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Machine Learning-Assisted Evaluation of Circulating DNA
Quantitative Analysis for Cancer Screening

Rita Tanos, Guillaume Tosato, Amaelle Otandault, Zahra Al Amir Dache,
Laurence Pique Lasorsa, Geoffroy Tousch, Safia El Messaoudi, Romain Meddeb,
Mona Diab Assaf, Marc Ychou, Stanislas Du Manoir, Denis Pezet, Johan Gagnière,
Pierre-Emmanuel Colombo, William Jacot, Eric Assénat, Marie Dupuy, Antoine Adenis,
Thibault Mazard, Caroline Mollevi, José María Sayagués, Jacques Colinge,
and Alain R. Thierry*

While the utility of circulating cell-free DNA (cfDNA) in cancer screening and early detection have recently been inves-
tigated by testing genetic and epigenetic alterations, here, an original approach by examining cfDNA quantitative and
structural features is developed. First, the potential of cfDNA quantitative and structural parameters is independently
demonstrated in cell culture, murine, and human plasma models. Subsequently, these variables are evaluated in a large
retrospective cohort of 289 healthy individuals and 983 patients with various cancer types; after age resampling, this
evaluation is done independently and the variables are combined using a machine learning approach. Implementation of
a decision tree prediction model for the detection and classification of healthy and cancer patients shows unprecedented
performance for 0, I, and II colorectal cancer stages (specificity, 0.89 and sensitivity, 0.72). Consequently, the method-
ological proof of concept of using both quantitative and structural biomarkers, and classification with a machine learning
method are highlighted, as an efficient strategy for cancer screening. It is foreseen that the classification rate may even
be improved by the addition of such biomarkers to fragmentomics, methylation, or the detection of genetic alterations.
The optimization of such a multianalyte strategy with this machine learning method is therefore warranted.
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1. Introduction

Cancer biomarkers exist to monitor the response to treatment for
a specific cancer or group of cancers. They are limited, however,
with regard to sensitivity and specificity in early detection or mass
screening.[1]

Machine learning methods were applied for the development
of predictive models,[2] such as artificial neural networks (ANNs),
Bayesian networks, support vector machines (SVMs), and deci-
sion trees (DTs). Different strategies have been described for the
detection of different cancer types,[3] e.g., by identifying a subset
of three single nucleotide polymorphisms as key discriminators
between control and breast cancer patients.[4]

The use of cfDNA[5] was recently proposed by our team, among
others,[6,7] for cancer screening and early detection. Existing ap-
proaches include the detection of the viral DNA of the Epstein-
Barr virus in asymptomatic nasopharyngeal cancer cases,[8] to the
analysis of the methylome and cfDNA methylation patterns in
different cancer types.[9,10] cfDNA levels[11] and the detection of
genetic alterations[12,13] have also been considered for their diag-
nostic potential. Other studies have associated mutation detec-
tion and protein markers.[6] Despite intensive research, however,
the reliability of cfDNA-based tests have been impacted by issues
regarding their sensitivity and specificity, especially for the early
stages of cancer.

Our team (among others) has worked for more than a decade
on the quantitative and structural characteristics of cfDNA,[14–18]

as a means of discriminating cancer and healthy subjects. We
have identified various quantitative and structural biomarker
candidates, and have independently evaluated their performance
in three experimental models. We subsequently proposed a
machine learning method based on a predictive DT model in a
large cohort of healthy and cancer individuals. We believe that
cfDNA-based attempts at developing a pan-cancer test should be
multianalyte, using a combination of qualitative (i.e., presence
or absence of genetic or epigenetic alterations) and quantita-
tive parameters. In order to rigorously evaluate the predictive
potential of different combinations of quantitative parameters,
therefore, we are convinced that building our machine learning
method’s proof of concept is warranted.

2. Results

2.1. Determination of cfDNA Quantitative Parameters
in a Xenografted Mouse Model

To determine the potential of different quantitative cfDNA
parameters, we used a murine model of nude mice xenografted
with SW620 colorectal cancer human cells which we had es-
tablished previously.[15] This model allowed us to differentiate
human tumor cfDNA from normal murine cfDNA in the same
mouse. Using Q-PCR (quantitative polymerase chain reaction),
we quantified nuclear and mitochondrial cfDNA of human and
murine origin in 14 xenografted mice. We found a significant
increase of total nuclear DNA concentrations (ng mL−1) (which
we called Ref A 67), in tumor over normal cfDNA. The receiver
operating characteristics (ROC) curve analysis showed an AUC
(area under curve) of 0.91 (0.8125–1.014, 95% CI; confidence

interval) (Figure 1a,b) (Sensitivity Se = 0.79; Specificity Sp =
0.86). The results were also significant when analyzing mito-
chondrial DNA concentrations (Ref M 67) (Figure 1c,d) and the
mitochondrial to nuclear ratio (MNR) (Figure 1e,f). These two
parameters decreased significantly and featured higher AUCs of
0.99 (0.963–1.016, 95% CI) and 0.96 (0.9047–1.024, 95% CI), with
respective sensitivities of 0.93 and 1, and specificities of 1 and
0.86. This suggests the high potential that mitochondrial DNA
concentration and the MNR have for distinguishing between
cfDNA of normal and of tumor origin.

2.2. Evaluation of the Ref A 67 and the MNR in Cell Culture
Supernatants

The Ref A 67 and the MNR were then tested in the supernatant
of cells in culture, to assess their ability to discriminate between
normal and cancer cells. The supernatant of 14 cancer and 5 nor-
mal cell lines were tested (Table S1, Supporting Information).
The Ref A 67 showed a significant increase, with a high AUC of
0.97 (0.901–1.042, 95% CI) (Se= 0.86, Sp= 1) (Figure 1g,h), while
the MNR showed a potential of 100% in discriminating between
normal and cancer cells in this series of 19 cell lines (Figure 1i,j).

2.3. Evaluation in an Exploratory Cohort of Healthy and Cancer
Subjects

Next, the quantitative parameters were validated in the plasma
of a small independent exploratory cohort of 76 healthy individ-
uals and 50 stage IV colorectal cancer (CRC) patients (Table 1).
The Ref A 67 showed a significant increase in CRC patients with
an AUC of 0.81 (0.73–0.89, 95% CI) (Figure S1a,b, Supporting
Information). As for the Ref M 67, a significant decrease was ob-
served in cancer patients with an AUC of 0.89 (0.83–0.95, 95% CI)
(Figure S1c,d, Supporting Information). The MNR then showed
a decrease, with the highest AUC (AUC = 0.98; 0.96–0.99, 95%
CI) between healthy subjects and stage IV CRC patients (Figure
S1e,f, Supporting Information).

2.4. Validation of the cfDNA Parameters in a Large Retrospective
Cohort

The discriminative value of these cfDNA quantitative parame-
ters was then evaluated in a large retrospective cohort of 289
healthy individuals and 983 patients with CRC (N = 791), breast
(N = 169), or other types of cancers (hepatocellular, pancreatic,
ovarian, and lymphoma) (N = 23) (Table 1). The total nuclear
cfDNA concentration showed a significant increase, with a p-
value of < 0.0001 between healthy individuals and the different
cancer types (CRC, breast and others) (Figure S2a, Supporting
Information). This was the case between the healthy group and
CRC patients, regardless of their stage (stage 0/I/II, stage III,
stage IV) (Figure S2b, Supporting Information). An AUC of 0.83
(0.81–0.86, 95% CI) was observed for the CRC group compared
to healthy subjects (Figure S3a, Supporting Information), with a
high value of 0.79 (0.76–0.83, 95% CI) for early stages 0, I, and
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Table 1. Patients’ characteristics.

Gender Age

Diagnosis group Nb Male Female NA Mean Median

Exploratory cohort Colorectal cancer Stage IV 50 25 (50%) 25 (50%) – 65 65

Healthy 76 48 (63%) 28 (37%) – 51 53

Confirmation cohort Colorectal cancer All stages 791 452 (57%) 331 (42%) 8 (1%) 70 70

Stages 0/I/II 425 252 (59.3%) 172 (40.5%) 1 (0.2%) 72 72

Stage III 180 108 (60%) 72 (40%) – 70 71

Stage IV 186 92 (49%) 87 (47%) 7 (4%) 65 66

Breast cancer Stages II or III 169 – 169 (100%) – 49 48

Other cancers HCC 18 18 (100%) – – 62 64

Pancreatic 3 2 (67%) 1 (33%) – 78 78

Ovarian 1 – 1 (100%) – 44 44

Lymphoma 1 1 (100%) – – 69 69

Total 23 21 (91%) 2 (9%) – 63 66

All cancers 983 473 (48.1%) 502 (51.1%) 8 (0.8%) 66 67

Healthy 289 179 (62%) 110 (38%) – 43 46

a, Nb: number; b, NA: not available; c, HCC: Hepatocellular carcinoma.

