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Extreme pressures and temperatures are known to drastically affect the chemistry of iron oxides,
resulting in numerous compounds forming homologous series nFeOmFe2O3 and the appearance of FeO2.
Here, based on the results of in situ single-crystal x-ray diffraction, Mössbauer spectroscopy, x-ray
absorption spectroscopy, and density-functional theoryþ dynamical mean-field theory calculations, we
demonstrate that iron in high-pressure cubic FeO2 and isostructural FeO2H0.5 is ferric (Fe3þ), and oxygen
has a formal valence less than 2. Reduction of oxygen valence from 2, common for oxides, down to 1.5 can
be explained by a formation of a localized hole at oxygen sites.

DOI: 10.1103/PhysRevLett.126.106001

At ambient (or low) pressures, three different iron oxides
are known: Fe2O3 with a mineral name hematite; Fe3O4

magnetite—the oldest known magnetic material—and FeO
wüstite, which is nonstoichiometric and typically iron
deficient. At extreme pressures and temperatures, the
synthesis yields numerous iron oxides with unexpected
compositions (such as Fe4O5, Fe5O6, Fe7O9, Fe5O7,
Fe25O32, etc.), unusual crystal structures, and intriguing
physical properties, demonstrating the complexity of the
binary Fe─O system [1–5]. It was suggested that iron
oxides at high-pressure and high-temperature conditions
(HP-HT) could be systematized by homologous structural
series nFeOmFe2O3 formed by oxygen (O2−) and iron in
ferrous and/or ferric states (Fe2þ and Fe3þ, correspond-
ingly). Besides the end members, iron could exist in the
mixed-valence state in this series (formally intermediate
between 2þ and 3þ valence), defined by the stoichiometry
of HP iron oxides. However, the recent finding of cubic
FeO2 (space group Pa3̄), and closely related FeO2Hx (x up
to 1) phases [6–8], suggests that not only iron but also

oxygen could have a variable oxidation state in iron oxides
(or oxyhydroxides).
Powder x-ray diffraction (PXRD) [6], x-ray absorption

spectroscopy (XAS) [9,10], and nuclear forward scattering
(NFS) studies [10] of cubic high-pressure FeO2Hx
(x ¼ 0–1) compounds, as well as results of some theoreti-
cal works [11,12] were used to argue that iron is ferrous in
these phases even at strongly oxidized conditions and thus
oxygen forms peroxide ðO2Þ2− ions. However, the question
concerning the oxidation state of both iron and oxygen in
FeO2 and FeO2Hx remains controversial, primarily because
of harsh experimental conditions and ambiguous results.
For example, while XAS data were interpreted to indicate
that iron is ferrous [9,10], NFS data of cubic FeO2 [10]
show center shifts (∼0.15 mm=s at 80 GPa) that are
unrealistic for any ferrous compound.
Available experimental information on the crystal struc-

ture of FeO2 and FeO2Hx phases is based on PXRD [6,8],
which makes the analysis of the Fe─O and O─O distances
unreliable compared to more complex yet more informative
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structural refinements from single-crystal x-ray diffraction
data (SC-XRD) [13]. Additionally, some theoretical works
[14–17] suggest that iron is ferric in FeO2, illustrating the
necessity of performing high-accuracy experiments to
establish the physical and chemical properties of this phase.
The goals of this Letter are to clarify the high-pressure

crystal chemistry of cubic FeO2 and FeO2Hx phases and
determine the oxidation state of iron and oxygen. These are
not only of importance as a fundamental problem for
HP-HT chemistry, but also highly relevant for geosciences
[6]. In order to achieve the goals of our studies, we perform
multimethod synchrotron-based experiments, including
advanced in situ SC-XRD, x-ray absorption, and
Mössbauer spectroscopy using laser-heated diamond anvil
cells (see Supplemental Material [18], Table S1). We
support our experimental results by the density-functional
theoryþ dynamical mean-field theory (DFTþ DMFT)
calculations [35,36] of the electronic structure and mag-
netic and valence states of iron. An application of DFTþ
DMFT provides a nonperturbative treatment of (local) spin
fluctuations allowing one to determine the electronic
structure and magnetic and structural properties of para-
magnetic correlated materials, e.g., near the Mott transition
[35]. We perform a full structural optimization and compute
the crystal structure parameters of paramagnetic FeO2

under pressure within DFTþ DMFT [37–43]. Our experi-
mental and theoretical results suggest that iron in HP-PdF2-
type FeO2 and FeO2Hx is ferric ð3þÞ. We show the absence
of a molecular ðO2Þ−3 bonding state in HP-PdF2-type
FeO2, implying that the oxidation state of oxygen is equal
to 1.5– due to oxygen-metal negative charge transfer. Such
a charge transfer is expected to shorten the Fe─O distance
and consequently reduce the volume of FeO6 octahedra,
which should cause both iron polyhedra and the entire
structure to become highly incompressible.
Compression of iron in oxygen at ambient temperature to

