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Abstract: Foot infections are the main disabling complication in patients with diabetes mellitus. These
infections can lead to lower-limb amputation, increasing mortality and decreasing the quality of life.
Biofilm formation is an important pathophysiology step in diabetic foot ulcers (DFU)—it plays a main
role in the disease progression and chronicity of the lesion, the development of antibiotic resistance,
and makes wound healing difficult to treat. The main problem is the difficulty in distinguishing
between infection and colonization in DFU. The bacteria present in DFU are organized into functionally
equivalent pathogroups that allow for close interactions between the bacteria within the biofilm.
Consequently, some bacterial species that alone would be considered non-pathogenic, or incapable
of maintaining a chronic infection, could co-aggregate symbiotically in a pathogenic biofilm and
act synergistically to cause a chronic infection. In this review, we discuss current knowledge on
biofilm formation, its presence in DFU, how the diabetic environment affects biofilm formation and
its regulation, and the clinical implications.

Keywords: biofilm; commensal bacteria; diabetic foot infection; diabetic foot ulcer; pathogenic
bacteria; pathogroups

1. Introduction

People suffering from diabetes mellitus have a 15–25% lifetime incidence of developing a diabetic
foot ulcer (DFU) [1]. Infection is the most common, severe, and costly complication of diabetes
mellitus [2], with high risk of mortality and morbidity due to lower limb amputation [3]. Wound
infection, faulty wound healing, and ischemia are the most common precursors to diabetes-related
amputations. Indeed, 80% of lower-limb amputations in diabetic patients are preceded by biofilm
infected foot ulceration [4,5]. Infected wounds result in an increased risk of death within 18 months [6].
The host–microorganism interface plays a major role in DFU development. In DFU, bacteria are
classically organized into functionally equivalent pathogroups (FEP), where pathogenic and commensal
bacteria co-aggregate symbiotically in a pathogenic biofilm to maintain a chronic infection [7].
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This polymicrobial biofilm has been observed both in pre-clinical studies using animal models and in
clinical research on DFU. It represents the main cause of delayed healing.

2. Pathophysiology of Diabetic Foot Ulcers

2.1. Main Host-Related Factors

The triopathy induced by diabetes mellitus plays a role in the origin and chronicity of the DFU.

n Diabetic immunopathy: Diabetic patients have an altered function of polymorphonuclear cells
and impaired phagocytosis, chemotaxis, and bactericidal activity (related to both non oxidative
and oxidative mechanisms), which are more evident in the presence of high hyperglycemia [8].
A study on diabetic mice showed that persistent hyperglycemia had a deleterious effect on the
innate immunity and could lead to skin and soft tissue infections by Staphylococcus aureus [9].

n Diabetic neuropathy: Neuropathy by C-fiber and autonomic nerve fiber dysfunction is a common
and frequent complication of diabetes mellitus. An evolution of the deregulation of glycemic
balance is the inhibition of nociception and the perception of pain, a process called loss of
protective sensation [10]. Thus, patients may not initially notice small wounds in the legs and feet,
and may fail to prevent infection. Studies have observed a reduction in foot skin innervation and
the expression of neurogenic factors in DFU, correlated with low inflammatory cell accumulation
and therefore in the chronicity of DFU. This contributes to enhancing susceptibility to infection of
diabetic neuropathic foot ulcers [11].

n Diabetic angiopathy: Peripheral arterial disease (PAD) and microangiopathy are the main risk
factors for DFU. The decrease in the oxygenation of tissues by thickening the capillary basement
membrane is a hallmark of diabetic angiopathy [12]. Disease of arteries in the lower limb is
a well-known risk factor for DFU. Indeed, studies have shown that PAD presents a 5.5-fold
increased risk for DFU [13]. The ischemia caused by the angiopathy also enhances the severity of
the infection as a result of a poor delivery of oxygen and nutrients in the infected wound and
because of poor antibiotic tissue penetration [14].

Finally, the anatomical characteristics of the foot, with its division into compartments, participates
in the pathophysiology by increasing the severity of the infectious process by promoting the spread of
infection and aggravating tissue damage.

