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Impact of iterative reconstructions on image quality and detectability of 

focal liver lesions in low-energy monochromatic images. 

Abstract 

Purpose 

To assess the impact of iterative reconstructions on image quality and detectability of focal liver 

lesions in low-energy monochromatic images from a Fast kV-Switching Dual Energy CT platform 

(KVSCT). 

Methods  

Acquisitions on an image-quality phantom were performed using a KVSCT for three dose levels 

(CTDIvol:12.72/10.76/8.79mGy). Raw data were reconstructed for five energy levels 

(40/50/60/70/80keV) using Filtered Back Projection (FBP) and four levels of ASIR 

(ASIR30/ASIR50/ASIR70/ASIR100). Noise power spectrum (NPS) and task-based transfer function 

(TTF) were measured before computing a Detectability index (d’) to model the detection task of liver 

metastasis (LM) and hepatocellular carcinoma (HCC) as function of keV. 

Results 

From 40 to 70keV, noise-magnitude was reduced on average by -68%±1% with FBP; -61%±3% with 

ASIR50 and -52%±6% with ASIR100. The mean spatial frequency of the NPS decreased when the 

energy level decreased and the iterative level increased. TTF values at 50% decreased as the energy 

level increased and as the percentage of ASIR increased. The detectability of both lesions increased 

with increasing dose level and percentage of ASIR. For the LM, d’ peaked at 70keV for all 

reconstruction types, except for ASIR70 at 12.72mGy and ASIR100, where d' peaked at 50 keV. For 

HCC, d’ peaked at 60keV for FBP and ASIR30 but peaked at 50 keV for ASIR50, ASIR70 and 

ASIR100. 

Conclusions 
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Using percentage of ASIR above 50% at low-energy monochromatic images could limit the increase 

of noise-magnitude, benefit from spatial resolution improvement and hence enhance detectability of 

subtle low contrast focal liver lesions such as HCC.Keywords 

Multidetector Computed tomography; Dual-energy; Iterative reconstruction; Task-based image quality 

assessment. 

Abbreviations 

ASIR: Adaptive Statistical Iterative Reconstruction 

CT: Computed Tomography 

CTDIvol: Volume CT dose index 

d’: Detectability index 

DECT: Dual-energy CT 

ESF: Edge spread function 

FBP: Filtered Back Projection 

HCC: Hepatocellular carcinoma 

IR: Iterative reconstruction 

KVSCT: Fast kV switching CT 

LM: Liver metastasis 

LSF: Line spread function 

NPS: Noise power spectrum 

SECT: Single-energy CT 

TTF: Task-based transfer function 
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Introduction 

Dual-Energy CT (DECT) is increasingly used in clinical practice [1-9]. It is based on the 

attenuation difference of various materials as a function of energy [5, 10]. The principle of DECT 

imaging is to use both low- and high-energy photon spectra to calculate the photoelectric and 

Compton scattering effects separately in order to obtain the attenuation difference of various materials 

as a function of energy [5, 10]. DECT is particularly useful in abdominal indications by generating 

virtual monochromatic images. Many studies have shown the advantage of using 50-60 keV energy 

levels for the detection and characterization of hepatic, pancreatic or renal lesions in abdominal 

imaging [1-4, 6, 11]. Compared to 70 keV simulating 120 kVp Single-Energy CT (SECT) [12], 

images obtained with lower monochromatic levels enhanced the iodine contrast in these lesions. 

Several DECT platforms exist with different acquisition techniques to obtain both low- and high-

energy photon spectra. Among those, Gemstone Spectral Imaging (GSI – GE Healthcare) is a fast kVp 

switching CT (KVSCT) technique that uses one X-ray tube / detector pair and switches from 80 to 140 

kVp in less than 0.5 milliseconds [3, 4, 13]. The tube current (mA) is fixed and the exposure time is 

adjusted to obtain an uniform distribution of the dose between both kVp. 