25(1) GPa did not produce any chemical reaction, but laser
heating of the sample at this pressure to ∼1500ð100Þ K led
to the formation of Fe2O3 [space group R3̄c, unit cell
parameters a ¼ 4.91496ð3Þ Å, c ¼ 13.2579ð1Þ Å] (see
Fig. S2 [18]), in agreement with literature data [44].
After further compression to 46(2) GPa, the laser heating
of a sample was performed at ∼1200ð100Þ K. The XRD
pattern of the temperature-quenched product drastically
changed (see Fig. S2 [18]). The XRD analysis shows cubic
FeO2 with the space group Pa3̄ and unit cell parameter
a ¼ 4.4313ð14Þ Å, which is close to the values reported for
“pyrite-type” FeO2 [6,16]. Iterative heating of the samples
at different pressures resulted in the growth of microcrystals
of cubic FeO2 that enabled performing an in situ SC-XRD
data collection with further structure solution and refine-
ments. The SC-XRD data analysis revealed that FeO2 has
the HP-PdF2-type structure (see Table S1 [18]) in a range of
pressures from 36(1) to 73(2) GPa. The compressional
behavior of this phase was studied in several experimental

runs on compression and decompression, as described in
Table S1 and results are presented in Fig. 1. In our
experiments, we did not observe the cubic FeO2 phase
at pressures below ∼30 GPa. The results on the crystal
structure refinements from in situ SC-XRD datasets of the
FeO2, which have never been reported before, are sum-
marized in Table S2 (see Fig. S1). Structural analysis
suggests that the O─O dimer bond length varies from
2.213(7) to 2.104ð15Þ Å within the pressure range from
∼36 to 73 GPa (see Table S2). For peroxides (in molecular
or crystalline forms), the distances between the closest
oxygen atoms at ambient pressure are very characteristic—
from about 1.2 to 1.5 Å [45] (e.g., in MgO2 it is about
1.492 Å), and under compression these distances should
not increase. In the case of FeO2, such a large observed
O─O distance suggests, from a crystal-chemical point of
view, the absence of chemical bonding between oxygen
atoms. Even in the case of the structural model of FeO2

refined against powder XRD data (pyrite-type FeO2 [6]),
the shortest O─O bond is ∼1.896 Å at 76 GPa, which is too
large for peroxides.
A number of transition metals, for example, osmium and

ruthenium, the neighbors of iron in the VIIIb group of the
periodic table, form dioxides, OsO2 and RuO2 with the
HP-PdF2-type structure [46,47] (space group Pa3̄). The
shortest O─O distance in these dioxides is equal to ∼2.5 Å
at ambient conditions. These phases are characterized by
low compressibility (for details see Refs. [46,47]), and
cubic FeO2 is very incompressible as well, according to our
experimental data [see Fig. 1(b)]. Accounting for the
relatively long O─O distances in FeO2 at HP, one could
expect that it adopts rather the HP-PdF2-type structure than
forms a peroxide. Additionally, according to the “rule of
thumb” [48], the behavior of compounds (particularly
oxides) of an element at high pressure is similar to that
of compounds of the elements with higher atomic number
in the same group of the periodic table at low pressures.
The results of structural studies and crystal-

chemical considerations are consistent and point toward
highly unusual crystal chemistry of Fe─O bonds in

FeO2 (present)
Hematite
CaFe2O4-1
CaFe2O4-2

0 20 40 60 80 100
Pressure (GPa)

7

8

9

10

11

12

13

14

F
eO

6
oc

ta
he

dr
a 

vo
lu

m
e 

(Å
3 )

Iron borate
Goethite
Andradite
ppv-Fe2O3

Fe3O4

FeCO3

(b)

1.8
2
2.2
2.4
2.6

O
-O

 d
is

ta
nc

e 
(Å

)

DFT+DMFT
SC-XRD
PXRD [7,11]

0 40 80 120 160
Pressure (GPa)

