-stationary character of the initial state38.
In this work, we first generalize the π-pulse scheme to

a π/
√

2-pulse condition to prepare a target superposi-
tion |±〉 = (|2〉 ± |3〉) /

√
2 in the three-state V-type sys-

tem. We show in Appendix B, that applying two equal
duration pulses with the same Rabi frequency (i.e., am-
plitudes in the inverse ratio of the dipole matrix ele-
ments) leads to this objective. The requirement to be
fulfilled is that the integral of the Rabi frequency is equal
to π/

√
2. Both polarizations along Oy and Oz are in-

volved and the perturbations due to interference with
the detuned transition, or due to the bath, still hinder
the complete depletion of the ground state. The choice
of the phase difference φz − φy = 0 or π provides the
combination with plus or minus sign and therefore the
excess of population is located in one or the other well.
The creation of a superposition is illustrated in Fig. 11.
Without the bath, the long pulse of about 50 fs (panel
(a)) is in agreement with the predictions of the three-
state V-model. The population of both excited states
increases simultaneously and reaches 0.5 with complete
depletion of the ground state. For the short pulse of 13fs
(panel (b)), the interference with the acceptor state due
to the polarization along Oz decreases the efficiency of
the transition by leaving 20% in the ground state. How-
ever, the coherent superposition is still formed. As ex-
pected, the bath quickly destroys the superposition for
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Figure 11. Adiabatic populations as a function of time when
the system is excited in a superposition of donor states
|±〉 = (|2〉 ± |3〉) /

√
2 by π/

√
2 pulses. Panel (a): 54fs with-

out bath, panel (b): 54fs with bath, panel (c): 13fs without
bath, panel (d): 13fs with bath. The color code is the same
as in Fig.7.

the long pulse.
We now compare with two slightly different strategies

by focusing only on short excitation since it is already
seen in section IV that coherence and dissymetry effect
have a short lifetime in this molecular system. In the
forthcoming examples, we keep the values of the maxi-
mal amplitudes Ay/z.
First, we compare with an elliptical polarization to

create the superposed state. The field is:

E(t) = Ay(t) cos (ωt)±Az(t) sin (ωt) (24)

with a single frequency taken as the average of the
two frequencies in resonance with the donor states ω =
(ω02 + ω03) /2. In the bath free situation, due to a slight
detuning of both transitions, the π/

√
2-pulse strategy

does not perfectly works. By optimizing the ampli-
tude Ay, which is here multiplied by a factor 1.25, a
superposition is created as shown in panel (a) of Fig.
12. The evolution is then similar to that obtained with
the two linearly polarized pulses without the bath (see
Figs.12(a) and 11(c), or with the bath (see Figs. 12(b)
and 11(d).

Figure 12. Adiabatic populations as a function of time when
the system is excited in a superposition of donor states |±〉 =
(|2〉 ± |3〉) /

√
2 by an elliptically polarized pulse (Eq.(24)) of

13fs. Panel (a): without bath, panel (b): with bath. The
amplitude Ay is multiplied by a factor 1.25 with respect to
the π/

√
2-pulse condition, while Az fulfills this condition.

The color code is the same as in Fig.7.

Figure 13 displays two examples of superposition cre-
ated with a chirped pulse. In the absence of the bath,
the long pulse (54fs) is as efficient as the π/

√
2 strategy,

but the short pulse induces a stronger interference with
the acceptor state. The survival time of the superposi-
tion remains longer for the short pulse.

Finally, we compare the local dissymmetry, which
could be temporarily observed by populating the DR

and DL right or left donor sites. One or the other sides
are reached by imposing phases 0 or π respectively for
the field polarized along the Oz axis. Fig.14 gathers the
different situations examined in this work and presents
the sum of the average values of the collective coupling
mode in each localized diabatic state. One observes that
the effect is more important when one simply assumes
an initial Franck-Condon preparation, in other words an
impulsive pulse. Both π/

√
2 and chirped pulses create

a transitory dissymmetry but there is a delay due to
the finite duration of the pulses and the baths already
interfere during the interaction with the light, thus blur-
ring the effect. As already mentioned, in this molecular
system, the characteristic timescale over which the dis-
symetry holds does not exceed about 10 fs. The lifetime
of the created electronic coherence is thus very short to
induce a measurable effect on the overall population dy-
namics.