2.2. DFU Microbiota

The host–microbiota interface is often the key point in the development of wound infections.
Defining the diabetic foot microbiota implies the possibility of distinguishing it from skin microbiota
associated with other clinical statuses. Compared with the feet of non-diabetic men, those of
diabetic men had decreased populations of Staphylococcus spp., increased populations of S. aureus,
and increased bacterial diversity [15]. When compared with contralateral healthy skin, the DFU
microbiota harbored less bacterial diversity with greater levels of opportunistic pathogens [16].
However, neither patient demographics nor wound type influenced the bacterial composition of
the chronic wound microbiome [17]. Different studies have described this DFU microbiota [17–25].
Although they have produced interesting results and confirmed that the microbiota is a highly
dynamic microbial community that maintains a relationship with the host, understanding the complex
competitive or synergistic interaction between commensal and pathogenic microorganisms is necessary
as it could play an important role in the severity and evolution of the wound.

2.3. Disturbances in the Host–Microorganism Interplay

n Bacterial virulence: The virulence of pathogens is a key element in the pathophysiology of DFU.
The ability of a bacterium to be virulent is key to the precarious balance between colonization
and infection [26]. Bacterial virulence has been characterized using DNA microarray-based
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genotyping, multiplex polymerase chain reaction (PCR), and in vivo assays [26,27]. Among the
large panel of virulence factors, bacterial proteases (serine-, cysteine-, and metallo-proteases),
produced by a wide range of pathogenic bacteria, could play a major role in the pathogenesis
of wound healing [28]. However, these wounds, and especially DFU, are highly polymicrobial,
and bacterial interactions should also be studied in order to better understand the mechanisms of
infection and the role of each of the pathogens involved in DFU.

n Biofilm organization: In a 2008 study assessing wound tissue biopsies using electron microscopy,
James et al. suggested that 60% of chronic wounds present biofilms versus 6% for acute
wounds [29]. In the following sections of this review, we focus on the formation of biofilms,
evidence of biofilms in DFU, influence of the diabetic environment, and finally the clinical
implications of biofilms in DFU.

3. Overview of Biofilms in DFU

3.1. Biofilm Formation in DFU and Tools for Detection

In the environment, microorganisms can exist in two main states, namely: planktonic and sessile.
In the planktonic state, bacteria move freely in their environment. In the sessile state, microorganisms
are attached either to solid surfaces (e.g., urinary catheter or prosthesis), or more frequently, to each
other, constituting multicellular aggregates that can lead to biofilm formation. Biofilm formation
is a multistep process (for review, see Percival et al., 2015 [30]; Figure 1) whereby heterogeneous
communities of microorganisms (bacteria and/or fungi) [30] are embedded into a self-produced matrix
of extracellular polymeric substance (EPS). EPS contains proteins, glycoproteins, and polysaccharides
and confers the ability to adhere to biotic or abiotic surfaces [31]. Clinically, biopsy tissues are the most
reliable samples for revealing biofilms in deep tissues. However, the use of swabs to collect biofilm
samples from the wound surface is considered an improper technic because of contamination from the
skin microbiota, the difficulty in detaching the biofilm from the host epithelium, and the growth of
anaerobes in the deep tissues. If a moderate to severe soft tissue infection is suspected and a wound is
present, a tissue sample from the base of the debrided wound should be examined. Biofilms in tissue
samples are commonly quantified through microscopy. Techniques such as confocal laser scanning
microscopy and scanning electron microscopy or fluorescence in situ hybridization (FISH) are the most
appropriate for revealing biofilms in biopsies [32].
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n Cells included in the biofilm can develop an intracellular communication mechanism called
quorum sensing (QS) [33], which controls bacterial pathogenicity and biofilm formation.
The bacterial density influences the biofilm production [34].

n Microbial cells within a biofilm can detach and disseminate in the wound environment.
The behavior of the released bacteria may differ from that of the pioneering colonizing bacteria
because of adaptation within the biofilm [30,35].

n The concept of FEP was proposed by Dowd et al. after observing that different bacterial species
can collaborate and interact with each other. FEPs are responsible for the chronicity of infection
and for the maintenance of the pathogenic biofilm [7].