70

80

90

100

V
ol

um
e 

(Å
3 )

DFT+DMFT
SC-XRD
PXRD [7,11,13]

(a)

O-O distance:

P-V:

DFT+U [19]

FIG. 1. Compressional behavior of HP-PdF2-type FeO2: (a) lat-
tice volume and O─O distance obtained by DFTþ DMFT at
T ¼ 1160 K in comparison to XRD data. DFTþ DMFT predicts
a spin-state transition at ∼14 GPa, depicted by a dashed vertical
line. (b) Pressure dependence of volumes of the FeO6 octahedra
in various compounds according to Ref. [46].
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HP-PdF2-type FeO2. In fact, Streltsov et al. [14] suggested
on the basis of ab initio calculations for FeO2 that the
valence of iron is 3þ and classified the material as lying “in
between” oxides and peroxides with the anion described as
ðO2Þ3−. However, the structural model obtained from
PXRD [6] was used in the calculations, and the input
crystal structure of cubic FeO2 was not optimized self-
consistently [14]. While other electronic structure studies
used the DFTþ U method to compute the crystal structure
parameters of FeO2 [11,12,17], these computations assume
the existence of a long-range magnetic order in HP-PdF2
phase of FeO2, in contradiction with experiment. As a
result, such computations cannot give a reliable results for
the shortest O─O bond length in FeO2, predicting either an
unusual increase of the O─O distance under pressure [11]
or a large O─O distance of 2.232 Å at 76 GPa [17].
We resolve this point by computing the crystal structure

phase stability and electronic structure of FeO2 using a
fully charge self-consistent DFTþ DMFT method (see
Supplemental Material [18]). Within DFTþ DMFT, we
perform a full structural optimization of the lattice param-
eters of the paramagnetic HP-PdF2 phase of FeO2 and
compare our results with experimental data obtained
through more precise in situ SC-XRD. In Fig. 1 we display
our results for the crystal structure parameters obtained by
DFTþ DMFT. In contrast to the previous DFTþ U results
[11], we observe that upon compression the O─O distance
decreases from 2.286 Å at 17 GPa to 2.085 Å at 70 GPa,
which is in close agreement with our SC-XRD data. Indeed,
our SC-XRDmeasurements give ∼2.213ð7Þ Å at 36(1) GPa
and 2.117ð8Þ Å at 73(2) GPa. Our DFTþ DMFT calcu-
lations show that at a pressure of ∼70 GPa FeO2 is a poor
metal (see Fig. 2) with about 5.21 electrons in the Wannier
Fe 3d states (4.07 electrons inside the atomic sphere with
radius ∼0.78 Å, in accord with a bond valence analysis).
Oxygen states are partially occupied with ∼0.61 hole states

in the Wannier O 2p orbitals. The local magnetic moment is
∼1.59 μB (fluctuating moment of 0.83 μB). Our results for
the decomposition of electronic state into atomic configu-
rations (valence states) show that the valence value for Fe is
nearly 3þ at ∼70 GPa: Fe3þ 3d5 configuration has a weight
of about 50%, with a ∼30% admixture of the Fe2þ 3d6 state
(

ffiffiffiffiffiffiffi

0.5
p jd5i þ ffiffiffiffiffiffiffi

0.3
p jd6i, see Fig. S8 [18]).

In Fig. 2 we see that, due to distorted FeO6 octahedron
symmetry, the Fe t2g states split into a a1g singlet and eπg
doublet. Fe eσg orbitals are empty and are located well above
the Fermi level at 1–4 eV. Fe t2g states form weakly
renormalized ðm=m� ∼ 1.6Þ quasiparticle bands near EF.
No evidence for a metal-to-insulator phase transition in
FeO2 (below ∼189 GPa) was observed within our fully
relaxed DFTþ DMFT calculations [11,12], in agreement
with experiment. In fact, under experimental setup
presented here, samples were black with a metallic shine,
implying a metallic state of FeO2. Moreover, within
DFTþ DMFT the low-to-high spin-state transition is
found to occur below ∼14 GPa, i.e., below the stability
field of the HP-PdF2-type FeO2. Most notably, our
DFTþ DMFT results confirm that even at ∼189 GPa
the O─O bond length remains sufficiently large
(1.86 Å), implying the absence of covalent “molecular”
O─O bonding in FeO2.
Our DFTþ DMFT results agree well with our