II (Figure S3b, Supporting Information). The Ref A 67 showed
an AUC of 0.7 (0.74–0.82, 95% CI) for the discrimination of the
breast cancer group from the healthy group (Figure S3c, Support-
ing Information).

We then assessed the potential of the MNR. This parameter
decreased significantly between healthy patients and all cancer
types (Figure S2c, Supporting Information). It showed a good
discriminative potential for CRC patients (AUC = 0.78; 0.75–
0.82, 95% CI) and breast cancer patients (AUC = 0.82; 0.78–0.86,
95% CI) (Figure S4a,c, Supporting Information). A significant
decrease and a high discriminative potential were also observed
between the healthy group and early stage CRC patients (AUC
= 0.79; 0.76–0.82, 95% CI) (Figures S2d and S4b, Supporting
Information).

2.5. Cohort Age Adjustment and cfDNA Parameters’ Individual
Performance for CRC Detection

With the aim of maximizing discriminative power, we wanted to
assess the potential of a machine learning approach, by evalu-
ating the combination of different cfDNA variables. We first fo-
cused on the CRC group compared to healthy subjects. A bias was
observed in the age distribution of the studied cohort (Figure 2a);
the fraction of patients < 30 years old was constituted of healthy
individuals only, and the fraction of patients>70 years old of CRC

patients only. No gender bias was observed (Figure S5, Support-
ing Information). For this reason, subjects between 30 and 70
years old were regrouped in five categories: ≤ 45 years old, 45–
50, 51–55, 56–60, and > 60 years old (Figure 2b). The tendency
of all parameters was then appreciated on a heatmap (Figure 2c)
clustering patients (by columns) and parameters (by rows). The
importance score of each parameter was then extracted, after the
application of recursive partitioning on 500 different resampling
(Figure 2d).

The descriptive statistics of the CRC cohort are presented in
Table S2 in the Supporting Information. The different quantita-
tive cfDNA parameters were assessed: Ref A 67 (copy nb mL−1) or
total nuclear cfDNA concentration, Ref M 67 (copy nb mL−1) or
total mitochondrial cfDNA concentration, and the MNR. The age-
adjusted estimation of the AUC for the Ref A 67 (copy nb mL−1)
parameter decreased slightly between healthy and CRC patients
compared to the nonadjusted value: 0.79 (0.73–0.84, 95% CI) for
the age-adjusted AUC with 0.81 Sp (0.72–0.89, 95% CI) and 0.70
Se (0.62–0.78, 95% CI) versus 0.83 AUC (0.81–0.86, 95% CI), 0.82
Sp (0.77–0.87, 95% CI), and 0.74 Se (0.69–0.78, 95% CI) for the
nonadjusted cohort (Figure 3a and Table 2). The MNR showed an
AUC of 0.75 (0.69–0.81, 95% CI) after age resampling with 0.71
Sp (0.61–0.781, 95% CI) and 0.7 Se (0.62–0.78, 95% CI) (Figure 3b
and Table 2). The total mitochondrial cfDNA concentration (Ref
M 67 ng mL−1 plasma) did not have a very high discriminative
potential, with a relatively low AUC value after resampling of

Figure 1. Efficiency of total nuclear and mitochondrial cfDNA amount in discriminating tumor and normal DNA in a xenografted mouse model, and
tumor and normal cells in culture. a) Total nuclear cfDNA amount (Ref A 67; ng mL−1 of plasma) of normal (murine) or tumor (human) origin in
14 SW620 xenografted nude mice. b) ROC curve of tumor versus nontumor Ref A 67 (ng mL−1) in mouse model. c) Relative quantification of mitochon-
drial cfDNA (Ref M 67) of normal or tumor origin in mouse model. d) ROC curve of tumor versus nontumor Ref M 67 in mouse model. e) Mitochondrial
to nuclear cfDNA ratio (MNR) as determined in normal and tumor cfDNA in mouse model. f) ROC curve from normal and tumor MNR in mouse model.
g) Boxplot of the total nuclear cfDNA concentration (Ref A 67 copy number mL−1 of supernatant) for normal and cancer cell lines. h) ROC curve for
Ref A 67 between normal and cancer cell lines. i) Boxplot of the MNR for normal and cancer cell lines. j) ROC curve for MNR between normal and cancer
cells. The nonparametric Wilcoxon–Mann–Whitney test was used to compare the different parameters. The boxplot whiskers represent the minimal and
maximal value; p: p-value, probability value; ROC: receiver operating characteristics; AUC: area under curve; MNR: mitochondrial to nuclear ratio.
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Figure 2. Representation of patients used for bootstrapping and age correction. a) Age distribution among all patients (white) and the two sub-
populations: patients with colorectal cancer (orange) and healthy patients (blue). b) Categories based on patients’ age, in order to select one patient
with colorectal cancer with one healthy patient. c) Ascending hierarchical clustering, performed on all patients used for resampling and all parameters
available. d) Boxplot of each parameter importance score obtained after 500 recursive partitioning regression trees and resampling.

0.61 (0.53–0.67, 95% CI); Sp = 0.60 (0.45–0.69, 95% CI), Se =
0.62 (0.52–0.78, 95% CI) (Figure S6, Supporting Information and
Table 2).

Two other cfDNA parameters were studied in the plasma of
the majority of the tested cohort, which were to be added to the
quantitative variables. These parameters correspond to the nu-
clear cfDNA concentration of the fragments with a size ≥ 145
base pairs (bp) (Ref A 145 (copy nb mL−1 plasma)) or ≥ 320 bp
(Ref A 320 (copy nb mL−1 plasma)). They provide information re-
garding the size distribution of cfDNA in the healthy and the can-
cer group. The Ref A 145 was significantly higher in CRC patients
than in healthy individuals, with a high discriminative value (age-
adjusted AUC = 0.79 (0.74–0.87, 95% CI); Sp = 0.79 (0.67–0.91,
95% CI), Se = 0.72 (0.62–0.84, 95% CI) (Figure S7, Supporting
Information and Table 2). The AUC of the Ref A 320 was shown

to be lower than that of the Ref A 145: AUC = 0.63 (0.53–0.73,
95% CI) with 0.76 Sp (0.67–0.92, 95% CI) and 0.63 Se (0.53–0.73,
95% CI) (Figure S8, Supporting Information and Table 2).

Regarding early stage (0-I-II) CRC patients versus healthy indi-
viduals, when taken individually these parameters showed lower
sensitivity, specificity, and AUC, with much larger confidence in-
tervals than those obtained when analyzing CRC patients of all
stages (Table 2).

2.6. DT Construction and Prediction Value for CRC Detection

We implemented a DT prediction model by including our five
different cfDNA quantitative and structural parameters, obtained
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Figure 3. Distribution and ROC curves of a) the Ref A 67 (copy nb mL−1) and b) MNR parameters among all patients (white), CRC patients (orange),
and healthy individuals (blue), before and after age adjustment.
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Table 2. Parameters estimation for each variable in the CRC cohort.

Threshold Specificity Sensitivity AUC

Parameter Estimation IC95% Estimation IC95% Estimation IC95% Estimation IC95%

CRC versus healthy

Ref A 67 3484 [3076–4857] 0.82 [0.77–0.87] 0.74 [0.69–0.78] 0.83 [0.81–0.86]

Ref A 145 1491 [1121–1639] 0.79 [0.70–0.86] 0.74 [0.69–0.82] 0.83 [0.80–0.86]

Ref A 320 425 [286–509] 0.77 [0.69–0.83] 0.67 [0.62–0.74] 0.76 [0.73–0.79]

MNR 12 103 [6945–15 360] 0.73 [0.65–0.82] 0.70 [0.61–0.76] 0.78 [0.75–0.82]

Ref M 67 4.41E+07 [2.78E+07–6.04E+07] 0.60 [0.46–0.69] 0.57 [0.49–0.69] 0.59 [0.56–0.63]

Patients paired by age category CRC versus healthy

Ref A 67 3726 [2921–4511] 0.806 [0.72–0.89] 0.7 [0.62–0.78] 0.786 [0.73–0.84]

Ref A 145 16 113 [1267–1874] 0.793 [0.67–0.91] 0.715 [0.62–0.84] 0.794 [0.74–0.87]

Ref A 320 617 [100–899] 0.763 [0.67–0.92] 0.631 [0.53–0.73] 0.631 [0.53–0.73]

MNR 12 189 [4295–16 225] 0.713 [0.61–0.81] 0.707 [0.59–0.82] 0.748 [0.69–0.81]

Ref M 67 4.78E+07 [3.54E+07–6.87E+07] 0.602 [0.45–0.69] 0.618 [0.52–0.78] 0.606 [0.53–0.67]