3.2. Biofilm Studies in Animal Models of DFU

Several studies have described the presence of biofilms in animal wounds since the early 2000s,
and experimental diabetic models were developed in 2010 (Table 1). Pioneering groups in this field
have shown that in db/db mice (a model of diabetic dyslipidemia), Pseudomonas aeruginosa or S. aureus
biofilms delayed wound healing, and that the diabetic condition slowed down healing and increased
the biofilm thickness [36,37]. Hsu et al. also reported that high glucose levels encourage the formation
of vancomycin-resistant S. aureus biofilms [38]. Other studies have shown that the host response and
neutrophil oxidative burst activity were decreased in the wound, and that oxidative stress and reactive
oxygen species promoted biofilm appearance [39,40]. James et al. suggested that biofilms in wounds
induced oxygen-limiting conditions (and thus stress) by the following two mechanisms: (i) bacterial
metabolic activities and (ii) oxygen-deprivation by the host defenses [41]. These findings were recently
confirmed by Hunt et al., who showed delayed healing in diabetic mice concomitantly with increased
pus production [42]. They also suggested that in db/db mice, the deleterious impact of P. aeruginosa on
wound healing cannot be explained solely by its ability to form biofilms, and that the type-3 secretion
system virulence structure was also involved in the wound damage caused by this pathogen [43]
(Table 1).

Table 1. Examples of biofilm studies in animal models of diabetes.

Animal Model Strain Used Findings Reference

db/db mice P. aeruginosa (PAO1) Biofilm evidence after a 6-mm punch
biopsy wound on the dorsal skin [36]

db/db mice P. aeruginosa (PAO1) Biofilm delays wound healing [37]

TallyHo mice (Type 2
diabetes mellitus) P. aeruginosa

Biofilm decreases TLR 2, TLR 4, IL-1α,
and TNF-α expression and neutrophil

oxidative burst activity
[39]

BALB/c mice with
injection of STZ

Vancomycin-resistant
S. aureus

Correlation between glucose
concentration and biofilm formation [38]

db/db mice Wound microbiome
Oxidative stress and ROS favor biofilm

formation and establish a chronic
wound

[40]

db/db mice P. aeruginosa
Bacteria in biofilm induce oxygen stress
by producing metabolites and recruiting

defense cells that reduce oxygen
[41]

Mice with injection of
STZ P. aeruginosa Biofilm increases wound depth,

mortality rate, and pus production [42]

db/db mice P. aeruginosa
P. aeruginosa infection is independent of
its ability to form biofilm and primarily

depends on T3SS
[43]

db/db mice—diabetic mice; TLR—toll-like receptor; IL—interleukin; TNF—tumor necrosis factor; ROS—reactive
oxygen species; STZ—streptozocin (a pancreatic β-cell toxin); T3SS—type-3 secretion system.
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3.3. Biofilm Studies in Human Clinical DFU

Many clinical studies emerged in the 2010s demonstrating the impact of biofilms in chronic
wounds (Table 2). In 2011, Neut et al. published two case studies of diabetic patients with non-healing
ulcers. Using the confocal laser scanning microscope technique, they showed evidence of biofilms
in diabetic wounds [44]. Subsequently, several studies have shown the presence and the impact of
biofilms in clinical DFU. Malik et al. showed that on 162 diabetic foot infections (DFI), biofilms were
present in 67.9% of the cases [45]. Other studies supported this and, in particular, the implication
of S. aureus within the biofilms [46,47]. Oates et al. confirmed the importance of biofilms, using 26
human samples after debridement, employing FISH and scanning electron microscopy [48]. Recent
research has shown that, during infection, in particular at the wound level, a single bacteria species is
not responsible for biofilm formation [49]. Instead, microbes represent a complex polymicrobial biofilm
community communicating with each other [50]. Interactions between microbes are complex and play
an important role in the pathogenesis of the infection. These interactions range from competition
for nutrients to evolving cooperative mechanisms that support their mutual growth in a specific
environment [51]. Proximity and contact between bacteria in the biofilm promote communication
and exchanges. To adapt their behavior, bacteria communicate through diffusible molecules like
homoserines lactones or quinolones for Gram-negative bacteria, whereas Gram-positive cocci use short
peptides [52]. Moreover, this proximity contributes to horizontal gene transfer, providing tolerance to
antimicrobial agents and enhancing survival. Mottola et al. studied 53 staphylococci clinical isolates
from DFU [53]. They discovered that biofilms cells were 10 to 1000 more tolerant to antibiotics than
planktonic cells. In their work, of the 10 antibiotics tested, only gentamicin and ceftaroline were
able to eradicate the biofilms. It has been reported that bacterial biofilms are also highly resistant to
ultraviolet and heavy metals [54]. In addition to bacteria, fungi, especially Candida, are present in DFU
biofilm-associated wound samples [55].