Several studies on phantoms and patients have evaluated the spectral performance of GSI on 

Filtered Back Projection (FBP) images using classical metrics such as the accuracy of HU values and 

the iodine bias [12, 14-16]. However, Iterative Reconstruction (IR) algorithms such as Adaptive 

Statistical Iterative Reconstruction (ASIR) are now available and used routinely on DECT platforms, 

especially for low-energy monochromatic images to decrease the noise magnitude. ASIR reconstructs 

the CT projections by including the system statistics in the process and using an FBP image as a 

building block for each individual image reconstruction [17]. ASIR incorporates matrix algebra to 

convert the measured value of each pixel to an updated estimate of the pixel value. This pixel value is 

then evaluated and compared to the ideal value that is predicted with noise statistics. Those steps are 

repeated iteratively until the difference between the final estimation and the ideal pixel values is 

inferior to a stopping threshold. The ASIR image is then reconstructed and blended with traditional 

FBP in 10% increments according to user preference. 



 

4 

 

Many studies performed on SECT have shown that specifically-adapted metrics must be used 

when assessing the image quality of IR [18-21]. Hence, a task-based image quality assessment is now 

commonly applied in routine when considering IR. It employs metrics such as the Noise Power 

Spectrum (NPS) to assess both the magnitude and texture of the noise; and the Task-based Transfer 

function (TTF) to evaluate the spatial resolution. A detectability index (d’) can then be computed to 

estimate the radiologist’s ability to perform a clinical task. The detectability index value reflects the 

noise and resolution properties (NPS and TTF outcomes) as they relate to the ability of the system to 

perform a task of interest.  

The purpose of this study was to assess the impact of ASIR on GSI low-energy monochromatic 

images by measuring the noise characteristics, spatial resolution and detectability of small focal liver 

lesions. 
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Materials and methods 

Phantoms used 

A 20-cm-diameter ACR QA phantom (Gammex 464, Middleton, WI) placed inside a body 

ring (diameter of 33 cm and length of 24 cm) (Figure 1.a) was scanned to measure the NPS (Figure 

1.b), the TTF (Figure 1.c) and detectability indexes.  

Acquisition and reconstruction parameters 

Acquisitions were performed on a fast KVSCT system (Revolution HD, GE Healthcare). 

Three GSI presets adapted to abdominal imaging were used, resulting in CTDIvol of 12.72, 10.76 and 

8.79 mGy, respectively. These three dose levels correspond to the 75th, 50th and 25th percentiles of 

the data distribution used to define our national Diagnostic Reference Level for abdomen-pelvic CT 

examination, respectively. Detailed acquisition parameters of each GSI preset are listed in Table 1. 

Raw data were reconstructed using FBP and ASIR at 30, 50, 70 and 100% levels for five 

monochromatic energy levels (40, 50, 60, 70 and 80 keV). Images were reconstructed with the 

standard reconstruction kernel, a slice thickness of 1.25 mm (1.25 mm increment) and a field of view 

of 250 mm.  

Noise power spectrum 

Noise characteristics were measured by NPS, using module 3 of the ACR phantom. For each 

reconstruction, four 128×128 pixels regions of interest (ROIs) within 20 consecutive axial slices of the 

module were used to compute the 2D-NPS. Each ROI was detrended by subtracting a fitted 2D 

second-order paraboloid to remove the low-frequency non-uniformity caused by x-ray scatter and 

beam hardening [22]. The 2D-NPS was then computed as the area-normalized Fourier transform of the 

ROI [23]: 

 NPS�f�, f�	 = ∆�∆�
N�N�

∑ |F�ROI��x, y) − FIT��x, y)�|²����� !
N"#$

, (1)  
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where ∆% and &% denote respectively the pixel size and the number of pixels of a ROI along axis ' 

respectively; (�… � corresponds to the 2D Fourier transform; *+,-�., /) is the ith ROI in the spatial 

domain; (,0-�., /) is the 2D second-order paraboloid fit of the ith ROI and &123 is the total number of 

ROIs. 2D-NPS measurements were radially averaged and binned into 64 frequency bins to provide 

1D-NPS curves. To quantify the changes of magnitude and texture of noise between reconstructions, 

the square root of the Area Under the Curve  and average spatial frequency of the NPS curve (fav) were 

measured respectively. 

Task-based transfer function 

Spatial resolution was assessed using a TTF in module 1 of the ACR phantom from 15 

consecutive axial slices according to the methodology previously reported [24] and [18, 20].  