Patients paired by age category early stages (0-I-II) versus healthy

Ref A 67 3415 [1800–4321] 0.747 [0.57–0.91] 0.64 [0.49–0.80] 0.694 [0.58–0.82]

Ref A 145 1542 [1012–1874] 0.753 [0.57–0.92] 0.672 [0.53–0.84] 0.725 [0.62–0.85]

Ref A 320 502 [72–706] 0.719 [0.54–0.90] 0.651 [0.49–0.82] 0.689 [0.58–0.81]

MNR 15 022 [6960–21 942] 0.676 [0.51–0.84] 0.664 [0.51–0.84] 0.668 [0.55–0.78]

Ref M 67 4.71E+07 [1.16E+07–7.13E+07] 0.639 [0.43–0.81] 0.576 [0.40–0.74] 0.571 [0.45–0.68]

a, Parameters estimation for each variable based on minimum distance between corresponding ROC curve and the point (Se = 1, 1-Sp = 0) with the use of an empirical
bootstrap to build their respective confidence interval. These estimations were obtained before and after age adjustment with a focus on early stages (0-I-II) colorectal cancer
patients. b, Se = sensitivity; c, Sp = specificity; d, AUC = area under curve.

from Q-PCR analysis after age resampling, to examine whether
their association would further increase the discriminative power
(Figure 4a and Table S3, Supporting Information). 527 CRC and
healthy patients were used for the construction of the tree, and
showed 0.87 specificity (0.79–0.92, 95% CI) and 0.76 sensitivity
(0.67–0.85, 95% CI) (Table 3). Performance was assessed by the
cross-validation of 2000 rounds of resampling of a total of 424
patients not used for the tree construction. This validation esti-
mated a specificity of 0.89 (0.84–0.94, 95% CI) and a sensitivity
of 0.77 (0.73–0.80, 95% CI) for CRC and healthy patients’ classi-
fication (Table 3). Our DT prediction model provides improved
specificity and sensitivity, compared to discrimination made us-
ing only individual parameters (Table 2). When applied to early
stages CRC, a relatively high Sp and Se of 0.87 (0.83–0.91, 95%
CI) and 0.72 (0.67–0.76, 95% CI), respectively, were observed (Ta-
ble 3), improving the quality and robustness of early stages CRC
detection.

2.7. Breast Cancer and Other Cancer Types

The distribution and discriminatory power of each of our five
cfDNA parameters were tested in breast cancer patients (N =
169) of stages II and III versus healthy individuals. A two-sample
nonparametric one-sided Mann–Whitney test with normal
approximation (n > 50) was adopted for continuous variables
comparison of the populations studied (Figure S9 and Table S4,
Supporting Information). The MNR and the Ref A 67 showed the
highest discriminatory power, with an AUC of 0.81 (0.76–0.87,

Table 3. Estimation of tree performances over several groups of patients,
obtained from the colorectal and breast cancer cohorts.

Specificity Sensitivity

Estimation 95% CI Estimation 95% CI

CRC decision tree

Training set—Patients used for tree building N = 527 (CRC + healthy)

0.87 [0.79–0.92] 0.76 [0.67–0.85]

Testing set—Patients not used for tree building N = 424 (CRC + healthy)

0.89 [0.84–0.94] 0.77 [0.73–0.80]

CRC stages 0/I/II versus healthy

0.87 [0.83–0.91] 0.72 [0.67–0.76]

Breast cancer patients N = 278 versus healthy

0.90 [0.84–0.95] 0.58 [0.50–0.65]

Breast cancer decision tree

Training set—Patients used for tree building N = 236 (breast cancer + healthy)

0.72 [0.65–0.84] 0.86 [0.80–0.91]

Testing set—Patients not used for tree building N = 46 (breast cancer + healthy)

0.80 [0.64–0.95] 0.95 [0.85–1]

CRC patients N = 951 versus healthy

0.66 [0.62–0.72] 0.85 [0.82–0.87]

a, The confidence intervals were obtained using the empirical bootstrap method.

95% CI) and 0.77 (0.71–0.83, 95% CI), a sensitivity of 0.76
(0.66–0.85, 95% CI) and 0.75 (0.66–0.86, 95% CI) and a speci-
ficity of 0.75 (0.66–0.85, 95% CI) and 0.77 (0.61–0.81, 95% CI),

Adv. Sci. 2020, 7, 2000486 2000486 (7 of 14) © 2020 INSERM, Paris. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

Figure 4. Global DTs obtained from the colorectal cancer and breast cancer cohorts. a) Global DT obtained from the colorectal cancer cohort by iterating
a recursive partitioning regression tree after resampling patients at each step. Proportions of patients with colorectal cancer (orange) and healthy patients
(gray) are represented at each node. b) Distribution histogram of the ages of patients (white), in breast cancer patients (purple) and in healthy patients
(gray). c) Global DT obtained from the breast cancer cohort by iterating a recursive partitioning regression tree after resampling patients at each step.
Proportions of patients with breast cancer (purple) and healthy patients (gray) are represented at each node. Each final leaf in each tree contains the
name of the most representative population inside, with their relative proportions. The proportion of patients that ended in each leaf is presented below
the corresponding leaf. One node features the parameter of interest, the condition on the parameter (below), and the direction of the answer (YES/NO).
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respectively (Figure S10 and Table S5, Supporting Information).
The other three parameters were less effective in discriminating
breast cancer patients from healthy individuals (Ref M 67: AUC
= 0.72 (0.66–0.88, 95% CI), Se = 0.67 (0.50–0.77, 95% CI), Sp =
0.71 (0.59–0.85, 95% CI); Ref A 145: AUC = 0.69 (0.62–0.76, 95%
CI), Se = 0.61 (0.44–0.76, 95% CI), Sp = 0.71 (0.53–0.89, 95% CI);
Ref A 320: AUC = 0.60 (0.53–0.70, 95% CI), Se = 0.55 (0.34–0.65,
95% CI), Sp = 0.66 (0.52–0.86, 95% CI)) (Figure S10 and Table
S5, Supporting Information). In the DT construction, we adopted
the same strategy for the breast cancer cohort (Figure 4b,c and
Table S3, Supporting Information) as we had for the CRC cohort.
The MNR parameter appeared at the first node, followed by the
Ref A 67 and the Ref A 145. We used 236 patients in total for
the construction of the tree, with a specificity of 0.72 (0.65–0.84,
95% CI) and a sensitivity of 0.86 (0.80–0.91, 95% CI) (Table 3).
Cross-validation was done using the 46 breast cancer and healthy
patients not used for the tree construction, and showed a high
specificity of 0.80 (0.64–0.95, 95% CI) and a high sensitivity of
0.95 (0.85–1, 95% CI) (Table 3). The predictive tree established
on one cohort was then used to predict the results of the other. By
applying the breast cancer cohort on the CRC DT, we observed a
high specificity of 0.90 (0.84–0.95, 95% CI) but a poor sensitivity
of 0.58 (0.50–0.65, 95% CI). The breast cancer DT showed a
low specificity of 0.66 (0.62–0.72, 95% CI) but a high sensitivity
of 0.85 (0.82–0.87, 95% CI) for the prediction of CRC patients
(Table 3). We hypothesized that the algorithm may be cancer-type
specific. The ability of these two DTs for the classification of 23
patients with different types of cancers (pancreatic, hepatocellu-
lar, lymphoma, and ovarian) was assessed. 21 and 22 individuals
out of the 23 were classified as cancer patients by the CRC and
the breast prediction tree, respectively (Table S6, Supporting
Information).

3. Conclusion

Despite significant statistical differences in cfDNA concentra-
tion, the large overlap in cancer and healthy subjects[17,19] severely
undermines its potential as a tool for cancer screening. Alterna-
tively, another strategy which has been considered is the detec-
tion of genetic alterations from cfDNA.[6,12,20,21] Indeed, several
attempts at this have recently been implemented. However, the
false positive rates observed preclude its application, mainly due
to i) the detection of white blood cell-derived mutations among
cfDNA variants (notably with age), and ii) the very low circulat-
ing tumor DNA (ctDNA) rate in a significant number of cancer
patient plasma samples. We hypothesized that quantitative and
structural indicators from total cfDNA not completely and di-
rectly associated with malignancy may compensate the eventual
deficiencies of qualitative indicators, such as genetic or epige-
netic alterations, especially with respect to sensitivity. We believe
that the combination of both types of measures in a multianalyte
approach might meet the stringent levels of reliability required
for the evaluation of a screening test or an early detection test.
This study aims to provide the proof of concept of using cfDNA
quantitative biomarkers for such tests, and proposes a machine
learning method developed specifically to that end.