VI. CONCLUSION

This work brings two original contributions to
the abundantly explored domain of dendrimer photo-
physics. The first one illustrates how to build a real-
istic model dealing with open quantum system dynam-
ics from ab initio data at a high level of theory for a
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Figure 13. Adiabatic populations as a function of time when
the system is excited in a superposition of donor states |±〉 =
(|2〉 ± |3〉) /

√
2 by pulses with a negative chirp (Eq.(23)).

Panel (a): 54fs without bath, panel (b): 54fs with bath,
panel (c): 13fs without bath, panel (d): 13fs with bath. The
amplitudes Ay and Az are those of the π/

√
2-pulse condition.

The color code is the same as in Fig.7.

Figure 14. Time-evolution of the sum of the average val-
ues of the collective vibrational modes (Eqs.(18) and (19))
in the localized diabatic states DR and DL when the sys-
tem is prepared in a superposition |+〉 = (|2〉+ |3〉) /

√
2 of

the two donor eigenstates E2 and E3. Solid magenta line:
initialization without field (see Fig.7(c)), green dots : two
π/
√

2-pulses of 13 fs duration (see Fig.11(d)), cyan dashes
: pulse with elliptic polarization ensuring the best creation
of the superposition in the bath free case (see Fig.12 (b)),
orange long dashes : pulse with negative chirp (Eq.(23)) (see
Fig.13(d)).

complex system with conical intersections involving sev-
eral tuning and coupling vibrational baths. The second
one concerns the analysis of the coherent preparation
by short laser pulses of excited donor states and most
particularly of their superposition27. Initial conditions
in excited states are usually assumed without explicit
simulations of this preparation with fields.

The model is inspired from a trimer of phenylene
ethynylene for which a complete ab initio investigation
is currently in progress. The molecular system is partic-
ularly interesting because the early relaxation dynamics
obviously involves some skeletal vibrational modes in a
small isolated frequency region related to the triple bond
in-plane vibrations. We are confident that the model is
realistic and well adapted to describe the main early dy-
namical processes. The second peculiarity of the trimer
is the structure of its transition dipole matrix towards
the donor states. More precisely, the dipole moments
towards two particular donor states being orthogonal,
offer the possibility to address them by different polar-
ized waves.

Kassal et al.39,112 have drawn attention on this in-
teresting property in recent reports about a two-site
excitonic system with orthogonal transition dipoles in
which an enhancement of excitation transfer should be
possible by exciting a left or right donor site, i.e., by
preparing a particular superposition of the delocalized
eigenstates. This situation with orthogonal dipoles dif-
fers from the case with alignment of the transition dipole
moments, which is a condition for long-lived quasi sta-
tionary coherence in a V-type system driven by incoher-
ent light32. In order to individually address a localized
DR or DL site, we have proposed two strategies based
on π/