TTF was computed only on the acrylic insert to be close to the contrast of the two simulated 

lesions for the detectability index computation. A ROI was placed around this, and a circular-edge 

technique was employed to measure the edge spread function (ESF) by plotting the NCT of each pixel 

as a function of the distance to the center of the insert. The line spread function (LSF) was then 

obtained by derivation of the ESF. The TTF was computed from the normalized Fourier 

transformation of the LSF. To quantify the loss/benefit of spatial resolution between reconstructions, 

the spatial frequency at which the TTF reduced to 50% (f50) was measured [25]. 

Detectability 

A detectability index (4′) was computed to assess the detection of liver metastasis and 

hepatocellular carcinoma as function of energy level, iterative level and dose level. Detectability 

combines resolution and noise characteristics of an imaging system with a predefined function, noted 

Wtask, representative of a clinical imaging task to estimate how well a human observer would perform 

the considered task [20].  

This index was based on a Non PreWhitening matched filter with Eye filter and Internal noise 

(NPWEi) model observer as [24, 26]: 
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 4′²6789-

= �∬ ;0(<=>%? �@, A)B<=>%? �@, A)C?�@, A)4@4A�²
∬ &DE�@, A);0(<=>%? �@, A)B<=>%? �@, A)CF�@, A) + ;0(<=>%? �@, A)B<=>%? �@, A)&-�@, A)4@4A , 

(2)  

 

where @ and A are the spatial frequencies, C�@, A) is the eye filter and Ni denotes the internal noise. 

The eye filter employed in this study was identical to the one used by Burgess et al.[25], which was 

modeled on the contrast sensitivity function curve measured by Barten et al. for the human visual 

system [27]: 

 C�I) =  IJ exp�−MI?), (3)  

where I designates the radial spatial frequency such as I² = @² + A². Setting N as 1.3 has been shown 

to yield good agreement with measurements and the value of M is determined such that C�I) peaks at 

four cycles/degree for a viewing distance set to 40 cm [28, 29]; here M ≈ 3. Assuming that the NPS is 

constant, the internal noise was considered uncorrelated and defined as a fraction (0.02 at a viewing 

distance of 100 cm) [25] of the NPS scaled to the observer’s viewing distance Q: 

 &-�@, A) = 0.02 U Q
100W

?
&DE. (4)  

Wtask is a mathematical function representative of a given imaging task in the frequency domain. It is 

given by the Fourier transform of the difference between the signal present ℎ!�., /) and signal absent 

ℎ?�., /) hypotheses [20, 23]: 

 B<=>%�@, A) = (�ℎ!�., /) − ℎ?�., /)� . (5)  

Two task functions were defined to model the detection task of a liver metastasis (LM) and 

hepatocellular carcinoma (HCC). These task functions were assumed to represent a circular signal 

with a diameter of 10 mm. To account for lesion enhancement variation as a function of keV, the 

contrast between each clinical task and the liver parenchyma was defined according to the curves of 

HU variations measured on patients and published by Wang et al. for LM, HCC and the liver 

parenchyma [6] (Table 2). 

For each detection task, d’ values obtained at 40, 50 and 60 keV were compared with those 

obtained for a SECT acquisition at 120 kVp with the same acquisition and reconstruction parameters. 
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Results 

Noise power spectrum 

Noise magnitude 

Overall, for all three GSI presets, noise magnitude decreased as the dose increased (Figure 2). 

Across the monochromatic energy range considered, for the three GSI presets and all reconstructions, 

the noise magnitude decreased from 40 keV to a minimum at 70 keV and then increased at 80 keV. 

From 40 to 70 keV, noise magnitude was reduced on average by -68%±1% with FBP; -61%±3% with 

ASIR50 and -52%±6% with ASIR100. 

At all energy levels, the noise magnitude was inferior with iterative reconstruction and further 

decreased when increasing the percentage of ASIR. The difference in noise reduction using ASIR 

compared to FBP was greatest at 40 keV and decreased as the monochromatic energy increased. The 

noise reductions with the different ASIR levels compared to FBP were similar at all dose levels. On 

average, noise magnitude was reduced by -39%±2% with ASIR50 and -66%±2% with ASIR100 at 40 

keV and -26%±1% and -49%±2% at 70 keV, respectively. 