Drawing on our extensive work on the origins and structures
of cfDNA, in particular from cancer patients, we have identified

two quantitative cfDNA candidate parameters which can be used
to discriminate healthy individuals and cancer patients: the Ref A
67 and the MNR, determined by specific Q-PCR, targeting both
nuclear and mitochondrial sequences. In this study, we first vali-
dated these two parameters independently, in three experimental
models: cell culture media, tumor xenografted mice, and plasma
from an exploratory cohort of healthy and cancer subjects.

Both our own team’s work[16,17] and that of others[22–24] have
shown that cfDNA fragmentation[25] and size profiles differ in
healthy and cancer patients, especially in the fractions below
60 bp, between 60 and 145 bp, between 145 and 300 bp, and
higher than 300 bp.[16,26,27] For this reason, we added two param-
eters to our study: the Ref A 145 (nuclear cfDNA concentration of
the fragments with a size ≥ 145 base pairs) and the Ref A 320 (≥
320 bp), which provide information regarding cfDNA size distri-
bution. The identification of these parameters originated from
previous reports showing that the examination of size profile
and fragmentomics[25] may help in discriminating healthy and
cancer individuals.[16,26,27] Subsequently, these variables were all
evaluated in a large retrospective cohort of 289 healthy individu-
als and 983 patients with CRC (N = 791), breast (N = 169), and
other types of cancers (hepatocellular, pancreatic, ovarian, and
lymphoma) (N = 23). This evaluation was done using a machine
learning approach, with the variables considered both indepen-
dently and in combination, after age resampling. Total nuclear
cfDNA concentration increases in cancer patients compared to
healthy individuals, but mitochondrial cfDNA levels are reduced.
Although the cellular level of mitochondria in cancer patients is
now under intense scrutiny, there remain significant discrepan-
cies in the literature. Furthermore, little is known about the pro-
duction or release of mitochondrial cfDNA into the blood stream.
This makes it difficult currently to provide a definitive explana-
tion for this observation. The Ref A 67 and the MNR showed the
two highest AUCs, and therefore the highest potential for dis-
criminating cancer patients and healthy individuals.

The implementation of a DT prediction model for the detec-
tion and classification of healthy and cancer patients showed very
encouraging results even for early CRC stages (specificity of 0.89
(0.84–0.94; 95% CI) and sensitivity of 0.72 (0.67–0.76; 95% CI)).
It also showed an increase in discrimination potential. These re-
sults emphasize the importance of integrating both the nuclear
and mitochondrial origin of cfDNA. Each of the tested parame-
ters was selected as a discriminating variable at a node of the DT
model, except for the Ref A 320. Although a difference can be
discerned in the Ref A 320 levels of colorectal cancer and healthy
controls, e.g., in Figure S8 in the Supporting Information, Ref A
320 has shown itself to be correlated with Ref A 67 and Ref A 145.
As a result, the tree construction algorithm never selected Ref A
320 as the most discriminant variable for any node.

Among the many techniques available for automatic classifica-
tion, we opted for a robust, high-performance method which is
capable of revealing nonlinear relationships between variables,
and whose output would be exploited in a clinical setting in the
future. For these reasons, we decided to use recursive regression
trees,[28] which compared favorably to other machine learning
techniques, such as ANNs or SVM for mortality prediction in
gliomas.[29] However, the conventional deployment of regression
trees with cross-validation (2/3 as learning set, 1/3 as test set),
such as in the discrimination between head and neck squamous

Adv. Sci. 2020, 7, 2000486 2000486 (9 of 14) © 2020 INSERM, Paris. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

cell carcinoma patients and healthy adults,[30] produced unstable
results from our data. We obtained excessively large confidence
intervals for sensitivity and specificity (Table S7 and Figure S11,
Supporting Information), and the resulting DTs were highly de-
pendent on the training set. The main reason for this was the
age bias in our data, which contained an overrepresentation of
cancer and healthy cases among older and younger patients, re-
spectively. In addition, we noted that age was related to other
parameters in a nonlinear way (Table S8, Supporting Informa-
tion). We therefore divided patients into age classes, in such a
way that an equivalent number of cancer and healthy cases could
be drawn from each class before being pooled for training and
testing. To obtain a robust DT, we applied an iterative procedure
where trees were first generated by multiple resampling of the
data (with correction for age bias), and the variable to be used
as the most recurrent top node was fixed. A second round of re-
sampling yielded a new series of trees, with the latter variable at
the top; that variable was then used to select the most recurrent
next level nodes, etc. At every step, i.e., for every node/variable,
the threshold was estimated with a confidence interval which
was built using a bootstrap method. This type of iteration has
been applied in other domains, e.g., to infer suicide attempts[31]

or to detect drug usage.[32] The final tree was tested on the pa-
tients not used for training. The iterative construction procedure
resulted in more stable trees with narrower confidence inter-
vals than direct regression (Table S7 and Figure S11, Supporting
Information).

The selected machine learning method appears well suited to
classifying and testing combinations of quantitative biomarkers.
This would also encourage its use for combinations of both quan-
titative and qualitative biomarkers. The selected parameters eval-
uated in this study showed a significant screening power, but by
themselves were not sufficiently efficient and robust to distin-
guish early stage patients. Their combination in a DT for the CRC
or the breast cancer cohort revealed better results, and showed an
improvement over the CancerSeek test[6] and over the analysis of
the cfDNA methylation profile.[9]

Breast cancer patients were poorly predicted by the DT based
on the CRC cohort (Se = 0.58), despite the high specificity found
(0.90). This high specificity could be explained by the fact that
the same healthy patients were included for the construction of
both algorithms. Alternatively, the use of the breast cancer tree to
classify colorectal cancer patients was quite efficient (Se = 0.85),
although the drop in specificity (0.66) was notable. This could
be due to the fact that the breast cancer cohort only concerns
women, and that a difference probably exists between healthy
males and females regarding the cfDNA measured parameters,
especially for mitochondrial cfDNA.[33] This may also explain the
importance of the MNR, which appears in the first node of the
breast cancer DT, for the classification of breast cancer patients.
The algorithm was then applied on a small cohort of patients with
other cancer types (N = 23), and showed a good level of predic-
tion given the sensitivity. This seems to indicate that these trees
are not cancer-type specific.

The reliability of biomarkers based on the total cfDNA quantifi-
cation is also known to vary in conditions and pathologies other
than cancer, such as autoimmune diseases,[34] sepsis,[35] myocar-
dial infraction,[36] exercise,[37] and others. It is therefore crucial
to investigate the impact on this approach of confounding con-

ditions (such as inflammation). Although the quantitative multi-
analyte test performance presented in this work is noteworthy as
a blood test, our study presents critical limitations in the context
of a universal cancer screening. The studied cohort is retrospec-
tive and composed of healthy controls devoid of asymptomatic
patients. While it does appear to confirm diagnosis at the pre-
screening stage, for it to be properly called “screening” the test
ought to have been performed on an asymptomatic population
ostensibly in good health, with positive results being confirmed
by other testing techniques.

Protein markers have approximately a > 10% sensitivity and a
> 99% specificity, and have the capacity to indicate one or more
cancer types.[7] However, their diagnostic use does not currently
meet the requirements for multicancer tests used at the popu-
lation scale. The primary requirements for this are test perfor-
mance (high sensitivity without sacrifice of specificity;> 90% and
> 99%, respectively), reproducibility, and robustness. In addition,
cancer screening test validation should ultimately be subject to
large-scale population studies of people with no known diagno-
sis, with the inclusion of potentially confounding conditions in
order to ensure specificity, and using multiple study sites to en-
sure demographic diversity. We believe that a blood test based
on cfDNA analysis might have the capacity to achieve this goal,
especially given its minimal invasiveness, high compliance, af-
fordability, and scalability.

Other requirements for such a test would be generalizability
to population, and the capacity to identify anatomic location, in
order to direct appropriate diagnostic follow up. The biomarkers
tested in this study cannot determine the tumor tissue of origin,
which is one of the reported potentials of CancerSeek and methy-
lation analysis.[6,9] For this reason, the addition of other param-
eters might improve the predictive capacity of the model. The
detection of genetic alterations such as mutations, aneuploidy,
or translocations/re-arrangements would a priori seem to be the
best screening parameters. However, these qualitative indicators
showed some limitations as screening biomarkers. This is be-
cause current methods implying cfDNA analysis, such as conven-
tional next generation sequencing (NGS), show some restrictions
in obtaining useful data, especially in the plasma of patients with
a small tumor.[6] In addition, white blood cell-derived mutations
among cfDNA variants (especially with age) might lead to false
positive results.[38] For these reasons, their use was precluded as
a single strategy.[39]

A cfDNA-based cancer screening test would be multianalyte.
Although the performance of the combination of quantitative and
structural parameters as reported here is not of a sufficient stan-
dard, such a combination may reveal synergic power, especially
with respect to early cancer stage detection, when associated with
cfDNA parameters from different origins, such as genetic alter-
ations. An examination of genome-wide methylation profiling
was found to be specific to cancer and very informative as to can-
cer type, while also showing good sensitivity and specificity.[9]

This could therefore be a candidate partner of choice. Analysis
of the cfDNA fragment size profile might be another powerful
candidate, as we have previously demonstrated,[26,27] and as has
been recently confirmed.[40,41] The synergistic value of using our
approach in combination with another cancer detection method
should therefore be assessed, in order to confirm its additive
advantage.
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This study validated the concept of using a DT based on cfDNA
quantitative and structural parameters to distinguish cancer pa-
tients from healthy individuals. The ultimate goal would be to use
machine learning to combine these parameters with others, such
as methylation profile and fragmentomics, in order to achieve a
better selectivity between different cancer types in the context of
pan-cancer testing. Evaluation of the combination of the quantita-
tive biomarkers tested here with methylation and fragmentomics
analysis is ongoing, using the method we have proposed.