Table 2. Examples of biofilm studies in clinical human DFU.

Model N◦ of Patients Biofilm Visualization Findings Reference

DFU 2 CLSM Evidence of biofilms [44]

DFU 162 Microtiter plate assay Biofilms in 67.9% of infected
DFUs [45]

DFU 26 FISH and ESEM
Observation of the formed
biofilms and their bacterial

constitution
[48]

DFU 357 Crystal violet Observation of the formed
biofilms [46]

DFU 100
Congo Red dye, tissue

culture plates, and
crystal violet staining

Biofilm formation in 46.3% of
isolates, predominantly by S.
aureus (38.8% of isolates) and

MDR bacteria (46.3%)

[47]

DFU 49

Calgary biofilm pin lid
device with resazurin

and PCR of genes
associated with biofilm

formation

Biofilms are resistant to
antibiotics at concentrations

10–1000 times higher than those
required to kill planktonic cells

[53]

DFU 155
Microtiter plate assay

and ELISA, XTT
formazan, and SEM

Presence and importance of
non-Candida albicans species in

biofilms
[55]

DFU 95 Microtiter plate assay
and FISH

Polymicrobial biofilms are
thicker [56]

DFU—diabetic foot ulcer; CLSM—confocal laser scanning microscopy; ELISA—enzyme-linked immunosorbent
assay; ESEM—environmental scanning electron microscopy; FISH—fluorescent in situ hybridization;
MDR—multidrug resistant; PIA—polysaccharide intercellular adhesin; SEM—scanning electron
microscopy; XTT—2H-tetrazolium-5-carboxanilide.
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3.4. Factors Influencing Biofilm Formation in DFU

DFUs are mainly colonized by commensal bacteria. Numerous papers have analyzed the DFU
microbiome, showing that the wounds contain commensal microorganisms from different niches [57,58].
All of these studies highlight the high bacterial complexity of wounds. This complexity is one of the major
characteristics of DFU, and the lack of knowledge regarding the interactions of these microorganisms in
the wound renders these infections as being complicated to manage [59]. The microorganisms appear
to be organized as multi-layered communities surrounded by a self-produced protective extracellular
matrix, and are organized into different FEPs [7]. Biofilm formation is a multistep process, including
random settlement of early bacterial colonizers, with increased competition among species and niche
differentiation, resulting in highly heterogeneous biofilms [30]. The biofilms detected in patients
with foot ulcers may be responsible for the delayed healing of these chronic wounds [18]. Moreover,
the presence of some bacterial communities in the initial stages of the wounds has been associated
with delayed healing [24].

Several microbial and host factors specific to DFU may interfere in the development and feature
of the biofilms:

- High bacterial diversity [7,15,60,61], including opportunistic pathogens [16] and anaerobic
bacteria [57,62].

- Increased S. aureus population [15], particularly in neuropathic DFUs [61]. However,
their microbiota present a similar level of richness (number of different species in the wound
community), abundance, and diversity compared to other chronic wounds [63], suggesting that
the microbiota is not influenced by the wound type.

- The wound depth with a more diverse and complex microbiota in the deep part of the wound [64]
where pathogenic, particularly anaerobic, bacteria are sheltered.

- Environmental factors (e.g., demographic characteristics, personal hygiene, geographical location
of the patient, high glycemic level, and previous exposure to antimicrobial therapy) [65].