√
2-pulses with linear or elliptic polarization to

prepare the superposition in an electronic V-type sys-
tem. This presents the potentiality to be transposed to
other molecular systems. In the present example, we
have analyzed the effect of a perturbation by a detuned
transition within the frame of an environment provided
by the vibrational tuning and coupling baths. In the
present case, the initial local dissymmetry linked to the
created coherence of the superposition survives for only
about 10-15 fs. The occupation of the selected site is
very short and does not improve the transfer towards
the acceptor when this is compared to the case where a
single delocalized eigenstate is populated or to a mixed
state. Due to the high symmetry of the model and of
the Franck-Condon geometry, the population evolutions
are the same for an equally weighted superposition or
for the corresponding mixed state. This may be veri-
fied by wave packet propagation. A difference appears
only when the two localized sites are not symmetrical,
as assumed in Kassal’s proposition39. In a symmetric
system, the creation of the dissymmetry cannot be de-
tected in the population but probably in time-resolved
anisotropy decay48. The coherence and the dissymme-
try in the behavior of the collective coupling mode could
be modified by varying some parameters. In particular,
the increase or decrease of the coupling between the two
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donor states brings closer or separate the two wells of the
adiabatic lower donor state. Doubling the donor-donor
coupling allows several oscillations during about 50fs in
the localized site populated by the superposed state. On
the contrary, modifying the coupling with the acceptor,
as it is illustrated in the supporting information, does
not modify the timescale of the created dissymmetry.
Finally, the most important system parameter to mod-
ify is the symmetry of the system. Functionalizing one
of the trimer branches might allow to better enhance
the local dissymetry process corresponding to diabatic
localization and finally funnel the exciton transfer. To
reach that goal, the energy gap between acceptor and
donor states should be greater. Such functionalized sys-
tems can be investigated with the very same quantum
chemistry computations proposed in this work.
Both π and chirped pulses have also been discussed for

populating excited states. If we disregard the direct ra-
diative excitation of E1, the acceptor is only populated
thanks to the baths (except for very short excitation,
for instance with a π-pulse in Fig.11 or with a chirped
one in Fig.13). Some chirp strategies prove to be more
favorable, to populate E1, in the presence of the baths.
Even though the model based on ab initio data of

the chosen molecular system is not perfectly adapted to
illustrate the dissymetry effect, we have proposed two
strategies when the donor eigenstates couple to laser
modes with different polarization to prepare the super-
position in an electronic V-type system. This presents
the potentiality to be transposed to other molecular sys-
tems. Functionalizing one of the trimer branches might
allow to better enhance the local dissymmetry process
corresponding to diabatic localization and finally funnel
the exciton transfer. To reach that goal, the energy gap
between acceptor and donor states should be greater.
Such functionalized systems can be investigated with
the very same quantum chemistry computations pro-
posed in this work.
With laser pulses of about 15fs, one observes a delay

in the occupation of the localized sites of about 5fs and
therefore a reduction of the motion amplitude due to
the effect of the baths. If the target is to increase the
lifetime of the asymmetry and thus of the coherence,
other strategies should be tried, for instance, ultra-short
attosecond pulses113,114, short half-cycle pulses38, suc-
cession of kick pulses already used for molecular orienta-
tion and alignment115, light-induced nonadiabaticity116,
Floquet engineering117,118 or exploit the optimal con-
trol tools with environment119 or deap learning new
proposals120.

SUPPLEMENTARY MATERIAL

The supplemental material gives the Cartesian coor-
dinates of the atoms at the ground state equilibrium
geometry computed at the CAM-B3LYP/6-31+G* level
of theory. It presents some complementary examples of
electronic dynamics, in particular the effect of the vari-

ation of the coupling between A and D2. We also verify
the stability of the early dynamics with respect to the
spectral density range for the tuning baths.
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Appendix A: Model parameters

The ab initio matrices of the permanent dipole and
transition dipoles along the axes Oy and Oz (see Fig.1)
and in the adiabatic representation are (in a.u.):

µy =

 0 0 3.8576 0
0 0 0 0

3.8576 0 0 0
0 0 0 0

 (A1)

and

µz =

0.0201 5.0307 0 1.5324
5.0307 0.4325 0 0

0 0 −0.0990 0
1.5324 0 0 −0.2799

 (A2)

The spectral densities parameters are gathered in Ta-
ble I.

Table I. Parameters for spectral density J (ω) (Eq.(12)).
Jk or Jkk′ pj (a.u) Ωj (a.u) Γj (a.u)

JA 3.51× 10−10 1.07542× 10−2 2.7879× 104

JD2 2.93× 10−10 1.07952× 10−2 2.7879× 104

JD2D3 2.11× 10−10 1.07907× 10−2 2.7879× 104

JAD2 6.32× 10−11 1.07907× 10−2 2.7879× 104

We consider that the baths making fluctuate states
D2 and D3 are correlated with JD3 = 0.6JD2 .