4. Experimental Section
Study Design: This study presented an observational analysis of dif-

ferent quantitative and structural cfDNA parameters, calculated using an
ultrasensitive Q-PCR method to quantify various wild type nuclear and mi-
tochondrial cfDNA sequences in the plasma of cancer patients and healthy
individuals. To establish its proof of concept, this study also proposed
a machine learning method based on a predictive DT model combining
these different parameters for early cancer detection.

The plasma of a small exploratory cohort of 76 healthy subjects and
50 CRC patients (stage IV) was first analyzed. Then 1272 plasma samples
(Table 1) of 289 healthy individuals and 983 other patients with CRC (N =
791), breast (N = 169), or other cancer types (hepatocellular, pancreatic,
ovarian, and lymphoma) (N = 23) were analyzed over a range of stages.
Early stages CRC patients (stages 0, I, and II) represented more than 50%
of the total CRC cohort tested.

The capacity of each of the tested cfDNA parameters was evaluated to
discriminate between healthy individuals and cancer patients, especially
for early stages cancers. Then a DT was developed, which combined five
different parameters, and established its sensitivity and specificity, in order
to assess its potential for early cancer detection.

Patient and Sample Characteristics: Blood samples from healthy in-
dividuals were obtained from healthy donors, from the Etablissement
Français du Sang (E.F.S), which is Montpellier’s blood transfusion cen-
ter (Convention EFS-PM N° 21PLER2015-0013). These samples were an-
alyzed (virology, serology, immunology, blood numeration) and ruled out
whenever any abnormality was detected.

Plasma samples from patients with colorectal cancer were provided by
the hospital centers of Clermont-Ferrand and Limoges in France, and of
Salamanca in Spain, as well as from the “BCB colon” cohort from Montpel-
lier in France (ICM Biobank (Biobank number BB-0033-00059)) and from
the KPLEX I and KPLEX II (ClinicalTrials.gov Identifier: NCT02784639)
studies previously conducted by the team. Plasma samples from indi-
viduals with breast cancer were obtained from the “IDEA Sein” study
(ClinicalTrials.gov Identifier: NCT03255486) provided by the ICM Biobank
(Biobank number BB-0033-00059) of Montpellier. Hepatocellular carci-
noma plasma samples were provided by Eric Assenat and Marie Dupuy
from Montpellier, and three pancreatic adenocarcinomas, one lymphoma,
and one ovarian cancer samples were obtained from the hospital center
of Salamanca in Spain. All plasma samples from cancer patients were ob-
tained at the time of diagnosis, or at least 45 days after treatment interrup-
tion to eliminate any bias due to the liberation of cfDNA by the treatment.
Written informed consent was obtained from all participants prior to the
onset of the study. The characteristics of all patients included are listed in
Table 1.

Cell Lines: The supernatant of 14 tumor cell lines in culture was ana-
lyzed (Table S1, Supporting Information): three colorectal cancer (SW620,
SW480, and CaCo2), five prostate cancer (VCAP, 22rV1, DU145, LNCAP,
and PC3), three breast cancer (SUM159, MDA 468, and R2sh P53), two
lymphoma (RAMOS and BJAB), and one lung cancer cell line (H1975). Five
normal cell lines of various origins were also analyzed: human foreskin fi-
broblasts (HFF), skin fibroblasts (CDC45K), mammary fibroblasts (R2),
lung fibroblasts (IMR-90 A), and hepatocytes (LWFD). Genomic DNA of
the DIFI human colorectal cancer cell line grown in RPMI 1640 and supple-
mented with 10% fetal calf serum and ATB (antibiotics) was used as a stan-

dard for human nuclear DNA quantification. Most cell lines were obtained
from the American type culture collection (Manassas, VA, USA). The R2sh
P53 cell line was obtained from the Charles Theillet/Claude Sardet team.
Cell culture medium supernatant was collected when cells were at 70%
confluence, and underwent two centrifugations: the first at 1200 g, and the
second at 16 000 g, at 4 °C for 10 min each. DNA was then extracted us-
ing the QIAamp DNA Blood Mini Kit (Qiagen, Courtaboeuf, France) from
200 µL of the supernatant and eluted in a final volume of 80 µL.

Mice Models: An experimental xenografted mouse model developed
previously was used,[15] to allow to discriminate within the same mouse
the nontumor-derived cfDNA (of murine origin) and tumor-derived cfDNA
(of human origin). Mice were purchased from Harlan (Gannat, France)
and maintained in a specific pathogen-free facility in an accredited es-
tablishment (N° B-34-172-27; Institut de Recherche en Cancérologie de
Montpellier-CRLC Val d’Aurelle-Paul Lamarque, Montpellier, France). Pe-
ripheral blood was drawn into ethylenediaminetetraacetic acid (EDTA) pre-
coated tubes of 14 female athymic nude mice (6–8 weeks old) xenografted
with 1 × 106 SW620 human cancer cells 30 days post-injection, and was
used for plasma preparation within 1 h. Tumors were also collected and
weighed (200–600 g). All experiments complied with the current national
and institutional regulations and ethical guidelines, and were performed
by an accredited person (Dr. B. ROBERT, N°34-156). Research projects
involving the use of animals were authorized by the French Ministry of
Research.

Plasma Isolation and cfDNA Extraction: Human and murine
blood samples were handled according to an established prean-
alytical guideline.[33,42] Blood was drawn in EDTA tubes and cen-
trifuged at 1200 g at 4 °C in a Heraeus Multifuge LR centrifuge for
10 min. The supernatants were isolated and centrifuged at 16 000 g
at 4 °C for 10 min. Subsequently, the plasma was either immediately
handled for DNA extraction or stored at −80 °C. cfDNA was extracted
from 200 µL of plasma and eluted in a final volume of 80 µL using the
QIAamp DNA Blood Mini Kit (Qiagen, Courtaboeuf, France) according to
the published protocol.[43] DNA samples were kept at −20 °C until use.
Freeze–thaw cycles were avoided in order to reduce the phenomenon of
cfDNA fragmentation. Hemolyzed blood samples were discarded and
not included in the study. Hemolysis did not affect cfDNA, but was an
indicator of mishandling or improper storage of sample tubes which had
led to blood cell deterioration.

DNA Quantification by Q-PCR and Copy Number Calculation: Q-PCR
amplifications were carried out at least in triplicate, in a 25 µL reaction
volume on a CFX96 touch Real-Time PCR detection system (Bio-Rad) in-
strument, using the CFX manager software. Each PCR reaction mixture
was composed of 12.5 µL of SsoAdvanced Universal SYBR Green Super-
mix (Bio-Rad, Marnes-la-Coquette, France), 2.5 µL of each amplification
primer (3 pmol µL−1), 2.5 µL of Nuclease free water (Qiagen), and 5 µL of
DNA extract. Thermal cycling was consisted of three repeated steps: a 3
min Hot-start polymerase activation–denaturation step at 95 °C, followed
by 40 repeated cycles at 90 °C for 10 s, then at 60 °C for 30 s. Melting
curves were obtained by increasing the temperature from 55 to 105 °C,
with a plate reading every 0.2 °C. The concentration was calculated from
the Cq detected by Q-PCR. A triplicate of nontemplate negative control
was included in each run for each pair of primers.

Human DNA Quantification: For human nuclear DNA, serial dilutions
of genomic DNA from the DIFI human colorectal cancer cells were used as
a standard for nuclear DNA quantification. The initial concentration and
purity were assessed by optic density at 𝜆 = 260, 230, and 280 nm, with
an Eppendorf BioPhotometer D30.

A control standard curve using a 3382 bp human ORF (open reading
frame) vector with a 786 bp MT-CO3 insert obtained from ABM good (ac-
cession no.YP_003024032) of known concentration was used for human
mitochondrial DNA quantification in cell lines and human samples. Initial
vector solution concentration and purity were determined by measuring
the optic density at 𝜆 = 260, 230, and 280 nm, with an Eppendorf BioPho-
tometer D30.