Noise texture 

The noise texture was impacted by the monochromatic energy level of the reconstructed 

images. Across the energy range considered, for all doses and reconstruction algorithms, the fav of the 

NPS was the greatest and therefore most favorable at 70 keV (Figure 3). The fav of the NPS shifted 

towards higher frequencies from 40 to 70 keV and shifted towards lower frequencies from 70 to 80 

keV. 

Comparing the different reconstructions, the fav of the NPS shifted towards lower frequencies 

when the percentage of ASIR increased. The impact of the proportion of ASIR on noise texture was 

increased at lower energy but equivalent at all dose levels. Compared to FBP, fav of the NPS was 

reduced on average by 28%±2% with ASIR50 and 54%±2% with ASIR100 at 40 keV and 13%±0% 

and 28%±1% at 70 keV, respectively. 
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Task-based transfer function 

The values of TTF at 50% (f50) decreased as the energy level increased and as the percentage 

of ASIR increased (Figure 4). From 40 to 80 keV, f50 decreased on average from 0.61 mm-1 to 0.24 

mm-1 for FBP, from 0.57 mm-1 to 0.22 mm-1 for ASIR50 and from 0.39 mm-1 to 0.22 mm-1 for 

ASIR100. Spatial resolution wasn’t impacted by the dose.  

Detectability index 

Figure 5 depicts the detectability index (d’) obtained for the two simulated lesions as function 

of the energy level for each dose level and percentage of ASIR. Overall, the detectability of the two 

considered lesions increased with increasing dose level and percentage of ASIR.  

For the LM, d’ increased from 40 keV to 70 keV and decreased afterwards for FBP, ASIR30 

and ASIR50. Using ASIR70 for GSI 40 and GSI 22, the detectability also peaked at 70 keV. However, 

for GSI 1, d’ tended to increase with decreasing energy, peaking at 50 keV. Similarly, for ASIR100, 

highest d’ values were found at 50 keV and detectability between 50 and 70 keV increased with the 

dose level (3% for GSI 40 and 23% for GSI 1). 

For the HCC, when using FBP or ASIR30, d’ peaked at 60 keV. For higher iterative 

percentage, from ASIR50 to ASIR100, d’ increased when decreasing the monochromatic energy, 

peaking at 50 keV. The improvement of d’ between 50 and 70 keV decreased when the dose level and 

the percentage of ASIR decreased (for GSI 40: 33% with ASIR100 and 5% with ASIR50; for GSI 1: 

67% with ASIR100 and 22% with ASIR50). 

d’ value variations for both detection tasks from 40 to 60 keV were compared to that a SECT 

acquisition at 120 kVp (Table 3). For the LM, the d’ values were higher than those obtained at 120 

kVp at all dose levels when using ASIR70 and ASIR100 at 60 and 50 keV For GSI 1, resulting in the 

highest dose level, the detectability of the LM was also increased for ASIR30 and ASIR50 at 60 keV 

and for ASIR50 at 50 keV.. For the HCC, the d’ values obtained at 60 keV were higher than for a 

SECT acquisition at 120 kVp for reconstruction types and dose levels. At 50 keV, the d’ values were 

higher only for ASIR50 for GSI 22 and GSI 1, for ASIR70 and ASIR100 at all dose levels. 
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Discussion 

This study confirmed on GSI DECT images the same behavior of ASIR previously found on 

SECT images [18, 20]. For a given energy level, the use of ASIR reduced the noise magnitude but 

decreased the spatial resolution and changed the image texture by increasing its smoothness. In 

addition, ASIR improved the detectability of the two simulated lesions and favored the use of low keV 

monochromatic images compared to the conventional SECT polychromatic 120 kVp images. 

In the present study, a task-based image quality assessment was used to evaluate the image 

quality of spectral images using IR algorithms. Indeed, the use of these IR algorithms requires to 

assess the image quality more completely than with conventional metrics such as noise, SNR or CNR. 