Mössbauer spectroscopy data that show a low-spin state
of nearly 3þ iron ions in the studied pressure range (see
below). Most importantly, our fully relaxed and charge self-
consistent DFTþ DMFT calculations lead to a different
bonding picture of FeO2 in comparison to the analysis by
Streltsov et al. [14]. Our results reveal the absence of a
molecular ðO2Þ3− bonding state; i.e., in FeO2 iron has
effective charge 3þ and oxygen 1.5−. We see that at
∼70 GPa, bonding O─O σ states appear at about −2 eV,
while antibonding σ� states split into the t2g � σ� combi-
nations (seen as two peaks at −0.5 andþ0.5 eV) due to the
mixing with the Fe t2g states at the Fermi level. Importantly,
the empty t2g − σ� O─O band is located ∼0.5 eV above the
Fermi level. We conclude that FeO2 belongs to the class of
negative charge-transfer materials (in which excitation
energy for the transfer of electrons from the O 2p to Fe
3d states is negative) [49,50]. In such materials, instead of
having an electronic configuration corresponding to the
formal valence state, e.g., Fe4þ and O2− configuration in
FeO2, the system adopts a configuration with higher
occupation of the 3d shell, creating holes on oxygen. At
the same time, the bonding-antibonding splitting of the O
2p orbitals is small, just ∼2–3 eV, indicating negligible
bonding between the two oxygen atoms. This agrees well
with our analysis of the charge density distribution in FeO2

in comparison to magnesium peroxide MgO2 (space group
Pa3̄) [51,52]. Our results are summarized in Fig. 3, high-
lighting the absence of a molecular ðO2Þ3− or ðO2Þ2−
bonding state in FeO2 in the studied interval of pressures. In
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spectral functions of HP-PdF2 FeO2 as obtained by DFTþ
DMFT for different pressures.
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fact, while MgO2 clearly shows the formation of a
molecular ðO2Þ2− bond with ∼21% of a maximal electron
density value in the center of the O─O bond, for cubic
FeO2 it is only 5% at 70 GPa (∼8% at 189 GPa, see Fig. S8
[18]). Thus, in sharp contrast to MgO2, no covalent O─O
bond is seen for FeO2. Therefore, the results of explicit
examination of the calculated electronic structure and
charge density distribution in HP-PdF2-type FeO2 confirms
our conclusion on the absence of chemical bonding
between these oxygen atoms, as well as the fact that the
Fe oxidation state is nearly 3þ.
Our Mössbauer spectroscopy data (see Fig. S4 [18]) are

consistent with iron in the Fe3þ state [3,53]. We note that the
center shift that we obtained for cubic FeO2 at 58(2) GPa
[0.06ð5Þ mm=s] is in good agreement with that in Ref. [10].
Our experimental and theoretical results thus imply that the
oxidation state of oxygen in HP-PdF2-type FeO2 is equal to
1.5− due to oxygen-metal negative charge transfer. It is
expected to shorten the Fe─O distance and consequently
reduce the volume of FeO6 octahedra, which should cause
both iron polyhedra and the entire structure to become highly
incompressible. Indeed, fitting the experimental SC-XRD
pressure-volume data for cubic FeO2 with the third-order
Birch-Murnaghan equation of state gave a large bulk
modulus K0 ¼ 305ð9Þ GPa (K0 ¼ 4.0, fixed); the unit cell
volume V0 ¼ 97.6ð3Þ Å3. The compressibility of FeO6

octahedra is low [K0;octa ¼ 350ð4Þ GPa] and the octahedral
volume is significantly smaller than that known for any other
compound, including those with ferric iron in the low-spin
state [Fig. 1(b)].
We complemented studies of cubic FeO2 by investiga-

tions of high-pressure behavior of iron (III) oxyhydroxide,
FeO2Hx. The synthesis of FeO2Hx was performed by laser
heating of a natural single crystal of goethite, α-FeOOH,
loaded in Ne as a pressure-transmitting medium to avoid
undesirable chemical reactions [54] (see Table S1 [18]).
Heating at 1500(100) K and 81(2) GPa resulted in
formation of a cubic phase with the lattice parameter
a ¼ 4.430ð1Þ Å. The structure was solved and refined
from SC-XRD data (Table S2), and the arrangement of