For each human plasma sample and cell line supernatant extract, a
nuclear wild type KRAS amplicon and a MT-CO3 mitochondrial ampli-
con of 67 bp each were separately quantified. A wild type BRAF nuclear
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amplicon of 105 bp was also targeted for several human plasma sam-
ples in order to validate the total nuclear DNA quantification, which was
calculated by targeting the KRAS 67 bp amplicon. KRAS, BRAF, and MT-
CO3 were monogenic, and the respective targeted sequences were known
to be wild type, and not affected by any mutation or genetic alteration.
KRAS sequence-based detection was always controlled by BRAF sequence-
based detection, and both quantifications had previously shown a very
high correlation.[17,33] Targeting these specific genes confirmed whether
the cfDNA fraction quantified was derived from the nucleus or the mito-
chondria. It was previously demonstrated that quantification of both mi-
tochondrial and nuclear Q-PCR systems was highly specific, down to 1
copy/reaction (Ref A 67 and Ref M 67).[33] Amplicons of 145 and 320 bp
of the KRAS gene were also targeted for cfDNA size profile analysis. Based
on the team’s work,[16,17] as well the work of others,[22–24] it was shown
that cfDNA was present in the blood mainly in the form of mononucleo-
somes, highlighting a chromatin organization and that fragmentation[25]

and size profiles were differed in healthy and cancer patients, especially in
the fractions between 60 and 145 bp, between 145 and 300 bp, and higher
than 300 bp.[16,26,27] As mononucleosomes had a size of 145–168 bp, the
following fractions based on the Q-PCR systems were quantified: the total
amount of cfDNA or Ref A 67 (amplicon of 67 bp); the amount of frag-
ments over the mononucleosome size or Ref A 145 (amplicon of 145 bp);
and the amount of cfDNA over the mononucleosome size or Ref A 320
(320 bp). The Q-PCR primers system used to amplify DNA sequences of
various sizes was previously validated by the team, and demonstrated high
specificity.[17,38] It should also be noted that this system was recently com-
pared to whole-genome sequencing of single-stranded DNA library prepa-
ration, and that both analytical approaches showed similar results regard-
ing the size distribution of cfDNA in cancer patients. That similarity could
be taken as a confirmation of the system’s accuracy.[18]

Nuclear cfDNA copy number calculation: Nuclear cfDNA copy number
per milliliter of plasma/supernatant was determined with the following
calculation

Qnuclear =
( c

3.3

)
∗

(
Velution

Vplasma∕supernatant

)
(1)

Qnuclear is the NcfDNA copy number per milliliter; c is the NcfDNA con-
centration (pg µL−1), determined by Q-PCR targeting the nuclear KRAS
gene sequence; 3.3 pg is the human haploid genome mass; Velution is
the volume of cfDNA extract (µL); and Vplasma/supernatant is the volume of
plasma or supernatant used for the extraction (mL).

Mitochondrial cfDNA copy number calculation: Mitochondrial cfDNA
copy number per milliliter of plasma/supernatant was determined with
the following calculation

Qmito =
(

c ∗ Na

2 ∗ MW ∗ Lvector

)
∗

(
Velution

Vplasma∕supernatant

)
(2)

Qmito is the McfDNA copy number per milliliter of plasma/supernatant;
c is the McfDNA mass concentration (g µL−1) determined by Q-PCR tar-
geting the mitochondrial MT-CO3 gene; Na is Avogadro’s number (6.02
× 1023 molecules per mole); Lvector is the plasmid length (nucleotides);
MW is the molecular weight of one nucleotide (g mol−1); Velution is the
elution volume of cfDNA extract (µL); and Vplasma is the volume of plasma
or supernatant used for the extraction (mL).

Murine DNA Quantification: For murine samples, murine nuclear
DNA was quantified using as reference a serial dilution of genomic murine
DNA (Promega). Human nuclear DNA of tumor origin was quantified us-
ing a standard curve of genomic DNA of the human Difi cell line. The rela-
tive amount of mitochondrial DNA to nuclear DNA was determined using
the equation 2−dCq, where dCq= (Cq mito – Cq nuc). Human cfDNA (of tu-
mor origin) and murine cfDNA (of nontumor origin) were quantified in the
same murine plasma samples using adequate primer sets for each ampli-
fication, and expressed in nanograms per milliliter of plasma (ng mL−1).
Human KRAS nuclear amplicon and MT-CO3 mitochondrial amplicon of
67 bp each were quantified to assess the human cfDNA of tumor origin.

On the other hand, murine cfDNA of nontumor origin was analyzed by tar-
geting a KRAS murine nuclear amplicon of 63 bp and a MT-CO1 murine
mitochondrial amplicon of 114 bp.

Oligonucleotides: Oligonucleotides were synthesized and purified by
high performance liquid chromatography by Integrated DNA Technolo-
gies (Coralville, Iowa). Quality control of the oligonucleotides was per-
formed by matrix-assisted laser desorption/ionization-time of flight. They
were tested for specificity and sensitivity before use. The sequences and
characteristics of the selected primers are presented in Table S9 in the
Supporting Information. The primer selection and validation were done
in accordance with stringent internal guidelines, requiring the use of four
distinct software programs developed by the team.

Ref A, Ref M, and MNR Calculation—Human Samples and Cell Culture
Supernatant Extracts: The mean nuclear DNA copy nb mL−1 value when
targeting the KRAS wild type 67 bp amplicon was named Ref A 67 (copy nb
mL−1 of plasma or supernatant), and corresponded to the total concentra-
tion of nuclear cfDNA. Plasma samples with a Ref A 67 below 450 copies
mL−1 were not included in the analyzed cohorts. The Ref A 145 (copy nb
mL−1) and the Ref A 320 (copy nb mL−1) were corresponded to the con-
centrations of cfDNA fragments > 145 bp and > 320 bp, respectively, and
were calculated by targeting the KRAS 145 bp or 320 bp amplicon. An ad-
ditional level of quality control was also used. This consisted of calculating
the cfDNA integrity index for each sample DII (DII = Ref A 320/Ref A 67).
When the DII was high (> 0.4), the sample was excluded from the analy-
sis, as this suggested that the fraction of long cfDNA fragments was high,
and that the sample could be contaminated by genomic DNA derived from
white blood cells.

The mean mitochondrial DNA copy nb mL−1 value when targeting the
MT-CO3 wild type 67 bp amplicon was named Ref M 67 (copy nb mL−1 of
plasma or supernatant), and corresponded to the total concentration of
mitochondrial cfDNA.

The MNR was expressed as the ratio of the mean of mitochondrial DNA
copy nb mL−1 of plasma (or supernatant) value to the Ref A 67 (copy nb
mL−1 of plasma (or supernatant)) value of the experiments (MNR = Ref
M 67/Ref A 67).

Ref A, Ref M, and MNR Calculation—Murine Samples: For murine sam-
ples, human tumor MNR was expressed as the ratio of human mitochon-
drial cfDNA relative concentration to human nuclear cfDNA concentration
(ng mL−1). Murine nontumor MNR was expressed as the ratio of murine
mitochondrial cfDNA relative concentration to murine nuclear cfDNA con-
centration (ng mL−1).

Statistical Analysis: Murine, cell culture supernatant, and exploratory co-
hort samples: Data were expressed as mean ± SD. The nonparametric
Wilcoxon–Mann–Whitney test was used for the comparison of medians for
murine, cell culture supernatant, and exploratory cohort data. ROC curve
was presented and the AUC was calculated. A probability of less than 0.05
was considered to be statistically significant; *p ≤ 0.05, **p ≤ 0.01, ***p
≤ 0.001, ****p ≤ 0.0001.

Human plasma samples: The analysis was conducted using R 3.6.0 and
the stats package.

Colorectal cancer cohort: Patients with missing values on parameters
used for tree regression were removed. This concerned 131 patients
(129 CRC patients and 2 healthy patients). A two-sample nonparametric
one-sided Mann–Whitney test with normal approximation (n > 50) was
adopted for continuous variables comparisons among the populations
studied, rather than a two-sample proportion test with continuity correc-
tion for binary variables comparison (Table S2, Supporting Information).

Breast cancer cohort: Patients with missing values on parameters used
for tree regression were removed. This concerned two patients diag-
nosed with breast cancer. A two-sample nonparametric one-sided Mann–
Whitney test with normal approximation (n > 50) was adopted for con-
tinuous variables comparison among the populations studied (Table S4,
Supporting Information).

Age adjustment: Due to different age distribution among healthy and
colorectal cancer patients (Figure 2a), age was split into five different
categories in order to pair patients: less than 45 years old, 45 to 50
years old, 51 to 55 years old, 56 to 60 years old, and more than 60
years old (Figure 2b). This division into categories reduced the number
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of patients included to 527. Moreover, interaction effect between age and
some measured parameters was observed using logistic modeling of the
colorectal cancer status probability (Table S8, Supporting Information),
which confirmed the benefit of removing this bias. This age distribution
between breast cancer patients and healthy individuals was equally ac-
centuated, and resulted in the overrepresentation of young healthy pa-
tients. Accordingly, a window of patients between 25 and 65 years was
created.