Appendix B: Preparation by two π/
√

2-pulses

The two carrier frequencies ω0k with k=2,3 are in
resonance with the energy gaps. They have sine square
envelopes as specified in Eq.(22) and the same duration
τmax:

E(t) = A0x(t) cos(ω02t) +A0y(t) cos(ω03t). (B1)
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The amplitudes are chosen to get the same Rabi fre-
quency Ωy/z(t) = µy/zAy/z(t), i.e., A0y/A0z = µ03/µ02.
In the resonant case, the coupled equations in a three-
state system expressed in the interaction representation
and within the rotating wave approximation depend on
an effective Hamiltonian:

Heff (t) = −~/2

 0 Ω02(t) Ω03(t)
Ω02(t) 0 0
Ω03(t) 0 0

 . (B2)

The eigenvalues are Ω0 = 0 and Ω±(t) =
±~
√

Ω2
02(t) + Ω2

03(t)/2. The eigenvectors are parame-
terized by an angle tan θ(t) = Ω02(t)/Ω03(t):

|Ψ0〉 = − cos θ |2〉+ sin θ |3〉

|Ψ+〉 = 1√
2

(− |0〉+ sin θ |2〉+ cos θ |3〉)

|Ψ−〉 = 1√
2

(|0〉+ sin θ |2〉+ cos θ |3〉) . (B3)

When the Rabi frequencies are equal, Ω02(t) =
Ω03(t) = Ω(t), one have Ω±(t) = ±~

√
2Ω(t)/2 and

sin θ(t) = cos θ(t) = 1/
√

2. By expressing the evolu-
tion operator in terms of the adiabatic eigenvalues and
eigenstates121,122:

U(t, 0) = |Ψ0〉 〈Ψ0|

+ |Ψ−〉 e−
i
~

∫ t

0
Ω−(t′)dt′ 〈Ψ−|

+ |Ψ+〉 e
− i

~

∫ t

0
Ω+(t′)dt′ 〈Ψ+| (B4)

the probabilities Pj0(t) = |〈j|U(t, 0) |0〉|2 are given by:

P00(t) = cos2
(√

2/2
∫ t

0
Ω(t′)dt′

)
(B5)

and

P20(t) = P30(t) = 1
2sin2

(√
2/2

∫ t

0
Ω(t′)dt′

)
. (B6)

One gets P20(τmax) = P30(τmax) = 1/2 when∫ τmax
0 Ω(t′)dt′ = π/

√
2.

This solution may be derived also from the coupled
equations with the Hamiltonian (Eq.(B2)) by imposing
that the two Rabi frequencies are equal :ḃ0(t)

ḃ2(t)
ḃ3(t)

 = i

2

 0 Ω(t) Ω(t)
Ω(t) 0 0
Ω(t) 0 0

b0(t)
b2(t)
b3(t)

 . (B7)

This leads to the equation

b̈0 −
Ω̇
Ω ḃ0 + 1

2Ω2b0 = 0. (B8)

By changing the variable z(t) = 1
2
∫ t
−∞Ω(t′)dt′ as sug-

gested in Ref.105 for the π−pulse, one gets, by denoting
b
′

0 = ∂b0/∂z:

ż2b
′′

0 + z̈b
′

0 −
Ω̇
Ω żb

′

0 + 1
2Ω2b0 = 0. (B9)

After simplification, taking into account ż = Ω/2 and
z̈ = Ω̇/2, one has:

b
′′

0 + 2b0 = 0. (B10)

The general solution is b0(z) = C cos
(√

2z
)

+
D sin

(√
2z
)
. By imposing the initial conditions b0(0) =

C = 1 and b′0(0) =
√

2D = 0, one recovers the expres-
sions of P00(t) and P02(t) (Eqs.( B5) and (B6)).
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