- Patient immune status that modifies the role of low-virulence bacteria (e.g., Staphylococcus
sp. and corynebacteria) towards a higher pathogenicity [66], and where excessive secretion
of pro-inflammatory cytokines, pH, temperature, or antimicrobial treatment (topic or systemic
administration) [67] can increase tissue destruction [68].

- DFU duration is positively correlated with the ecological diversity of the bacteria present in the
wounds, species richness, and relative abundance of Proteobacteria. It is also negatively correlated
with the relative abundance of staphylococci [69].

- Local tissue hypoxemia is often observed as a result of obstructive arteriopathy. This hypoxic
environment influences bacterial diversity, with a higher prevalence of proteobacteria and strict
anaerobic bacteria in deeper ulcers [61,68].

- The development of a “unique microbiota” in each DFU (new or recurrent) [17].

3.5. Bacterial Organization Inside DFU

The main characteristic of DFU is the polymicrobial content that modulates bacterial
virulence. Within DFU, microorganisms form a complex polymicrobial biofilm community and
intercommunicate [7]. As described above, bacterial interactions play an important role in pathogenesis,
competing and cooperating in order to support their mutual growth in a specific environment [51] via
interactions through diffusible molecules [52].

The most studied bacterial interaction in DFU is the cooperation between S. aureus and P. aeruginosa,
despite the location of P. aeruginosa being deeper in the wound bed than S. aureus [70]. Many substances
produced by P. aeruginosa may play a protective role for S. aureus [17,70–74]. In a rat model of orthopedic
wounds, even a low presence of both P. aeruginosa and S. aureus increased their infection rates in
the wound [75]. A similar synergistic cooperation between P. aeruginosa and S. aureus also increased
their tolerance to antibiotics, ability to form biofilms, and the secretion of virulence factors (hydrogen
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cyanide, exoenzyme S, exotoxin A, and pyocyanin for P. aeruginosa, and Panton-Valentine leukocidin
and α hemolysin for S. aureus) [76]. These interactions can also be competitive, as exemplified by the
competition for iron or the one-way growth inhibition of S. aureus [37,77]. Indeed, P. aeruginosa can
simultaneously suppress S. aureus growth and enhance its resistance to aminoglycosides [71].

Other bacterial interactions have also been described. For instance, the combined inoculation of
different pathogenic bacteria (Escherichia coli, Bacteroides fragilis, and Clostridium perfringens) increased the
mortality rate in type-2 diabetic mice compared with those receiving inoculation of single strains [78].
Competition between commensal and pathogenic bacteria has been observed during cutaneous
colonization [79]. In contrast, Helcococcus kunzii (a commensal Gram-positive coccus) and S. aureus
cooperation led to a decrease of S. aureus virulence in Caenorhabditis elegans [80]. S. aureus shifts
toward commensalism in response to Corynebacterium sp. [81]. Moreover, S. epidermidis, a commensal
bacterium, produces a serine protease (Esp) that inhibits S. aureus biofilm formation [56,82]. Finally,
the co-culture of Fusobacterium nucleatum (ATCC 25586) with Prevotella intermedia/Prevotella nigrescens
promotes biofilm formation compared with single cultures [83].