These metrics are used to simply evaluate the image quality but do not take into account changes in 

noise texture or the dependence of spatial resolution on dose and contrast on IR images. For this, new 

metrics such as the NPS, the TTF or the detectability index are used. Many studies have shown the 

interest and the superiority of these new metrics in the analysis of IR images and in the optimization 

process compared to classical metrics [18, 20, 21, 30-34]. 

Our NPS results showed that noise magnitude increased from 70 to 40 keV and the average 

frequency of the fav of the NPS shifted towards lower frequencies. Similar results have been found by 

Zang et al. with the KVSCT technique but with a CTDIvol close to 26 mGy [7]. These results are 

linked to the decrease in the average beam energy when the keV decreases, which reduces the 

penetration power of the X-ray beam and therefore increases the image noise. For a given energy 

level, the variations in NPS outcomes as a function of the dose and the percentage of ASIR are similar 

to those published on SECTs [18-20]. Noise magnitude decreased as the dose and percentage of ASIR 

increased. Conversely, fav of the NPS decreased (i.e. noise texture got smoother) with increasing 

percentage of ASIR, but was only weakly influenced by the dose.  

Our TTF outcomes show that the highest values of f50 were found at 40 keV and then spatial 

resolution decreased to lower values as energy increased. This variation of the TTF as a function of the 

keV is due to the enhancement on the border of the acrylic insert, particularly at lowest energy levels. 

This enhancement introduces an overshoot on the ESF curves, which improves the TTF and therefore 
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the spatial resolution. As for the NPS, for a given energy level, the TTF variations as a function of the 

dose and the percentage of ASIR are similar to those published on SECTs [18, 20, 32]. Values of f50 

were not changed by the dose level, but decreased as the percentage of ASIR increased. 

The outcomes of detectability index showed that d’ values increased when the dose and the 

percentage of ASIR increased, regardless of the energy level used. Similar results were found with 

ASIR on SECTs for one energy level [18, 20]. The values of d’ varied in different ways with keV as 

function of the percentage of ASIR and the simulated lesion. For the LM, the detectability was highest 

at 70 keV and did not increase with monochromatic images of lower energy reconstructed with FBP 

and ASIR up to 50%. Conversely, for ASIR100, the detectability decreased when lowering the energy 

and peaked at 50 keV. For HCC, the use of ASIR improved detectability when reducing the energy to 

60 keV for FBP and ASIR30 and to 50 keV for higher ASIR percentages. These differences between 

lesions were directly related to the NPS and TTF outcomes and the contrast variations of the simulated 

lesions. With a lower contrast, the detectability of the HCC was lower than that of LM and more 

dependent on noise and spatial resolution variations. The reduction of the noise magnitude associated 

with mid-to-high percentages of ASIR benefited from the increase of lesion contrast and spatial 

resolution (TTF) at low keV to improve detection. However, because the contrast between the 

metastasis and the surrounding liver parenchyma is already sufficient at 120 kVp, the detectability of 

such lesions can be further improved at low-energy only when using the highest percentage of ASIR. 

The results found in this study showed that it was possible and beneficial, to use ASIR to 

reduce image noise and promote the use of low keV for the detection of focal liver lesions in portal 

venous phase. Indeed, many clinical studies have shown the advantage of using energy levels between 

50 and 60 keV for the detection and characterization of hepatic, pancreatic or renal lesions in 

abdominal imaging [1-4, 6, 11]. Using these energy levels, the photoelectric effect was then 

predominant, enhancing the lesion with iodine contrast. However, the results of this present study 

showed that image texture became smoother when lowering the energy of virtual monochromatic 

images.  
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This study has several limitations. Firstly, despite increasing the phantom attenuation to more 

closely resemble that of a patient, it was made of relatively uniform and geometric structures, which 

do not perfectly represent human anatomy. Furthermore, the use of this phantom does not take into 

account the movements of organs or tissues of the upper abdomen due to breathing during CT 

acquisitions. These movements could blur images and hence affect the detectability of small liver 

lesions. Further patients study should be conducted to confirm the results found on this phantom study 

Moreover, acquisitions were performed for a single standard  reconstruction kernel, for specific GSI 

presets and on a single CT scan. Only two types of lesions were simulated with a fixed size. The 

evaluation of other acquisition/reconstruction parameters combinations and lesion characteristics 

representative of all vascular phases would be necessary to fully assess the performance of ASIR in 

low-energy monochromatic images. Finally, a new GSI platform (GSI Xtream) has been developed on 

more recent CT systems from the same CT vendor. It differs in the acquisition and detection process 

and enables the newest generation of iterative reconstruction (ASIR-V) which has demonstrated better 

performance in SECT [18, 35, 36]. A future study should be conducted to assess the changes in the 

metrics studied between the two platforms.  