Univariate preliminary analysis: For each measured parameter, ROC
curves were produced using the pROC package. An optimal threshold
corresponding to the best prediction was estimated by minimizing the
distance between the ROC curve and the ideal point (Se = 1, 1-Sp =
0). Sensitivity, specificity, AUC, and the optimal threshold were estimated
with their respective confidence intervals using an empirical bootstrap
method, whose use for quantitative diagnostic tests had already been
demonstrated.[44] First, 2000 resampling were applied with replacement
and the punctual values were estimated for each step. The difference be-
tween each step estimation and the targeted value were then calculated,
with the 2.5th and 97.5th distance percentiles being obtained and added
to the targeted punctual value. Second, the same method of 2000 re-
sampling was applied to 155 CRC and 155 healthy patients among the
previously established age categories. Third, the same method was ap-
plied to patients from the breast cancer cohort, with 2000 resampling of
236 patients.

Machine learning: The cancer prediction algorithm was conducted by
applying recursive partitioning for regression trees[45] using the rpart pack-
age. First, a global view of all the measured parameters was generated, in
order to appreciate the tendency of each one, by ascending hierarchical
clustering. The resulting heatmap was built using the ComplexHeatmap
package (Figure 2c), clustering patients (by columns), and parameters (by
rows), based on the Euclidian distance and using the ward.D2 agglomera-
tion method. The values were reduced among the samples following log10-
transformation, in order to appreciate the variability in a convenient color
scale. Second, recursive partitioning (using the rpart package) was applied
to 500 different resampling, in order to extract the importance score of
each variable introduced in the procedure (Figure 2d). This allowed to ex-
clude some variables created by certain parameter combinations (data not
shown). It also allowed to check the absence of bias regarding the Age and
Gender variables.

To build the global tree, an iterative procedure was performed on each
node to retain the most frequently selected variable; this was done us-
ing the resampling method described in the Univariate Preliminary Anal-
ysis section above. The results were confirmed by applying a homogene-
ity Χ2-test to the frequency table. Also, a proportion test with continuity
correction was applied to the two most frequent variables, in order to dis-
criminate them. Once the selection was confirmed, the parameter of in-
terest at the node was fixed, and its conditional threshold was estimated
using the median calculated on 2000 resamplings with replacement. The
confidence interval was obtained using the distribution of the difference
from the mean. The median was kept as the condition applied at the node
according to empirical bootstrap methods (Table S3, Supporting Informa-
tion). Branch expansion was stopped as soon as i) no specific parameter
could split the patients further, ii) less than 10% of patients in the learn-
ing set would remain upon further splitting, and iii) no parameter was
selected according to an X² test. This procedure was iterated with a dis-
play in order to obtain fully visual trees for both the colorectal (Figure 4a)
and breast cancer cohorts (Figure 4b,c). Each node contained the vari-
able with its estimated threshold and the proportions of cancer/healthy
patients present at this step. Each leaf contained the inferred status (can-
cer or healthy), the proportion of cancer/healthy patients, and the global
proportion of patients ending at this leaf. For each DT obtained, its per-
formance was assessed by comparing the predictive values given by the
tree and the real diagnosis. Sensitivity and specificity were punctually es-
timated, then the 95% confidence interval was subsequently obtained by
empirical bootstrap, as described in the Univariate Preliminary Analysis sec-
tion above. Different groups of patients were used. First, the parameters
were calculated with the patients used for tree building (N = 527 for CRC,
N = 236 for breast cancer). Second, the tree prediction was applied to the

remaining patients not included in the tree building. These predictions
were also applied to early (0-I-II) CRC patients (Table 3).

Other cancer types: These parameters were measured using 23 patients
with different cancer types. The results were predicted using both the
breast cancer cohort tree and the CRC cohort tree (Table S6, Supporting
Information).

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
The authors thank Philippe Blache, Corinne Prevostel, Cormac Mc Carthy,
and Sandrine Bonizec. The authors also thank Laura Muinelo Romay (San-
tiago de Compostela), Phil Crosbie, and Caroline Dive (University Hospital
of South Manchester) for helpful discussions on pre-analytical conditions
and patient cohorts. The authors thank Dr. Joe Bryant from the Institute
of Human Virology, Baltimore, USA. This work was funded by the “SIRIC
Montpellier Cancer Grant INCa_Inserm_DGOS_12553” and MSDAvenir
through the MSD-Mitest grant.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
cancer, circulating DNA, early diagnosis, machine learning, screening

Received: February 10, 2020
Revised: May 30, 2020

Published online: July 29, 2020

[1] L. D. Maxim, R. Niebo, M. J. Utell, Inhalation Toxicol. 2014, 26, 811.
[2] K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, D. I. Fo-

tiadis, Comput. Struct. Biotechnol. J. 2015, 13, 8.
[3] L. Hussain, A. Ahmed, S. Saeed, S. Rathore, I. A. Awan, S. A. Shah,

A. Majid, A. Idris, A. A. Awan, Cancer Biomarkers 2018, 21, 393.
[4] J. Listgarten, S. Damaraju, B. Poulin, L. Cook, J. Dufour, A. Driga, J.

Mackey, D. Wishart, R. Greiner, B. Zanke, Clin. Cancer Res. 2004, 10,
2725.

[5] A. R. Thierry, S. El Messaoudi, P. B. Gahan, P. Anker, M. Stroun, Can-
cer Metastasis Rev. 2016, 35, 347.

[6] J. D. Cohen, L. Li, Y. Wang, C. Thoburn, B. Afsari, L. Danilova, C. Dou-
ville, A. A. Javed, F. Wong, A. Mattox, R. H. Hruban, C. L. Wolfgang,
M. G. Goggins, M. Dal Molin, T.-L. Wang, R. Roden, A. P. Klein, J.
Ptak, L. Dobbyn, J. Schaefer, N. Silliman, M. Popoli, J. T. Vogelstein,
J. D. Browne, R. E. Schoen, R. E. Brand, J. Tie, P. Gibbs, H.-L. Wong,
A. S. Mansfield, J. Jen, S. M. Hanash, M. Falconi, P. J. Allen, S. Zhou,
C. Bettegowda, L. A. Diaz, C. Tomasetti, K. W. Kinzler, B. Vogelstein,
A. M. Lennon, N. Papadopoulos, Science 2018, 359, 926.

[7] R. Tanos, A. R. Thierry, Transl. Cancer Res. 2018, 7, S105.
[8] K. C. A. Chan, J. K. S. Woo, A. King, B. C. Y. Zee, W. K. J. Lam, S. L.

Chan, S. W. I. Chu, C. Mak, I. O. L. Tse, S. Y. M. Leung, G. Chan, E. P.
Hui, B. B. Y. Ma, R. W. K. Chiu, S.-F. Leung, A. C. van Hasselt, A. T. C.
Chan, Y. M. D. Lo, N. Engl. J. Med. 2017, 377, 513.

Adv. Sci. 2020, 7, 2000486 2000486 (13 of 14) © 2020 INSERM, Paris. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



www.advancedsciencenews.com www.advancedscience.com

[9] S. Y. Shen, R. Singhania, G. Fehringer, A. Chakravarthy, M. H. A.
Roehrl, D. Chadwick, P. C. Zuzarte, A. Borgida, T. T. Wang, T. Li, O.
Kis, Z. Zhao, A. Spreafico, T. da S. Medina, Y. Wang, D. Roulois, I. Et-
tayebi, Z. Chen, S. Chow, T. Murphy, A. Arruda, G. M. O’Kane, J. Liu,
M. Mansour, J. D. McPherson, C. O’Brien, N. Leighl, P. L. Bedard,
N. Fleshner, G. Liu, M. D. Minden, S. Gallinger, A. Goldenberg, T. J.
Pugh, M. M. Hoffman, S. V. Bratman, R. J. Hung, D. D. De Carvalho,
Nature 2018, 563, 579.

[10] A. A. I. Sina, L. G. Carrascosa, Z. Liang, Y. S. Grewal, A. Wardiana, M.
J. A. Shiddiky, R. A. Gardiner, H. Samaratunga, M. K. Gandhi, R. J.
Scott, D. Korbie, M. Trau, Nat. Commun. 2018, 9, 4915.

[11] N. Krishnamurthy, E. Spencer, A. Torkamani, L. Nicholson, J. Clin.
Med. 2017, 6, 3.