Another pertinent aspect of polymicrobial biofilms in DFU is their ability to adapt under various
circumstances via enhanced metabolic cooperation and gene regulation between sessile cells. Biofilm
diversity promotes its survival by creating a thicker biofilm, resulting in more severe infections. In this
context, Mottola et al. reported that the biofilms formed by P. aeruginosa and Enterococcus faecalis and
Acinetobacter baumannii, and S. aureus resulted in a thicker biofilm than the bacteria alone, which were
difficult to eradicate [84]. Furthermore, these microbial communities are heterogeneous. Interestingly,
fungi can also form biofilms. Both yeasts and filamentous fungi can adhere to biotic and abiotic
surfaces, and form highly organized communities that are resistant to antimicrobials and environmental
conditions. Many fungi have been correlated with biofilm formation, however, Candida biofilms remain
the most widely studied. The biofilms formed by yeast and filamentous fungi present differences,
and studies of polymicrobial communities have become increasingly important. Interactions have
been observed between bacterial and fungal species in chronic wounds [55]. Infections that are
thought to involve polymicrobial biofilms are most frequently associated with the abiotic surfaces of
indwelling medical devices. In a review written by Lynch and Robertson [85], they highlighted the
indwelling medical devices commonly associated with biofilm formation. In all of the devices tested,
the principal pathogen responsible for the biofilms was a bacterium, however in 70% of cases, fungi was
found as a secondary species. Among fungal pathogens, Candida albicans, a commensal mucosal
organism and opportunistic pathogen of the immunocompromised, was most commonly associated
with biofilms. Numerous studies have described co-infections of fungi and bacteria in different
diseases. For example, cystic fibrosis lungs are a major site of polymicrobial infection, with bacteria
such as P. aeruginosa, S. aureus, Burkholderia cepacia, A. baumannii, and Haemophilus influenzae mixed
with C. albicans, A. fumigatus, and Scedosporium sp. [86]. In a DFI context, Kalan et al. showed that the
presence of fungal communities in the polymicrobial biofilms of chronic wounds is associated with a
poor prognosis and delayed healing [87]. Further studies are needed in order to fully elaborate on the
role of each microorganism in the polymicrobial biofilms of DFU.

4. Clinical Impact of Biofilms in DFU

As biofilms are implicated in 60 to 80% of chronic wounds [29,88], the clinical impact of biofilms
is particularly relevant. For clinicians, the main difficulty is in distinguishing between infecting and
colonizing bacteria. Misidentification can lead to inappropriate antibiotic prescriptions that may
contribute to the emergence of multidrug resistant (MDR) bacteria, a major DFU health issue [30].

4.1. Antibiotics Resistance

Sessile cells involved in biofilm formation display different characteristics compared with
non-biofilm-associated cells (i.e., planktonic cells) [89]. In particular, sessile cells show a higher tolerance
towards antimicrobial agents, one of the main causes of treatment failure [90,91]. Antimicrobial agent



Microorganisms 2020, 8, 1580 8 of 15

tolerance arises by several mechanisms, namely: (i) inability of drugs to penetrate through the polymeric
matrix; (ii) the lack of intracellular accumulation of antibiotics due to impermeability (e.g., excessive
production of glucans by P. aeruginosa) or active efflux (e.g., increased expression of efflux pump
genes in Gram-negative bacilli); (iii) the presence of sessile bacteria, whereby cells are metabolically
inactive and thus tolerate the antibiotic action better; and (iv) the importance of horizontal gene
transfer between bacteria for the diffusion of resistant traits [92,93]. Biofilms increase the opportunity
of gene transfer of virulence factors and antibiotic-resistant genes to susceptible bacterial species.
The rate of mutation occurring in biofilms is markedly higher compared with planktonic cells [94].
In addition, (v) stress response to hostile environmental conditions (e.g., leading to an overexpression
of antimicrobial agent-destroying enzymes) can result in an altered microenvironment inside the
biofilm matrix (pH and oxygen content) and may contribute to enhanced degradation of antimicrobial
agents in the biofilm matrix [95]. Finally, the hypoxic environment present in DFU also modulates the
tolerance of bacteria to some antibiotics. For instance, the in vitro bactericidal effect of vancomycin on
S. aureus isolates is lower in anaerobic conditions [96].

4.2. Host Immune Response

Pioneering colonizing bacteria released from the biofilm can adapt to their environment and
form a new biofilm. To our knowledge, the only study conducted in this field focused on Klebsiella
pneumoniae [35]. In addition, EPS is a mechanical barrier to antimicrobials, as well as to immune system
cells [97]. Bacteria within biofilms evade the host’s natural defenses and are resistant to the host immune
defense by different mechanisms, including the following: (i) limited penetration of leukocytes and
their products into the biofilm [98]; (ii) global response regulators and quorum sensing, which protect
the biofilm bacteria [99]; (iii) decreased phagocytic capacity of host cells against biofilm bacteria [100];
(iv) genetic switches that increase the resistance of biofilm bacteria [101]; and (v) suppression of the
leukocyte effector function, including softening the magnitude of the respiratory burst [102]. Indeed,
stimulation of the immune system without effectively eradicating the infection causes collateral damage
to surrounding tissue and causes chronic inflammation [103]. This persistent chronic inflammation,
added to the diabetic immune context, leads to the production of auto-inflammatory cytokines that
aggravate the wound and slow the healing process.