Fe and O was found to correspond to the HP-PdF2-type
structure, confirming that FeO2 and FeO2Hx are isostruc-
tural phases. The lattice parameter suggests the chemical
composition FeO2H0.4 [55]. The relatively high value of the
shortest O─O distance [∼2.262ð5Þ Å] rules out the
peroxide-type chemical bonding between oxygen atoms,
and the presence of hydrogen does not shorten this bond
length.
To confirm the oxidation state of iron in cubic FeO2Hx,

we performed in situ x-ray absorption near-edge structure
(XANES) measurements on the sample synthesized by
laser heating of goethite at 86(2) GPa and 1700(200) K in a
DAC equipped with polycrystalline diamond anvils [56].
Powder XRD data confirmed the synthesis of material with
the lattice parameter a ¼ 4.449ð5Þ Å (Fig. S5 [18]), which
corresponds to the composition FeO2H0.5, while no signs of
any unwanted reactions were detected. In the XANES
spectra collected in the center of a sample at the Fe Kα edge,
the preedge peak narrows after synthesis of FeO2H0.5, and
negligible changes in the edge feature are observed;
however, the position of the absorption jump remains
the same for the starting FeOOH and cubic FeO2H0.5
(Fig. 4), inferring that iron does not alter its oxidation state
during this transformation and remains 3þ. The results of
XANES mapping and comparative contrast maps [57]
confirm the high homogeneity of a sample (with traces
of FeOOH on the sample’s edge, see Fig. S6) and points
toward presence of Fe3þ atoms in the sample.
Generalizing our observations on cubic HP-PdF2-struc-

tured FeO2 and FeO2Hx phases and taking into account that
compounds with x up to 1 have been described in the
literature, we conclude that, at pressures above ∼50 GPa,
the oxidation state of oxygen can significantly deviate from
2−. Experimental and theoretical results on cubic FeO2 and
FeO2Hx phases may be concise in terms of the concept of
valence. For our purposes, we accept a definition of the

(a) FeO2 (b) 

2.086 Å

1.492(3) Å

MgO2

min

max

FIG. 3. (a) Crystal structure and valence electron density plot
for HP-PdF2 FeO2 obtained by DFTþ DMFT at ∼70 GPa.
(b) DFT hybride potential Heyd–Scuseria–Ernzerhof HSE03
results for pyrite-type MgO2 peroxide at ambient conditions.
Max stands for 15% of maximum of charge density ρðrÞ.

FIG. 4. Normalized x-ray absorption spectra of Fe Kα edge for
FeO2H0.5 synthesized at 86(2) GPa and 1700(200) K and starting
FeOOH (DAC5, see Table S1). Centroid positions are 7114.54(9)
and 7114.76(73) eV, correspondingly. Bottom right insets:
(a) Microphotograph of FeO2H0.5 sample; (b),(c) XAS absorption
contrast and absorption jump maps of a sample chamber (palette
reflects the relative values of the absorption jump).
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“valence” of an element as a measure of its combining
power with other atoms when it forms chemical compounds
or, as in the bond valence model [58], as the number of
electrons the atom uses for bonding. Thus, in the HP-PdF2-
type structured FeO2 and FeO2H0.5 iron has the valence 3þ
and oxygen has—1.5 and 1.75, correspondingly. Reducing
the oxygen valence from 2, common for oxides, down to
1.5 can be explained by a formation of a localized hole at
oxygen sites, which leads to a reduction of the Fe─O
distance and, as a consequence, of the volume of FeO6

octahedra.
In conclusion, using in situ SC-XRD, Mössbauer spec-

troscopy, and XANES in combination with DFTþ DMFT,
we determine the electronic structure, magnetic and valence
states, and phase stability of FeO2 and FeO2Hx under
pressure. Our results on compressional behavior of FeO2

obtained by DFTþ DMFT are in excellent agreement with
SC-XRD data. The structure analysis of FeO2 reveals the
HP-PdF2-type structure and suggests no chemical bonding
between oxygen atoms. We show that in FeO2, which could
be formed above ∼45 GPa, i.e., at the conditions corre-
sponding to those in Earth’s lower mantle at the depth of
∼1150 km, iron is ferric (3þ) and oxygen has a formal
valence reduced to 1.5−. However, the presence of FeO2

and FeO2Hx phases in the lower mantle and at the core-
mantle boundary is unlikely, as in these regions the oxygen
fugacity necessary for formation of Fe3þ [59] is not
achieved. Nevertheless, the appearance of oxygen with
the low valence can affect the state and properties of various
(Fe─O)-bearing mantle minerals that makes accounting of
it of great importance for modeling the chemistry of deep
Earth’s interior.
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