Conclusion 

Our phantom-based study demonstrated that using percentage of ASIR above 50% at low-

energy monochromatic images could limit the increase of the noise magnitude and benefit from spatial 

resolution improvement. Hence, it could enhance detectability of subtle low contrast focal liver 

lesions, such as HCC.  
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Figure legends 

Figure 1. a Phantom used in the study. b Regions of interest (ROIs) used for the noise power 

spectrum (NPS) assessment. c ROIs used to compute the task-based transfer function (TTF) with the 

acrylic insert. 

Figure 2. Values of noise magnitude corresponding to the square root of the Area Under the Curve of 

the noise power spectrum (NPS) obtained on low-energy monochromatic images as function of GSI 

presets and percentage of ASIR and average NPS spatial frequency according to energy levels for each 

dual-energy CT platform. 

Figure 3. Values of average noise power spectrum spatial frequency (fav) obtained on low-energy 

monochromatic images as function of GSI presets and percentage of ASIR 

Figure 4. Values of task-based transfer function at 50% (f50) obtained on low-energy monochromatic 

images as function of GSI presets and percentage of ASIR 

Figure 5. Detectability index (d’) obtained on low-energy monochromatic images as function of GSI 

presets and percentage of ASIR for the liver metastasis (a) and the hepatocellular carcinoma (HCC) 

(b). 
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Table 1. Acquisition parameters used for each GSI preset 

Preset GSI GSI 40 GSI 22 GSI 1 

kVp 80/140 80/140 80/140 

mA 360 375 630 

Rotation time (s) 0.6 0.7 0.5 

Pitch factor 1.375 1.375 1.375 

Beam collimation (mm) 64 x 0.625 64 x 0.625 64 x 0.625 

CTDIvol (mGy) 8.79 10.76 12.72 
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Table 2. Contrast between the hypodense liver metastasis or the hypodense hepatocellular carcinoma 

and surrounding the liver parenchyma as function of keV used to compute the detectability index. 

These values were extrapolated to the curves of HU variations measured on patients and published by 

Wang et al. [6]. 

Energy 

(keV) 

Liver 

metastasis 

Hepatocellular 

carcinoma  

40 -112 -39  

50 -78 -30 

60 -61 -23 

70 -50 -17 

80 -43 -16 

Footnote: The lesions being hypodense, their HU values were lower than the surrounding liver 

parenchyma and hence the resulting contrast is negative. 

 

  



 

21 

 

Table 3. Percentage variation of the detectability index (d’) obtained with three lowest energy levels 

compared to those obtained with a conventional single energy CT acquisition at 120 kVp for all dose 

levels, reconstruction types and for both detection tasks. 

Lesions GSI Energy (keV) FBP ASIR30 ASIR50 ASIR 70 ASIR100 

Liver  

metastasis 

40 

40 -39% -37% -31% -26% -20% 

50 -22% -14% -5% 5% 18% 

60 -3% -2% 2% 4% 6% 

22 

40 -39% -35% -29% -22% -6% 

50 -21% -13% -4% 6% 33% 

60 -3% -3% 0% 1% 14% 

1 

40 -40% -28% -21% -15% -2% 

50 -22% -4% 5% 15% 35% 

60 -5% 5% 7% 9% 13% 

Hepatocellular  

carcinoma 

40 

40 -40% -36% -29% -23% -11% 

50 -14% -4% 9% 22% 48% 

60 3% 5% 9% 12% 20% 

22 

40 -39% -33% -26% -16% 3% 

50 -13% -1% 11% 28% 65% 

60 3% 5% 9% 14% 26% 

1 

40 -40% -28% -18% -8% 13% 

50 -13% 6% 21% 39% 77% 

60 1% 10% 15% 20% 30% 

 
