5. Therapeutic Perspectives

Biofilms have a crucial role in DFU and DFIs and contribute to delayed healing. They are
especially difficult to treat using classical antibiotics because of EPS, which prevents diffusion into the
biofilm. They also support gene transfer, the selection of strains with beneficial characteristics, and the
development of new bacterial characteristics. This difficulty in treating DFU/DFI could be enhanced in
the context of the diabetic environment.

Biofilms encountered in chronic wounds, such as DFU, are highly polymicrobial, which can
enhance bacterial interactions. Bacterial cooperation is key to understanding the formation and
regulation of biofilms at a wound level, but also for highlighting new therapeutic targets. The available
approaches against biofilms are quite limited, and new prevention, diagnosis, and treatment methods
are crucially needed, particularly because of the extent of the MDR bacteria in this pathology.

Targeting biofilm formation could be an interesting strategy to prevent or at least reduce this
problem. Classically, clinicians reduce the bacteria load (constituting commensal and pathogen
species) resulting from the biofilm organization and FEP. The best method involves physical removal,
also called debridement, of the infected tissue in order to improve healing [104,105]. It is often
performed using surgical instruments or by irrigation [105], and is the initial and essential stage in
the management of infected wounds. This strategy is still the preferred method used to prepare the
wound bed and to promote moist wound healing, but it might not completely remove the biofilms
immediately. Therefore, it must be repeated at regular intervals [104]. The results obtained with
ultrasound debridement could represent a promising approach [106]. Other approaches could be
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proposed with the aim to inhibit bacterial adhesion or biofilm metabolism, such as (i) blocking
bacterial adhesins (using ions chelators such as ethylenediaminetetraacetic acid (EDTA) and citrate,
the most promising compounds of this class [107]), (ii) inhibiting the adhesion structure biogenesis
(e.g., plant-derived natural compounds [108]), (iii) modulating QS (e.g., furanone [109], savarine [110],
or deferiprone [111]), and (iv) enhancing bacterial dispersion (such as the α-amylase enzyme [112],
2-aminoimidazole [113], or Cis-2-decenoic acid [114]). Physical inhibition could also represent an
interesting method, such as photodynamic therapy-induced pathogen cell death by killing sessile
bacteria [115].

Some antimicrobial strategies as alternatives to antibiotics have also be developed, such as
phagotherapy [116,117], nanotechnologies [118], antimicrobial peptides (AMP) [119–121], or agent
mimicking AMPs [122], as well as natural compounds (such as honey [123]). These approaches have
an interesting potential, but further studies are required to really understand the mechanism of action
of each of these solutions and to improve their role in DFI management.

Researchers are now aware of and consider the polymicrobial characteristics of DFI and biofilms.
Further studies on bacterial interactions are required in order to really understand the pathophysiology
and to help with the development of new therapeutic tools that will target polymicrobial biofilms.
This needs to be done through the development of (i) validated, consistent, and robust animal wound
models reproducing the clinical situation and biofilm constitution; (ii) ex vivo and in vivo imaging
technologies to visualize bacterial biofilms and to confirm their eradication; and (iii) “omics” tools to
detect biofilm formation at the bedside and to evaluate the best course of action for the debridement.

6. Conclusions

Biofilms have a crucial role in DFIs and contribute to delayed healing. These wounds are
characterized by a complex microbiome and a polymicrobial organization, especially within the biofilm.
Even if most experimental biofilm studies provide descriptive and interesting information, they are
derived from in vitro studies or non-adapted in vivo models. The development of processes and
methodologies to study biofilms is needed. This represents the next step to validating new antibiofilm
molecules with a promising therapeutic potential.
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