[12] J. Phallen, M. Sausen, V. Adleff, A. Leal, C. Hruban, J. White, V. Anag-
nostou, J. Fiksel, S. Cristiano, E. Papp, S. Speir, T. Reinert, M.-B. W.
Orntoft, B. D. Woodward, D. Murphy, S. Parpart-Li, D. Riley, M. Nes-
selbush, N. Sengamalay, A. Georgiadis, Q. K. Li, M. R. Madsen, F.
V. Mortensen, J. Huiskens, C. Punt, N. van Grieken, R. Fijneman, G.
Meijer, H. Husain, R. B. Scharpf, L. A. Diaz, S. Jones, S. Angiuoli, T.
Ørntoft, H. J. Nielsen, C. L. Andersen, V. E. Velculescu, Sci. Transl.
Med. 2017, 9, eaan2415.

[13] L. Fernandez-Cuesta, S. Perdomo, P. H. Avogbe, N. Leblay, T. M. Del-
homme, V. Gaborieau, B. Abedi-Ardekani, E. Chanudet, M. Olivier, D.
Zaridze, A. Mukeria, M. Vilensky, I. Holcatova, J. Polesel, L. Simonato,
C. Canova, P. Lagiou, C. Brambilla, E. Brambilla, G. Byrnes, G. Scelo,
F. Le Calvez-Kelm, M. Foll, J. D. McKay, P. Brennan, EBioMedicine
2016, 10, 117.

[14] A. Thierry, S. El Messaoudi (INSERM), EU 15816218.0 – 1111 /
3209797, 2016.

[15] A. R. Thierry, F. Mouliere, C. Gongora, J. Ollier, B. Robert, M. Ychou,
M. Del Rio, F. Molina, Nucleic Acids Res. 2010, 38, 6159.

[16] F. Mouliere, B. Robert, E. A. Peyrotte, M. Del Rio, M. Ychou, F. Molina,
C. Gongora, A. R. Thierry, PLoS One 2011, 6, e23418.

[17] F. Mouliere, S. El Messaoudi, D. Pang, A. Dritschilo, A. R. Thierry,
Mol. Oncol. 2014, 8, 927.

[18] C. Sanchez, M. W. Snyder, R. Tanos, J. Shendure, A. R. Thierry, npj
Genomic Med. 2018, 3, 31.

[19] H. Schwarzenbach, D. S. B. Hoon, K. Pantel, Nat. Rev. Cancer 2011,
11, 426.

[20] A. M. Aravanis, M. Lee, R. D. Klausner, Cell 2017, 168, 571.
[21] A. M. Newman, S. V. Bratman, J. To, J. F. Wynne, N. C. W. Eclov, L.

A. Modlin, C. L. Liu, J. W. Neal, H. A. Wakelee, R. E. Merritt, J. B.
Shrager, B. W. Loo Jr., A. A. Alizadeh, M. Diehn, Nat. Med. 2014, 20,
548.

[22] F. Mouliere, D. Chandrananda, A. M. Piskorz, E. K. Moore, J. Morris,
L. B. Ahlborn, R. Mair, T. Goranova, F. Marass, K. Heider, J. C. M. Wan,
A. Supernat, I. Hudecova, I. Gounaris, S. Ros, M. Jimenez-Linan, J.
Garcia-Corbacho, K. Patel, O. Østrup, S. Murphy, M. D. Eldridge, D.
Gale, G. D. Stewart, J. Burge, W. N. Cooper, M. S. van der Heijden,
C. E. Massie, C. Watts, P. Corrie, S. Pacey, K. M. Brindle, R. D. Baird,
M. Mau-Sørensen, C. A. Parkinson, C. G. Smith, J. D. Brenton, N.
Rosenfeld, Sci. Transl. Med. 2018, 10, eaat4921.

[23] H. R. Underhill, J. O. Kitzman, S. Hellwig, N. C. Welker, R. Daza, D. N.
Baker, K. M. Gligorich, R. C. Rostomily, M. P. Bronner, J. Shendure,
PLOS Genet. 2016, 12, e1006162.

[24] G. Leszinski, J. Lehner, U. Gezer, S. Holdenrieder, In Vivo 2014, 28,
299.

[25] M. Ivanov, A. Baranova, T. Butler, P. Spellman, V. Mileyko, BMC Ge-
nomics 2015, 16, S1.

[26] A. R. Thierry, F. Molina (CNRS), US 9580755, 2012.
[27] A. R. Thierry, C. Sanchez (INSERM), EU n°17306721.6, 2017.
[28] H. Tang, E. T. Donnell, Accid. Anal. Prev. 2019, 132, 105274.
[29] S. S. Panesar, R. N. D’Souza, F.-C. Yeh, J. C. Fernandez-Miranda, World

Neurosurg.: X 2019, 2, 100012.
[30] G. Wichmann, C. Gaede, S. Melzer, J. Bocsi, S. Henger, C. Engel, K.

Wirkner, J. R. Wenning, T. Wald, J. Freitag, M. Willner, M. Kolb, S.
Wiegand, M. Löffler, A. Dietz, A. Tárnok, Cancers 2019, 11, 814.

[31] J. T. Jordan, D. E. McNiel, Psychiatry Res. 2018, 268, 317.
[32] Q. Q. Tiet, Y. E. Leyva, R. H. Moos, S. M. Frayne, L. Osterberg, B.

Smith, JAMA Intern. Med. 2015, 175, 1371.
[33] R. Meddeb, Z. A. A. Dache, S. Thezenas, A. Otandault, R. Tanos, B.

Pastor, C. Sanchez, J. Azzi, G. Tousch, S. Azan, C. Mollevi, A. Adenis,
S. El Messaoudi, P. Blache, A. R. Thierry, Sci. Rep. 2019 2019, 9, 5220.

[34] Y. Xu, Y. Song, J. Chang, X. Zhou, Q. Qi, X. Tian, M. Li, X. Zeng, M.
Xu, W. Zhang, D. S. Cram, J. Liu, Eur. J. Clin. Invest. 2018, 48, e13015.

[35] D. J. Dwivedi, L. J. Toltl, L. L. Swystun, J. Pogue, K.-L. Liaw, J. I. Weitz,
D. J. Cook, A. E. Fox-Robichaud, P. C. Liaw, Crit. Care 2012, 16, R151.

[36] L. Wang, L. Xie, Q. Zhang, X. Cai, Y. Tang, L. Wang, T. Hang, J. Liu, J.
Gong, Coron. Artery Dis. 2015, 26, 296.

[37] S. Tug, S. Helmig, E. R. Deichmann, A. Schmeier-Jürchott, E. Wagner,
T. Zimmermann, M. Radsak, M. Giacca, P. Simon, Exerc. Immunol.
Rev. 2015, 21, 164.

[38] F. Mouliere, S. El Messaoudi, C. Gongora, A.-S. Guedj, B. Robert, M.
Del Rio, F. Molina, P.-J. Lamy, E. Lopez-Crapez, M. Mathonnet, M.
Ychou, D. Pezet, A. R. Thierry, Transl. Oncol. 2013, 6, 319.

[39] P. van der Leest, E. Schuuring, Mol. Oncol. 2020, 14, 487.
[40] S. Cristiano, A. Leal, J. Phallen, J. Fiksel, V. Adleff, D. C. Bruhm, S.

Ø. Jensen, J. E. Medina, C. Hruban, J. R. White, D. N. Palsgrove, N.
Niknafs, V. Anagnostou, P. Forde, J. Naidoo, K. Marrone, J. Brahmer,
B. D. Woodward, H. Husain, K. L. van Rooijen, M.-B. W. Ørntoft, A.
H. Madsen, C. J. H. van de Velde, M. Verheij, A. Cats, C. J. A. Punt,
G. R. Vink, N. C. T. van Grieken, M. Koopman, R. J. A. Fijneman, J. S.
Johansen, H. J. Nielsen, G. A. Meijer, C. L. Andersen, R. B. Scharpf,
V. E. Velculescu, Nature 2019, 570, 385.

[41] P. Jiang, C. W. M. Chan, K. C. A. Chan, S. H. Cheng, J. Wong, V. W.-S.
Wong, G. L. H. Wong, S. L. Chan, T. S. K. Mok, H. L. Y. Chan, P. B. S.
Lai, R. W. K. Chiu, Y. M. D. Lo, Proc. Natl. Acad. Sci. USA 2015, 112,
E1317.

[42] R. Meddeb, E. Pisareva, A. R. Thierry, Clin. Chem. 2019, 65, 623.
[43] S. El Messaoudi, F. Rolet, F. Mouliere, A. R. Thierry, Clin. Chim. Acta

2013, 424, 222.
[44] R. W. Platt, J. A. Hanley, H. Yang, Stat. Med. 2000, 19, 313.
[45] L. Breiman, Classification and Regression Trees, Routledge, New York

2017.

Adv. Sci. 2020, 7, 2000486 2000486 (14 of 14) © 2020 INSERM, Paris. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim


